混合动力车辆和控制混合动力车辆的方法

文档序号:5144539阅读:86来源:国知局
混合动力车辆和控制混合动力车辆的方法
【专利摘要】本申请涉及混合动力车辆和控制混合动力车辆的方法。在一个方面中,提供一种混合动力车辆(10),其包括:发动机(12)、构造成驱动车辆的马达(22)、空燃比传感器(131)、和构造成根据车辆所需动力而停止和起动发动机的控制单元(90)。该控制单元构造成:在当发动机停止时由空燃比传感器检测到的空燃比与理论空燃比之间的差超过预定值的情况下,改变使发动机起动的车辆所需动力的阈值,使得所述差减小。
【专利说明】混合动力车辆和控制混合动力车辆的方法
【技术领域】
[0001]本发明涉及混合动力车辆的发动机起动控制。
【背景技术】
[0002]在通过发动机和马达驱动的混合动力车辆中,执行了用于在车辆行驶期间间歇地起动和停止发动机的控制。如果发动机间歇地停止,则由于当发动机停止时沉积和滞留在发动机的进气系统上的燃料,当发动机在停止后起动时发动机可能会进入不适当的或者不合需要的燃烧状态。因此,已经提出在行驶期间对发动机间歇地停止的次数进行计数,并且随着间歇停止的次数增加,当发动机下次起动时减小燃料喷射量,从而在发动机起动期间提供适当的燃烧状态(参见,例如,日本特开N0.2011-235769 (JP2011-235769A))。
[0003]在发动机在车辆所需动力超过起动判定值时起动并且燃料供给量基于排气氧传感器或者空燃比传感器的信号而被反馈控制的混合动力车辆中,已经提出:当根据排气氧传感器或者空燃比传感器确定的反馈量等于或者大于预定值时,使起动判定值减小并且早于通常起动发动机,从而早期发现发动机的失效(参见,例如,日本特开N0.2010-052610(JP2010-052610A))。
[0004]如在JP2010-052610A中描述的,废气的空燃比通过安装在发动机的排气系统中的空燃比传感器或类似装置检测,并且指示空燃比的信号被反馈用于控制燃料喷射量、空气流量等,使得空气燃料混合物以理论空燃比燃烧。由于紧在发动机起动之后含有大量空气的废气散发,空燃比传感器输出指示大的空燃比的(稀状态)信号。然后,在空燃比一旦进入小于理论空燃比的状态(浓状态)之后,通过利用来自空燃比传感器的信号的反馈控制,空燃比逐渐地朝向理论空燃比增加,并且最终被控制为理论空燃比。因此,花费从紧在发动机起动之后的稀状态至当空燃比变得等于理论空燃比时的时刻的一定时期。
[0005]同时,由于发动机根据混合动力车辆中的车辆所需动力停止和起动,因此如果车辆所需动力迅速地改变,例如当驾驶员在驾驶员大幅地压下加速器以起动发动机后立即地停止压下加速器踏板时,则发动机起动和停止而与稳定空燃比所需的时间无关。因此,在发动机停止后处于空燃比大于理论空燃比的情况(稀状态)下的废气或者处于空燃比小于理论空燃比的情况(浓状态)下的废气滞留在排气系统中。滞留的稀状态的或者浓状态的废气可能会使安装在排气系统中用于净化废气的催化剂的性能劣化,并且废气可能会不适当地净化。而且,如果发动机下次在空燃比偏离理论空燃比的废气在发动机停止后滞留在排气系统中的情况下起动,则废气的空燃比保持偏离理论空燃比的时期——即,使废气的空燃比稳定至理论空燃比所花费的时期——延长,并且因此发动机的燃烧效率会降低。

【发明内容】

[0006]本发明提供一种在接近理论空燃比的状态下执行间歇地起动发动机的控制的混合动力车辆、以及一种控制该混合动力车辆的方法。
[0007]根据本发明的第一方面,混合动力车辆包括:发动机、构造成驱动车辆的马达、空燃比传感器、以及构造成根据车辆所需动力停止和起动发动机的控制单元,该控制单元构造成:在当发动机停止时由空燃比传感器检测到的空燃比与理论空燃比之间的差超过预定值的情况下,改变使发动机起动的车辆所需动力的阈值,使得该差减小。
[0008]在本发明的第一方面,所述控制单元可构造成:当由空燃比传感器在发动机停止时检测到的空燃比浓于理论空燃比时,将阈值设定为比基准值大的值。
[0009]在本发明的第二方面,控制单元可构造成:当由空燃比传感器在发动机停止时检测到的空燃比稀于理论空燃比时,将阈值设定为比基准值小的值。
