Pcv阀安装结构的制作方法

文档序号:5198867阅读:299来源:国知局
专利名称:Pcv阀安装结构的制作方法
技术领域
本发明涉及一种为内燃发动机设置的窜气再循环系统的曲轴箱强制通风(PCV)阀安装结构,更特别地,涉及装备有冷却润滑油的油冷却器装置的内燃发动机中的一种PCV阀安装结构。
背景技术
一般而言,为安装在汽车等上的内燃发动机(在下文中简称为发动机)设置有使窜气回到进气系统的窜气再循环系统。此外,作为汽车的一种发动机,存在各气缸列配置成以曲轴为中心的V字形的V型发动机。于是,为V型发动机也设置有窜气再循环系统。在相关技术中,已知一种为这种V型发动机设置的窜气再循环系统,且在该窜气再循环系统中,如图7所示,PCV阀100和101附装在相对应的气缸盖罩盖102和103上(例如,参见日本专利申请N0.2007-224736公报(JP-2007-224736))。例如,在这种V型发动机104的左气缸列105中,现有的窜气再循环系统106包括:分离器壳体107,该分离器壳体107为气缸盖罩盖102设置并使窜气与油雾彼此分离;左PCV阀100,该左PCV阀100排出由分离器壳体107分离出的窜气;和左窜气供给管108,该左窜气供给管108将左PCV阀100在节气门下游的部位联接到进气管。此外,在V型发动机104的右气缸列109中,现有的窜气再循环系统110包括:为气缸盖罩盖103设置的分离器壳体111 ;右PCV阀101,该右PCV阀101排出由分离器壳体111分离出的窜气;和右窜气供给管112,该右窜气供给管112将右PCV阀101在节气门下游的部位联接到进气管。这两个PCV阀100和101暴露于发动机室。对于这种构型,在窜气再循环系统106和110中,例如,当左气缸列105的左PCV阀100打开而右气缸列109的右PCV阀101关闭时,在V型发动机104的压缩循环或膨胀循环中经气缸113和活塞114之间的间隙被吹入曲柄室115中的窜气经由左气缸列105的窜气通路116和凸轮室117导入分离器壳体107中。由分离器壳体107分离并除去了油雾的窜气经由左PCV阀100流出至左窜气供给管108,并在节气门下游的部位导入进气管中。另一方面,提出了一种为V型发动机设置并具有位于左和右气缸列之间的通风器的窜气再循环系统(例如,参见日本专利申请N0.2006-70833公报(JP-A-2006-70833))。在此窜气再循环系统中,已从曲柄室到达通风器室的窜气在通风器室中被分离为气体和液体。然后,分离了油雾的窜气经形成在通风器室上方的窜气导出孔排出。但是,在如上所述为气缸盖罩盖102和103分别设置有PCV阀100和101的现有的窜气再循环系统106和110中,PCV阀100和101暴露于发动机室,且PCV阀100和101不具有诸如加热器的加热机构,因此存在PCV阀100和101可能在装备有窜气再循环系统106和110的汽车正在低于冰点的环境中行驶时由于行驶风而冻结的问题。当PCV阀100和101冻结时,窜气不从曲柄室115排出,因此可能促进润滑油的劣化。此外,在如上所述具有位于左和右气缸列之间的通风器室的现有的窜气再循环系统中,可推测PCV阀安装在通风器室上方的窜气导出孔处,因此,与在如上所述为气缸盖罩盖102和103分别设置有PCV阀100和101的情况下一样,PCV阀可能在装备有窜气再循环系统的汽车正在低于冰点的环境中行驶时由于行驶风而冻结。另一方面,为了防止PCV阀的冻结,可设想在PCV阀周围设置诸如加热器的加热机构;但是,在这种情况下,部件数量增加而导致复杂的构型和上升的部件成本。

发明内容
本发明提供了一种PCV阀安装结构,该PCV阀安装结构能够在不增加部件数量的情况下有效地抑制PCV阀在汽车正在低于冰点的环境中行驶时由于行驶风而冻结。本发明的一个方面涉及一种用于将内燃发动机的曲轴箱强制通风(PCV)阀安装在发动机本体上的PCV阀安装结构。所述PCV阀安装结构包括:窜气再循环系统,所述窜气再循环系统包括:通风软管,所述通风软管将所述发动机本体连接到将外部空气导入所述发动机本体中的进气装置并具有使在所述发动机本体中产生的窜气再循环到所述进气装置的再循环通路;和所述PCV阀,所述PCV阀安装在所述发动机本体上并开启或封闭所述窜气的所述再循环通路;热交换器,所述热交换器在润滑油和温度比所述润滑油低的媒介溶液之间进行热交换;和传热部,所述传热部将所述热交换器的热传递到所述PCV阀。在上述构型下,在装备有内燃发动机的汽车正在行驶时,热交换器的热由传热部传递到PCV阀,因此,即使当外部空气在汽车正在低于冰点的环境中行驶时进入发动机室时,也显著降低了 PCV阀冻结的可能性。这样一来,与PCV阀仅安装在现有的气缸盖上或左和右气缸列之间的结构相比,PCV阀难以冻结,能抑制润滑油在窜气由于因PCV阀的冻结所引起的堵塞而未排出时的劣化。此外,使用汽车所装备的润滑油的热交换器作为热源,因此与加热器作为新热源安装的情况相比能抑制部件成本的上升。在根据上述方面的PCV阀安装结构中,所述传热部可以是所述热交换器的罩盖,并且所述PCV阀可安装在所述罩盖上。在上述构型下,不需要设置除现有的部件以外的其它部件作为传热部,因此能抑制部件数量的增加。在根据上述方面的PCV阀安装结构中,所述PCV阀可配置成邻接所述热交换器。在上述构型下,与PCV阀位于热交换器的远处的情况相比,能减少传热部中的热损失。因此,能有效地抑制PCV阀的冻结。根据上述方面的PCV阀安装结构还可包括流入管,所述流入管配置在所述PCV阀附近并使所述润滑油流入所述热交换器中。在上述构型下,流过流入管的润滑油的热传递到PCV阀,因此能抑制PCV阀的冻结。在根据上述方面的PCV阀安装结构中,所述热交换器可以是油冷却器装置,所述油冷却器装置可包括:油冷却器本体,所述油冷却器本体具有将内侧与外侧分隔开的壁并使所述润滑油流经由所述壁包围的所述内侧;和水套,所述水套包围所述油冷却器本体并使所述媒介溶液流动以便从所述外侧与所述油冷却器本体的所述壁接触,并且所述润滑油的热可经由所述壁传递到所述媒介溶液。在上述构型下,利用油冷却器装置能防止PCV阀的冻结。在根据上述方面的PCV阀安装结构中,所述发动机本体可以是具有左和右气缸列的V型发动机,并且所述热交换器和所述PCV阀可配置在所述左和右气缸列之间。在上述构型下,可有效地利用V型发动机的左和右气缸列之间的死空间。
在根据上述方面的PCV阀安装结构中,所述PCV阀可配置在所述发动机本体的后侦U。在上述构型下,当低于冰点的外部空气从发动机室的前方进入时,外部空气从发动机本体和各种管的周围通过,直至外部空气到达位于发动机的后侧的PCV阀,因此外部空气被加热并在其到达PCV阀时超过0° C,从而能使PCV阀不冻结。根据上述方面的PCV阀安装结构还可包括:窜气压力测量装置,所述窜气压力测量装置测量导入所述PCV阀中的所述窜气的气压;和判定单元,所述判定单元在由所述窜气压力测量装置测得的所述气压高于基准值时判定为所述PCV阀被堵塞。本发明的另一个方面涉及一种用于将内燃发动机的曲轴箱强制通风(PCV)阀安装在发动机本体上的PCV阀安装结构。所述PCV阀安装结构包括:窜气再循环系统,所述窜气再循环系统包括:通风软管,所述通风软管将所述发动机本体连接到将外部空气导入所述发动机本体中的进气装置并具有使在所述发动机本体中产生的窜气再循环到所述进气装置的再循环通路;和所述PCV阀,所述PCV阀安装在所述发动机本体上并开启或封闭所述窜气的所述再循环通路;和热交换器,所述热交换器在润滑油和温度比所述润滑油低的媒介溶液之间进行热交换,其中所述PCV阀配置成邻接所述热交换器。这里,在现有技术中,用于检查PCV阀是否由于冻结或被污泥堵塞等而保持关闭的工作例如以这样的方式进行,使得在由单向阀构成的PCV阀的情况下,在发动机怠速运转期间夹紧和松开连接到PCV阀的用于供给窜气的软管,以基于PCV阀是否发出类似于颤振的操作声响或PCV是否移开且然后空气被吹入或吸入PCV阀中来作出判定,以判定空气是否仅沿一个方向传导。但是,在根据本发明方面的上述构型下,例如,将原本应当使PCV阀打开的窜气压力设定为基准值。这样一来,当窜气压力测量装置检测到超过基准值的窜气压力时,能检测出PCV阀中存在异常堵塞。因而,能容易地进行用于检查PCV阀是否堵塞的工作。根据本发明的各个方面,将热交换器的热传递到PCV阀的传热部设置成将热交换器的热传递到PCV阀,因而能提供一种能够在不增加部件数量的情况下有效地抑制PCV阀在汽车正在低于冰点的环境中行驶时由于行驶风而冻结的PCV阀安装结构。