[0010]根据本发明的第二方面,对包括发动机、构造成驱动车轮的马达、和空燃比传感器的混合动力车辆进行控制的方法包括:根据车辆所需动力停止和起动发动机;以及在当发动机停止时由空燃比传感器检测到的空燃比与理论空燃比之间的差超过预定值时,改变使发动机起动的车辆所需动力的阈值,使得该差减小。
[0011]本发明的第一和第二方面产生了下述效果:能够使在发动机间歇起动时的空燃比接近于理论空燃比。
【专利附图】

【附图说明】
[0012]下面将参照附图对本发明的示例性实施方式的特征、优点以及技术上和工业上的意义进行描述,在附图中相同的附图标记指示相同的元件,并且在附图中:
[0013]图1是示出了根据本发明的一个实施方式的混合动力车辆的系统的构造的系统图;
[0014]图2是示出了根据本发明的实施方式的混合动力车辆的发动机的控制系统的系统图;
[0015]图3A、图3B和图3C是示出了根据相关技术的混合动力车辆的车辆所需动力、发动机速度和空燃比的变化的图示,其中在根据相关技术的该混合动力车辆中,发动机根据车辆所需动力被间歇地起动和停止;
[0016]图4是示出了根据本发明的实施方式的混合动力车辆的操作的流程图;以及
[0017]图5A、图5B和图5C是示出了在本发明的实施方式的混合动力车辆的车辆中所需动力、发动机速度和空燃比在发动机被间歇地起动和停止时的变化的图示。
【具体实施方式】
[0018]将参照附图描述根据本发明的一个实施方式的混合动力车辆。如在图1中示出的,混合动力车辆10包括发动机12、第一电动发电机16、第二电动发电机22、动力分配装置20、以及减速齿轮26、30、31。发动机12的输出通过动力分配装置20划分为两部分,输出的一部分传输至第二电动发电机22和车轮,而另一部分传输至第一电动发电机16。因此,发动机12的动力通过两个路径一即,机械路径和电气路径一而传输至每个车轮34。
[0019]动力分配装置20包括行星齿轮组,并且以构成行星齿轮组的齿轮的比将发动机12的扭矩分配至动力输出轴19和第一电动发电机16。行星齿轮组内的托架20c的旋转轴通过吸收发动机12的旋转变动的阻尼器装置14联接至发动机12,并且将发动机12的动力通过小齿轮20p传输至径向外环形齿轮20r和径向内太阳齿轮20s。太阳齿轮20s的旋转轴24联接至第一电动发电机16。环形齿轮20r直接地联接至第二电动发电机22的转子22r。转子22r的旋转轴18直接地联接至第二电动发电机22和动力输出轴19。动力输出轴19布置成通过减速齿轮26、30、31将驱动力传输至差速齿轮33。差速齿轮33通过作为车辆驱动轴的驱动轴32连接至车轮34。因此,第二电动发电机22的转子22r的旋转通过减速齿轮26、30、31传输至驱动轴32和车轮34以驱动驱动轴32和车轮34。用于控制混合动力车辆10的加速的加速器踏板46设置在混合动力车辆10的车室中。
[0020]混合动力车辆10设置有第一逆变器36、第二逆变器37、DC/DC转换器39、用于使电流平滑的电容器35、38。第一逆变器36和第二逆变器37分别地将可充电/可放电的二次电池40的DC电力转换为用于驱动电动发电机16、22的AC电力,并且将通过相应的电动发电机16、22产生的AC电力转换为用于对二次电池40充电的AC电力。DC/DC转换器39将二次电池40的电压升高为用于驱动电动发电机的电压,并且将通过电动发电机产生的电压逐步降低为施加至二次电池40的电压以进行充电。第一逆变器36和第二逆变器37通过两条连接线彼此连接,并且电容器35设置在这两条连接线之间。DC/DC转换器39连接至这两条连接线,并且电容器38和二次电池40与DC/DC转换器39并联地连接。
[0021]发动机12、第一电动发电机16和第二电动发电机22分别地设置有用于检测其旋转速度的旋转速度传感器(rpm)43、44、45。而且,用于检测车辆速度的速度传感器41安装在混合动力车辆10上。速度传感器41可以通过测量车轮34的旋转速度检测车辆速度,或者可以通过另一种方法检测车辆速度。