以下将参照附图描述本发明的示例性实施例的特征、优点以及技术和工业意义,在附图中相似的附图标记表示相似的要素,并且其中:图1是具有根据本发明第一实施例的PCV阀安装结构的发动机的示意图;图2是具有根据本发明第一实施例的PCV阀安装结构的发动机本体的示意性平面图;图3是示出具有根据本发明第一实施例的PCV阀安装结构的窜气再循环系统和油冷却器装置的分解图;图4是气缸体的沿图3中的线IV-1V截取的剖视图;图5是具有根据本发明第一实施例的PCV阀安装结构的分离器壳体的中央纵剖视图;图6是具有根据本发明第二实施例的PCV阀安装结构的发动机的示意图;以及图7是具有现有的PCV阀安装结构的发动机的剖视图。
具体实施例方式在下文中,将参照附图描述本发明的第一和第二实施例。在第一和第二实施例中,根据本发明的方面的PCV阀安装结构应用于汽车的发动机。第一实施例首先,将描述第一实施例的构型。如图1和图2所示,发动机I是包括左气缸列2和右气缸列3的V型10缸汽油发动机。左气缸列2和右气缸列以V字形分别设置于左和右侧。发动机I包括发动机本体4、进气装置5、排气装置(未示出)、润滑装置6、冷却装置
7、窜气再循环系统8和油冷却器装置9。图1是发动机本体4在从其侧面看去时的示意性纵剖视图。图1示出发动机本体4内部的5个气缸11,并且图示了位于发动机本体4的后部的其中一个气缸11。但是,实际上,气缸11并非安装在发动机本体4的后部,而是如图2所示,5个气缸11沿纵向配置在各个左和右气缸列2和3中,并且发动机本体4包括10个气缸11。各气缸11都联接到进气装置5和排气装置。发动机本体4包括气缸盖14、气缸体15、曲轴箱16、活塞、曲轴、连杆、油盘17和压力计10。活塞接纳在气缸体15中。各连杆分别将各活塞联接到曲轴。油盘17设置在曲轴箱16的下部。压力计10用作窜气压力测量装置并测量曲轴箱16内部的气压。发动机本体4经由发动机支座(未示出)安装在车体上。此外,气缸盖14具有进气口 18、排气口 19和燃烧室20。进气口 18和排气口 19与相对应的气缸11连通。进气装置5连接到气缸盖14,且进气经由相对应的进气口 18供给到各燃烧室20。此外,排气装置连接到气缸盖14,且各燃烧室20中的排气经由相对应的排气口 19排出。进气装置5包括空气滤清器21、进气管22、节气门23和进气歧管24。空气滤清器21将进气净化。来自空气滤清器21的进气流过进气管22。节气门23设置在进气管22的下游部分,并调节供给到各燃烧室20中的进气的流量。进气歧管24连接到进气管22以使进气流入各进气口 18中。此外,进气装置5包括头端进气管25和连通通路26。头端进气管25将空气滤清器21联接到气缸盖14。连通通路26从气缸盖14延伸并经气缸体15的内部与曲轴箱16连通。润滑装置6包括滤网28、油泵29、油过滤器30和流动通路31。滤网28用来吸取储存在油盘17中的润滑油27。油泵29排出从滤网28吸取的润滑油27以向油冷却器装置9供给润滑油27。油过滤器30过滤从油冷却器装置9排出的润滑油27。流动通路31向发动机本体4的各个部位供给经过滤的润滑油27。润滑油27的润滑路径从油盘17开始,经过滤网28、油泵29、油冷却器装置9、油过滤器30和流动通路31,并回到油盘17。冷却装置7包括冷却剂泵32、冷却通路33、散热器34、恒温器35和加热器芯部36。冷却通路33用来冷却发动机本体4的各个部位。散热器34对冷却剂进行空气冷却。当冷却剂的温度高于或等于预定温度时,恒温器35导通以使冷却剂流动。加热器芯部36使用由油冷却器装置9加热的冷却剂作为热源。一部分冷却剂的冷却路径从冷却剂泵32开始,经过冷却通路33、散热器34和恒温器35,并回到冷却剂泵32。此外,另一部分冷却剂的冷却路径从冷却剂泵32开始,经过冷却通路33、油冷却器装置9、加热器芯部36和恒温器35,并回到冷却剂泵32。这里,在恒温器35中,从加热器芯部36到冷却剂泵32的路径通常是开启的,并且从散热器34到冷却剂泵32的路径根据从其流过的冷却剂的温度而开启或封闭。也就是说,当冷却剂的温度低于预定值时(当发动机刚刚起动时),从散热器34到冷却剂泵32的路径被封闭以防止冷却剂过冷。此外,当冷却剂的温度高于预定值时(当发动机充分暖机时),从散热器34到冷却剂泵32的路径被开启以由散热器34冷却冷却剂。如图2所示,窜气再循环系统8和油冷却器装置9彼此邻接地安装在左和右气缸列2和3之间。如图1和图2所示,窜气再循环系统8包括PCV室37、PCV室37的罩盖38、分离器壳体39、PCV阀41、通风软管42和储油器43。PCV室37形成在左和右气缸列2和3之间。分离器壳体39与罩盖38成一体,并将窜气和润滑油27分离成气体和液体。PCV阀41分别设置在分离器壳体39的各气体排出口 40处。通风软管42均具有再循环通路42a,再循环通路42a将各PCV阀41联接到相对应的进气歧管24并使窜气再循环到相对应的进气歧管24。储油器43储存排出到PCV室37的润滑油27并使润滑油27回到油盘17。PCV室37是形成在曲轴箱16的正上方的顶部开口盒体,并形成在沿发动机本体4的纵向的基本全部范围上。罩盖38从上侧封闭PCV室37。分离器壳体39—体地附装在罩盖38的背侧的后部上。如图5所不,垫片44介设在罩盖38和分离器壳体39之间。油回收孔45设置在PCV室37的底部。从分离器壳体39排出的润滑油27向下流过油回收孔45。储油器43具有上部导入口 46和下部排出口 47。油回收孔45连接到储油器43的导入口 46。储油器43的排出口 47连接到曲轴箱16。分离器壳体39由前壁39a、底壁39b、后壁39c以及左和右壁(未示出)包围,并且分离器壳体39的顶部被经由垫片44附装的罩盖38密封。此外,分离器壳体39具有分离器导入口 48、流动通路49、气体排出口 49和油排出口 50。分离器导入口 48用来导入窜气和新鲜空气。流动通路49使这些气体流动以将所述气体分离成气体和液体。气体排出口40排出分离后的窜气和新鲜空气。油排出口 50排出分离后的油。分离器导入口 48向上延伸成竖直直线形通路构型而贯穿罩盖38。油排出口 50设置在分离器壳体39的底壁39b,并大致竖直向下延伸成贯穿底壁39b。气体排出口 40向上延伸成竖直直线形通路构型而贯穿罩盖38。流动通路49由纵向板51、第一横向板52和第二横向板52限定。纵向板51面对分离器壳体39的前壁39a并从分离器导入口 48向下延伸。第一横向板52面对分离器壳体39的底壁39b,并从纵向板51的下端部向后延伸。第二横向板53面对第一横向板52的上侧,并从分离器壳体39的后壁39c向前延伸。流动通路49包括下降通路54、第一向后通路55、向前通路56和第二向后通路57。下降通路54在分离器壳体39的前壁39a和纵向板51之间从分离器导入口 48向下延伸到分离器壳体39的底壁39b。第一向后通路55在壳体的底壁39b和第一横向板52之间从下降通路54的下端部向后延伸到后壁39c。向前通路56从第一向后通路55的后端部向上延伸,转向,并在第一横向板52和第二横向板53之间向前延伸到纵向板51。第二向后通路57从向前通路56的前端部向上延伸,转向,并在罩盖39和第二横向板53之间向后延伸到两个气体排出口 40。这样,流动通路49狭窄并具有许多短的曲折部,因此雾状润滑油47频繁地撞击纵向板51、第一横向板52、第二横向板53以及壁39a、39b和39c,从而有效地分离并除去油雾。PCV阀41均作为允许压力高于或等于预定值的窜气和新鲜空气仅沿气体经气体排出口 40排出的方向流动的单向阀形成。在本实施例中,两个PCV阀41设置在罩盖38的上表面上。然后,其中一个PCV阀41通过通风软管42连接到左气缸列2的进气歧管24,而另一个PCV阀41通过通风软管42连接到右气缸列3的进气歧管24。此外,每个PCV阀41都从上侧连接到具有竖直直线形通路构型的相对应的气体排出口 40。因此,可从罩盖38的上侧更换PCV阀41。此外,如图1所示,分离器壳体39和曲轴箱16通过窜气导入管58连接。这样一来,分离器导入口 48与曲轴箱16的内部连通。此外,从气缸盖14到曲轴箱16的连通通路26通过新鲜空气导入管59与分离器导入口 48连通。这样一来,来自连通通路26的新鲜空气经过新鲜空气导入管59并从分离器导入口 48被导入分离器壳体39中,从而能将窜气推出。经活塞和气缸之间的间隙泄漏到曲轴箱16中的窜气的回收路径从气缸体15开始,经过曲轴箱16、窜气导入管58、分离器壳体39、PCV阀41、进气歧管24和进气口 18,并到达燃烧室20。如图3所示,油冷却器装置9包括油冷却器本体60和水套61。油冷却器本体60具有将内侧与外侧分隔开的壁60a。润滑油27流经由壁60a包围的内侧。水套61包围油冷却器本体60,并使冷却剂流动以便从外侧与油冷却器本体60的壁60a接触。然后,润滑油27的热经由壁60a传递到冷却剂。油冷却器本体60经由垫片(未示出)紧密地贴附于罩盖38的背侧。油冷却器本体60具有油导入口 62和油排出口 63。油导入口 62贯穿罩盖38并设置于后侧上部。