[0022]混合动力车辆10包括控制单元90,该控制单元90设定发动机12的输出、相应的电动发电机16、22的旋转速度、和扭矩。控制单元90是结合有CPU和诸如存储器之类的存储装置的计算机。发动机12、旋转速度传感器43、44、45、速度传感器41、第一逆变器36、第二逆变器37、二次电池40和加速器踏板46分别地连接至控制单元90。控制单元90接收二次电池40的充电状态(S0C)、相应的传感器41至45的检测信号、和加速器踏板46的压下量。发动机12以及第一电动发电机16和第二电动发电机22的旋转速度和扭矩根据控制单元90的命令而被控制。
[0023]如在图2中示出的,混合动力车辆10的发动机12包括内燃部120,该内燃部120包括气缸121、在气缸121中向上和向下移动的活塞122、设置在气缸121的上部中的进气门127和排气门128、和设置在气缸121的顶部中的火花塞129。发动机12还包括:进气管123,要被吸进至内燃部120中的燃料和空气流动通过该进气管;和排气管130,在内燃部120中由空气燃料混合物的燃烧产生的气体通过该排气管130排放。控制进气的流量的节气门124设置在该进气管123中。节气门124通过致动器125驱动(S卩,打开和关闭)。而且,将燃料喷射至空气中的燃料喷射装置126设置在节气门124的下游。通过燃料喷射装置126喷射的燃料和空气的混合物从进气门127流动至气缸121中。在气缸121中燃烧的燃料的废气通过排气门128排放至排气管130中。基于废气中的氧浓度输出废气的空燃比的空燃比传感器131安装在排气管130中。通过除去废气中的氮氧化物、一氧化碳等来净化废气的催化剂132设置在空燃比传感器131的下游。已经穿过催化剂132的废气通过排气管130释放至大气中。
[0024]如在图2中示出的,节气门124的致动器125、燃料喷射装置126和空燃比传感器131连接至控制单元90。控制单元90根据由空燃比传感器131获得的空燃比控制节气门124的致动器125和燃料喷射装置126,使得废气的空燃比变得等于理论空燃比。[0025]将参照图3A至图3C对如以上描述的那样构造的混合动力车辆10的根据相关技术的操作进行描述。如果驾驶员在混合动力车辆10行驶期间在图3C中指示的时刻h处压下图1中示出的加速器踏板46,则控制单元90根据加速器踏板46的压下量和从速度传感器41获得的混合动力车辆10的车辆速度计算车辆所需动力Pr。车辆所需动力Pr根据由驾驶员进行的加速器踏板46的压下而如由图3C中的实线e指示的那样逐渐地增加。如果车辆所需动力Pr在图3C中指示的时刻t2处超过预定阈值Prs,则控制单元90产生命令以起动发动机12。响应于该命令,在图3A中的时刻t2处第一电动发电机16使发动机12旋转并且起动发动机12。如果发动机12如由图3A中的实线a指示的那样起动,则控制单元90增大进气的流量和燃料的流量,从而增大发动机12的旋转速度NE。如果发动机12的旋转速度变得等于或者高于自转速度一发动机12以该自转速度能够自转,则控制单元90随着车辆所需动力Pr的增大而增大燃料喷射量和旋转速度NE。
[0026]图3B示出了在发动机12起动后空燃比随时间的变化。在图3B中,实线b表示当发动机12在空燃比基本上等于理论空燃比AFtl的状态下起动以及在空燃比基本上等于理论空燃比AFtl的状态下停止时获得的基准波形。在图3B中,单点划线c表示在空燃比偏离至稀侧的状态下的空燃比的波形。在图3B中,虚线d表示在空燃比偏离至浓侧的情况下的空燃比的波形。首先,将参照通过实线b表示的基准波形来描述根据基准波形的发动机12的实际空燃比的变化。
[0027]由于废气中的氧浓度在发动机12起动后立即地增加,因此,实际空燃比迅速地在图3B中的t2至时刻t3的时期从理论空燃比AFtl增加,并且到达初始峰值空燃比AF1,如由图3B中的实线b所示。控制单元90通过利用来自设置在排气管130中的空燃比传感器131的信号的反馈控制来对从燃料喷射装置126喷射的燃料的量和穿过节气门124的进气的流量进行控制,从而将该实际空燃比降低至理论空燃比AG。因此,实际空燃比从初始峰值空燃比AF1减小,并且实际空燃比在图3B中的时刻t4处降低至浓峰值AF2。然后,在实际空燃比再次增加至大于理论空燃比AFtl的AF3后,如在图3B中通过实线b示出的,该实际空燃比逐渐地降低并且接近该理论空燃比AFtlt5同时,如果驾驶员减小踏板力度,即,加速器踏板46的压下量随时间的流逝减小,贝U车辆所需动力Pr逐渐地减小,如在图3C中通过实线e示出的。然后,如果车辆所需动力Pr在图3C中的时刻t5处变得等于零,则控制单元90产生命令以停止发动机12。响应于该命令,发动机12的旋转速度NE在图3A中的从时刻t5至时刻t6的时期中迅速地减小,并且发动机12在图3A中示出的时刻t6处停止。如由图3B中的实线b示出的,实际空燃比在当发动机12停止时的时刻t6处大约等于理论空燃比AG。