油排出口 63贯穿罩盖38并设置于前侧上部。油导入口 62通过用作流入管的导入口侧管64连接到润滑装置6的油泵29。如图2所示,导入口侧管64设置成在罩盖38上方从PCV阀41附近通过。此外,油排出口 64通过排出口侧管65连接到润滑装置6的油过滤器30。这些导入口侧管64和排出口侧管65在罩盖38上方通过旁通管66彼此连接。在油冷却器本体60的壁60b的外侧部上形成有大量的水平翅片形散热板60b,以增加与冷却剂的接触面积,从而提闻传热效率。水套61与PCV室37 —体形成,并形成为顶部开口的盒状。水套61安装成使得上端部经由垫片71紧密地贴附于罩盖38的背侧。水套61具有冷却剂导入口 67和冷却剂排出口 68。冷却剂导入口 67形成在位于水套61的前侧的两个侧部。冷却剂排出口 68设置在水套61的后侧。形成在两个侧部的冷却剂导入口 67分别连接到冷却通路33的形成在左和右气缸列2和3中的部分。此外,冷却剂排出口 68向上延伸穿过罩盖38,并通过冷却剂排出管69连接到加热器芯部36。此外,在油冷却器本体60和水套61之间设置有间隔件70。间隔件70用来确保油冷却器本体60的外表面和水套61的内表面之间的间隙。这里,本实施例中的用于安装PCV阀41的结构由窜气再循环系统8、油冷却器装置9和罩盖38构成。这些分别对应于根据本发明的方面的PCV阀安装结构中的窜气再循环系统、热交换器和传热部。此外,在本实施例中,发动机I的运转由用作判定单元的电子控制单元(EOT)(未示出)控制。在ECU中,使PCV阀41打开的压力被设定为基准值,在发动机I运转期间使用压力计10来测量曲轴箱16中的窜气压力,并且当检测到曲轴箱16的内部压力、也就是分离器壳体39的内部压力高于基准值时,判定为至少任一个PCV阀41被堵塞并难以打开。
接下来,将描述将窜气再循环系统8和油冷却器装置9安装在左和右气缸列2和3之间的过程。如图3所示,预先将分离器壳体39和油冷却器本体60装配在罩盖38上。然后,将罩盖38附装成使得油冷却器本体60被置于PCV室37中的水套61的内部。这样一来,罩盖38的组件刚好安装在左和右气缸列2和3之间,从而能将分离器壳体39和油冷却器本体60定位和安装在适当位置。然后,将窜气再循环系统8和油冷却器装置9与其它装置管接。接下来,将描述发动机I的运转。通过空气滤清器21从进气中除去灰尘,且进气从进气管22经由节气门23和进气歧管24流到进气口 18。另一方面,窜气和新鲜空气从窜气再循环系统8经由相应的通风软管42供给到进气歧管24。因此,新鲜空气和窜气被混合地供给到进气口 18。混合气体在燃烧室20中燃烧。此外,燃烧室20中的部分未燃烧气体从活塞周围通过并从气缸体15流入曲轴箱16中。另一方面,一部分来自空气滤清器21的进气经过头端进气管25并供给到气缸盖
14。进气从气缸盖14经由连通通路26供给到气缸体15和曲轴箱16。进气将气缸体15和曲轴箱16内部的窜气推出,并使窜气经由窜气导入管58导入分离器壳体39中。此时,经空气滤清器21吸入的一部分新鲜空气经从气缸盖14经由连通通路26到达新鲜空气导入管59的路径导入分离器壳体39中,并与窜气混合。导入分离器壳体39中的窜气包含雾状润滑油27。因此,雾状润滑油27与纵向板51、第一横向板52、第二横向板53以及壁39a、39b和39c碰撞而在分离器壳体39的内部液化,并经设置在下部的油排出口 50排出。排出的润滑油27经位于PCV室37下部的油回收孔45排出,并储存在储油器43中。此外,由分离器壳体39分离的窜气和新鲜空气通过打开PCV阀41而释放。所释放的窜气经由相对应的通风软管42供给到左和右进气歧管24。另一方面,储存在油盘17中的润滑油27由油泵29经由滤网28吸取和排出。一部分排出的润滑油27从油冷却器装置9的导入口侧管64流入,经过油冷却器本体60的内部并由冷却剂冷却,且然后从排出口侧管65流出。此外,另一部分由油泵29排出的润滑油27从导入口侧管64经由旁通管66流到排出口侧管65。这里,导入口侧管64从PCV阀41附近通过,因此润滑油27的热传递到PCV阀41,且PCV阀41被加热。排出到排出口侧管65的润滑油27由油过滤器30过滤并供给到气缸体15。然后,气缸体15的润滑油27经过曲轴箱16并储存在油盘17中。此外,冷却剂从冷却剂泵32排出,经过气缸体15以冷却气缸体15,并且一部分冷却剂从油冷却器装置9的水套61的冷却剂导入口 67供给到水套61。这样一来,流经油冷却器本体60的润滑油27被水冷却。冷却剂经水套61的冷却剂排出口 68排出,并供给到加热器芯部36。冷却剂流过加热器芯部36,经过恒温器35,并回到冷却剂泵32。这里,当冷却剂的温度如在发动机I开始运转的情况下那样低于预定温度时,恒温器35中从散热器34到冷却剂泵32的路径被封闭。此外,当发动机I被充分地加热且冷却剂的温度高于或等于预定值时,从散热器34到冷却剂泵32的路径被开启。另一方面,已通过气缸体15的另一部分冷却剂流入散热器34中。这里,恒温器35设置在散热器34的下游且冷却剂仅在冷却剂的温度高于或等于预定温度时流过恒温器35,因此冷却剂仅在恒温器35允许冷却剂流动时流过散热器34。已由散热器34冷却并已通过恒温器35的冷却剂回到冷却剂泵32。
这里,油冷却器装置9在发动机I运转期间工作,因此油冷却器装置9的热经罩盖38传导并到达PCV阀41。也就是说,油冷却器装置9的热传递到罩盖38的安装了油冷却器装置9的部分,并且热从其沿罩盖38传递。于是,油冷却器装置9和分离器壳体39配置成彼此邻接和靠近,因此罩盖38在油冷却器装置9附近的部分的热以最低的热损失传递到PCV阀41,从而能加热PCV阀41。因此,即使当外部空气在汽车正在低于冰点的环境中行驶时进入发动机室时,也可显著降低至少任一个PCV阀41冻结的可能性。这里,使PCV阀41打开的压力被设定为基准值。在这种情况下,当PCV阀41正常操作时,PCV阀41在窜气的气体压力高于基准值时打开以释放分离器壳体39中的窜气,因此窜气的气压不会高于基准值。与此相比,当至少任一个PCV阀41被污泥等堵塞并难以打开时,该至少任一个PCV阀41即使在气压高于基准值时也不会打开。因此,分离器壳体39中的窜气的气压可显著高于基准值。此外,分离器壳体39的内部压力等同于位于分离器壳体39上游的曲轴箱16的内部压力。然后,在发动机I运转期间,使用压力计10来测量曲轴箱16中的窜气的气压,并且当检测到曲轴箱16的内部压力(也就是,分离器壳体39的内部压力)高于基准值时,可判定为至少任一个PCV阀41被堵塞且难以打开。应注意,在至少任一个PCV阀41难以打开的情况下的判定结果通过诸如警告灯的显示装置提供给驾驶者。根据第一实施例的用于安装PCV阀41的结构如上所述地构成,因此可获得以下有利效果。也就是,在发动机I运转期间,油冷却器装置9的热经罩盖38传导并到达PCV阀41,并且导入口侧管64的热到达罩盖38上的PCV阀41,因此,即使当外部空气在装备有发动机I的汽车正在低于冰点的环境中行驶时进入发动机室时,也可显著降低至少任一个PCV阀41冻结的可能性。这样一来,与PCV阀41仅安装在现有的气缸盖或左和右气缸列2和3之间的结构相比,PCV阀41难以冻结,能抑制润滑油27在窜气由于PCV阀41的堵塞而未排出时的劣化。此外,使用汽车所装备的油冷却器装置9作为热源,因此与加热器作为新热源安装的情况相比能抑制部件成本的上升。此外,PCV阀41设置成邻接油冷却器装置9,因此与PCV阀41设置成远离油冷却器装置9的情况相比能减少罩盖38中的热损失,并且能进一步有效地抑制PCV阀41的冻结。此外,PCV阀41配置在发动机本体4的后侧,因此,当低于冰点的外部空气从发动机室的前方进入时,外部空气从发动机本体4和各种管周围通过,直至外部空气到达位于发动机I的后侧的PCV阀41。因此,外部空气被加热并在其到达PCV阀41时超过0° C,因此能使PCV阀41不冻结。此外,测量曲轴箱16中的窜气的气压以便能检测至少任一个PCV阀41的堵塞,因此能相当容易地对PCV阀41进行检查工作,例如不仅检查PCV阀41是否冻结,而且检查至少任一个PCV阀41是否被污泥堵塞。此外,PCV阀41在左和右气缸列2和3之间安装在罩盖38上以便可从上侧更换,因此与PCV阀设置在被另一个罩盖等遮挡的部位或设置在不可接近的部位并且为了更换PCV阀而例如需要进行拆卸另一个部件的工作的情况相比,能容易地更换PCV阀41。这样,能以使用压力计10来测量曲轴箱16中窜气的气压的方式非常容易地对PCV阀41进行检查工作,并且如果通过检查而检测到至少任一个PCV阀41被堵塞,则能容易地更换该至少任一个PCV阀41。此外,分离器导入口 48形成为贯穿罩盖38的竖直直线形通路构型,因此与分离器导入口 48形成为沿另一方向延伸的构型的情况相比,能有效地利用死空间。