[0028]如果驾驶员在图3C的时刻t7处再次压下加速器踏板46,则车辆所需动力Pr再次增加,如由图3C中的实线e所示。如果车辆所需动力Pr在图3C中的时刻t8处再次超过预定阈值Pr S,则控制单元90产生命令以重新起动发动机12。因此,发动机12在图3C中示出的时刻t8处被重新起动,并且旋转速度NE增大。从图3B中的时刻t8之后,实际空燃比再次增大至大约等于初始峰值空燃比AF1的点,然后在时刻t1(l处降低至浓峰值AF4,并且然后在波动的同时逐渐地接近理论空燃比AFtl,如在从时刻t2至时刻t6的时期中那样。
[0029]接着,将对发动机12起动之后,实际空燃比偏离至浓侧一即,理论实际空燃比AF0的较小侧一的情况进行描述。如果发动机12重复间歇的停止和起动,则发动机12在过大量的燃料沉积在图2中示出的进气管123的位于燃料喷射装置126的下游的部分的内表面上的状态下可能会停止。在该情况下,如由图3B中的虚线d示出的,在发动机12起动后,由于所沉积的过大量的燃料的影响,在图3B的时刻t4处出现的浓峰值减小至小于在由实线b示出的基准波形情况下的AF2 ;因此,实际空燃比在其小于(或者浓于)基准波形的实际空燃比的状态下变化。然后,在发动机12停止时的时刻t6处,实际空燃比可能会变得等于AF4,AF4小于通过使理论空燃比AFtl加上浓/富偏容许值g(负值)获得的空燃比(AFfg)。由于g是负值,因此(AFfg)小于AG。然后,即使在发动机12停止之后,偏离至浓侧的这种状态仍然持续;因此,如果发动机12在偏离至浓侧的状态下停止,则发动机12在小于(AFfg)的实际空燃比偏离至浓侧的状态下重新起动。在该情况下,即使在发动机12重新起动之后,实际空燃比仍然保持小于由实线b表示的基准波形的实际空燃比,如由图3B中的虚线d所示出的。因此,发动机12的燃烧效率降低,并且废气的特性偏离于或者区别于其典型特性,从而导致了图2中示出的催化剂132的性能的劣化。
[0030]接着,将对在发动机12起动后,实际空燃比偏离至稀侧一即,理论空燃比AFtl的较大侧——的情况进行描述。当在紧接着发动机12起动之后发动机12从仅需要发动机12旋转的起动模式过渡至用于实现目标扭矩或动力的起动模式时,或者当发动机12在发动机12停止了较长一段时期后重新起动时,实际空燃比趋向于大于通过对理论空燃比AFtl加上稀/贫偏容许值f获得的空燃比(AFff ),如由图3B中的单点划线c示出的。在发动机12停止的时刻t6处,实际空燃比可能会等于AF5, AF5大于通过将稀偏容许值f加到理论空燃比AFtl所获得的空燃比(AFff )。由于f是正值,因此(AFff)大于AFm然后,即使在发动机12停止之后,偏离至稀侧的这种状态仍然持续;因此,如果发动机12在偏离至稀侧的情况下停止,则发动机12在大于(AFff)的实际空燃比偏离至稀侧的状态下重新起动。在该情况下,即使在发动机12重新起动之后,实际空燃比仍然保持大于由实线b示出的基准波形的实际空燃比,如由图3B中的单点划线c所示出的。因此,如偏离至浓侧的情况那样,发动机12的燃烧效率降低,并且废气的特性偏离于或者区别于其典型特性,从而导致了图2中示出的催化剂132的性能的劣化。