此外,窜气再循环系统8和油冷却器装置9设置在左和右气缸列2和3之间,因此能有效地利用V型发动机的死空间。第二实施例在根据第二实施例的发动机I中,采用干式油槽。因此,根据第一实施例的形成在曲轴箱16中的油盘17不同于第二实施例的油盘;但是,其它部件类似地构成。因此,将使用相似的附图标记来描述与图1至图5所示的第一实施例相同的部件,并且将详细地特别描述不同之处。如图6所不,为各气缸11在曲轴箱16的下部处设置有分隔板80。由分隔板80分隔的各空间的底部都具有抽吸孔81。此外,每个抽吸孔81都连接到清扫泵82。清扫泵82用来抽吸曲轴箱16中的窜气和新鲜空气以及储存在底部的润滑油。此时,曲轴箱16的底部由分隔板80分隔,因此即使当横向载荷施加于发动机I时也能有效地抽吸润滑油。这些窜气、新鲜空气和油从清扫泵82储存到油箱83中。油箱83具有形成在上部的气体排出口 84和形成在下部的油排出口 85。气体排出口 84通过窜气导入管58连接到分离器壳体39的分离器导入口 48。因此,经气体排出口84推出的窜气和新鲜空气被导入分离器壳体39中。此外,油箱83设有压力计86。压力计86用来测量内部气压。分离器壳体39的内部压力等同于位于分离器壳体39上游的油箱83的内部压力。因此,压力计86用来测量油箱83中的窜气的气压,从而能测量分离器壳体39的内部压力。这样一来,能判定至少任一个PCV阀41是否被堵塞并难以打开。在本实施例中,润滑装置6包括油箱83、油泵87、油过滤器30、流动通路31和清扫泵82。油箱83设置在发动机本体4的外部。油泵86排出从油箱83供给的润滑油并将润滑油供给到油冷却器装置9。油过滤器30过滤从油冷却器装置9排出的润滑油。流动通路31向发动机本体4中的各个部位供给经过滤的润滑油。清扫泵82抽吸储存在曲轴箱16的底部的润滑油。润滑路径从油箱83开始,经过油泵87、油冷却器装置9、油过滤器30、流动通路31、曲轴箱16和清扫泵82,并回到油箱83。燃烧室20中产生窜气。窜气的回收路径从燃烧室20开始,并经过气缸体15、曲轴箱16、清扫泵82、油箱83、分离器壳体39、PCV阀41、进气歧管24、进气口 18,并回到燃烧室20。此外,从气缸盖14到曲轴箱16的连通通路26直接连接到清扫泵82。此外,与连通通路26分开地设置将气缸盖14联接到清扫泵82的新鲜空气导入通路88。这样一来,大量新鲜空气可从清扫泵82导入油箱83中。根据第二实施例的用于安装PCV阀41的结构如上所述地构成,因此可获得以下有利效果。也就是,由于如上所述采用干式油槽,因此润滑油可稳定地储存在油箱83中,可减少摩擦损失,例如,可防止曲轴箱16中的润滑油的偏置或起泡,并且可将润滑油稳定地供给到发动机本体4的被润滑部位。
此外,如在第一实施例的情况下那样,在发动机I运转期间,油冷却器装置9的热经罩盖38传导并到达PCV阀41,并且导入口侧管64的热到达罩盖38上的PCV阀41,因此,即使当外部空气在装备有发动机I的汽车正在低于冰点的环境中行驶时进入发动机室时,也可显著降低至少任一个PCV阀41冻结的可能性。此外,PCV阀41设置成邻接油冷却器装置9,因此与PCV阀41设置成远离油冷却器装置9的情况相比能减少罩盖38中的热损失,并且能进一步有效地抑制PCV阀41的冻结。此外,测量曲轴箱16中的窜气的气压以便能检测至少任一个PCV阀41的堵塞,因此能相当容易地对PCV阀41进行检查工作,例如不仅检查PCV阀41是否冻结,而且检查至少任一个PCV阀41是否被污泥堵塞。此外,PCV阀41在左和右气缸列2和3之间安装在罩盖38上以便可从上侧更换,因此能容易地更换PCV阀41。这里,在根据第一和第二实施例的上述用于安装PCV阀41的结构中,PCV阀41安装在发动机本体4的后部;作为替代,在根据本发明的方面的PCV阀安装结构中,安装PCV阀41的位置可以是其它位置,并且例如可位于发动机本体4的前部或中部。此外,在根据第一和第二实施例的用于安装PCV阀41的结构中,各PCV阀41由单向阀构成;但是,在根据本发明的方面的PCV阀安装结构中,各PCV阀41并不限于机械式单向阀。各PCV阀41可以是可被电控以打开或关闭或者能够电控流量的电磁阀。此外,在根据第一和第二实施例的用于安装PCV阀41的结构中,使用压力计10或86来检测至少任一个PCV阀41是否难以打开;作为替代,在根据本发明的方面的PCV阀安装结构中,也可省略压力计10或86。此外,在根据第一和第二实施例的用于安装PCV阀41的结构中,发动机I为V型10缸式;作为替代,在根据本发明的方面的PCV阀安装结构中,发动机I可为其它类型,并且可例如为V型6缸式、V型8缸式或不同于V型的直列型。当发动机I为直列型时,如本发明实施例中所述的气缸列2和3之间不存在空间,因此,例如,窜气再循环系统和油冷却器装置安装在发动机本体的侧部等。如上所述,根据本发明的方面的PCV阀安装结构即使在低于冰点的外部空气吹入发动机室中时也能够在不设置诸如加热器的其它部件的情况下以低成本防止PCV阀的冻结,并且可用于适合于在寒冷气候地区使用的汽车包括窜气再循环系统的情况的所有PCV阀安装结构。
权利要求
1.一种用于将内燃发动机的曲轴箱强制通风(PCV)阀安装在发动机本体上的PCV阀安装结构,其特征在于包括: 窜气再循环系统,所述窜气再循环系统包括:通风软管,所述通风软管将所述发动机本体连接到将外部空气导入所述发动机本体中的进气装置并具有使在所述发动机本体中产生的窜气再循环到所述进气装置的再循环通路;和所述PCV阀,所述PCV阀安装在所述发动机本体上并开启或封闭所述窜气的所述再循环通路; 热交换器,所述热交换器在润滑油和温度比所述润滑油低的媒介溶液之间进行热交换;和 传热部,所述传热部将所述热交换器的热传递到所述PCV阀。
2.根据权利要求1所述的PCV阀安装结构,其中,所述传热部是所述热交换器的罩盖,并且所述PCV阀安装在所述罩盖上。
3.根据权利要求1或2所述的PCV阀安装结构,其中,所述PCV阀配置成邻接所述热交换器。
4.一种用于将内燃发动机的曲轴箱强制通风(PCV)阀安装在发动机本体上的PCV阀安装结构,其特征在于包括: 窜气再循环系统,所述窜气再循环系统包括:通风软管,所述通风软管将所述发动机本体连接到将外部空气导入所述发动机本体中的进气装置并具有使在所述发动机本体中产生的窜气再循环到所述进气装置的再循环通路;和所述PCV阀,所述PCV阀安装在所述发动机本体上并开启或封闭所述窜气的所述再循环通路;和 热交换器,所述热交换器在润滑油和温度比所述润滑油低的媒介溶液之间进行热交换,其中 所述PCV阀配置成邻接所述热交换器。
5.根据权利要求1至4中任一项所述的PCV阀安装结构,还包括流入管,所述流入管配置在所述PCV阀附近并使所述润滑油流入所述热交换器中。
6.根据权利要求1至5中任一项所述的PCV阀安装结构,其中,所述热交换器是油冷却器装置,所述油冷却器装置包括:油冷却器本体,所述油冷却器本体具有将内侧与外侧分隔开的壁并使所述润滑油流经由所述壁包围的所述内侧;和水套,所述水套包围所述油冷却器本体并使所述媒介溶液流动以便从所述外侧与所述油冷却器本体的所述壁接触,并且所述润滑油的热经由所述壁传递到所述媒介溶液。
7.根据权利要求1至6中任一项所述的PCV阀安装结构,其中,所述发动机本体为具有左和右气缸列的V型发动机,并且所述热交换器和所述PCV阀配置在所述左和右气缸列之间。
8.根据权利要求1至7中任一项所述的PCV阀安装结构,其中,所述PCV阀配置在所述发动机本体的后侧。
9.根据权利要求1至8中任一项所述的PCV阀安装结构,还包括: 窜气压力测量装置,所述窜气压力测量装置测量导入所述PCV阀中的所述窜气的气压;和 判定单元,所述判定单元在由所述窜气压力测量装置测得的所述气压高于基准值时判定为所述PCV阀被堵塞。
全文摘要
一种用于将发动机(1)的曲轴箱强制通风(PCV)阀(41)安装在发动机本体(4)上的PCV阀安装结构,包括窜气再循环系统(8),该窜气再循环系统包括通风软管(42),该通风软管将发动机本体(4)连接到将外部空气导入发动机本体(4)中的进气装置(5)并具有使在发动机本体(4)中产生的窜气再循环到进气装置(5)的再循环通路(42a);油冷却器装置(9),该油冷却器装置在润滑油(27)和温度比润滑油(27)低的媒介溶液之间进行热交换;和罩盖(38),该罩盖将油冷却器装置(9)的热传递到PCV阀(41)。
文档编号F01M13/00GK103180557SQ201180050476
公开日2013年6月26日 申请日期2011年10月19日 优先权日2010年10月21日
发明者调威夫, 上间均 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1