[0031]接着,将参照图4、图5A、图5B和图5C对根据本实施方式的混合动力车辆10的操作进行描述。如以上参照图3C描述的,如果驾驶员在图5C的时刻tn处压下加速器踏板46,则车辆所需动力Pr增加。如果混合动力车辆所需动力Pr在图5C的时刻t12处超过发动机起动所需动力基准阈值Prsci,则控制单元90产生命令,以起动发动机12,如在图4的步骤SlOl中示出的。响应于该命令,发动机12在图5A中的时刻t12处起动,并且其旋转速度NE增加,如由图5A中的实线a示出的。控制单元90获得图2中示出的空燃比传感器131的信号,如在图4的步骤S102中示出的,并且将由空燃比传感器131获得的空燃比以及获得空燃比的时刻作为实际空燃比波形存储在控制单元90的存储器中,如在图4的步骤S103中示出的。然后,如果驾驶员减小踏板力度从而减小加速器踏板46的压下量,则车辆所需动力Pr在图5C的时刻t15处变得等于零,并且发动机12在图5C中时刻t16处停止。如在图4的步骤S104中示出的,即使在发动机12停止之后,控制单元90仍保持将实际空燃比存储在存储器中。在正常情况下,在发动机12起动之后,根据由图5B中的实线b示出的基准波形,实际空燃比一度增加直到时刻t13为止,然后下降直到其在时刻tl4处到达浓峰值为止,并且之后被控制朝向理论空燃比AG。在空燃比偏离至浓侧的情况下,实际空燃比保持在其小于通过实线b表示的基准波形的实际空燃比的状态中,如图5B中的虚线q所示。在实际空燃比偏离至稀侧的情况下,实际空燃比保持在其大于通过实线b表示的基准波形的实际空燃比的状态中,如图5B中的单点划线p所示。
[0032]如在图4的步骤S105中示出的,如果加速器踏板46在图5C中的、发动机12停止的时刻t16之后再次被压下,控制单元90判定车辆所需动力增加,并且发动机12将被重新起动。然后,如在图4的步骤S106中所示出的,控制单元90停止从空燃比传感器131获得空燃比以及将实际空燃比存储在存储器中,并且读取存储在控制单元90的存储器中的实际空燃比波形。然后,如在图4的步骤S107中示出的,如果将通过对理论空气比AFtl加上浓偏容许值g获得的值(AFfg)与在图5B的中的、在发动机12停止的时刻t16处检测到的实际空燃比进行比较。由于g是负值,如上所解释的,(AFfg)小于AG。然后,如在图4的步骤S107中所示出的,如果通过对理论空燃比AFtl加上浓偏容许值g得到的值(AFfg)大于实际空燃比(即,如果该空燃比小于通过对理论空燃比AFtl加上浓偏容许值g获得的值),即,如果在图5B中示出的虚线q位于(AFtl- (g的绝对值))下方或者在其浓侧,则发动机12起动所基于的车辆所需动力的阈值升高(增加)至浓侧阈值Prs1,该浓侧阈值Prs1大于正常情况下用于起动发动机12的发动机起动所需动力基准阈值Prsci,如在图4的步骤S108示出的。
[0033]如果驾驶员以更大程度压下加速器踏板46,则控制单元90预测车辆所需动力Pr迅速地增加,如由图5C中的从时刻t17至时刻t24的虚线s示出的,但是当车辆所需动力Pr在发动机起动所需动力基准阈值Prstl与浓侧阈值Prs1之间时不起动发动机12。在此期间,所需动力通过增加图1中不出的第一电动发电机16和第二电动发电机22的输出来补充。然后,当车辆所需动力Pr超过浓侧阈值Prs1时发动机12起动。以此方式,能够减小当发动机12重新起动时喷射至发动机12中的燃料的量。因此,能够校正实际空燃比的浓侧偏离(燃料过量),并且能够使实际空燃比接近理论空燃比AG。而且,当驾驶员需要更大的动力时,发动机12最终需要旋转更长一段时期;因此,如由图5A中的虚线u示出的,在发动机12的在时刻t18与时刻t27之间的起动时期变得比当实际空燃比根据通过实线b示出的基准波形变化时发动机12起动所需的从时刻t18至时刻t26的时期更长。因此,能够确保一段足以使实际空燃比稳定至理论空燃比AFtl的时间,并且当发动机12下次停止时实际空燃比较不可能或者极不可能从理论空燃比AFtl偏离。
[0034]在图4的步骤S107中,如果通过对理论空燃比AFtl加上浓偏容许值g获得的值(AFJg)不大于实际空燃比(S卩,如果该实际空燃比不小于通过对理论空燃比AFcJP上浓偏容许值g获得的值),即,如果图5B中示出的虚线q位于(AFtl- (g的绝对值))上或者上方,则控制单元90对通过对理论空燃比AFtl加上稀偏容许值f获得的值(AFff)与在图5中的、发动机12停止的时刻t16处检测到的实际空燃比进行比较,如在图4的步骤S109中示出的。由于f是正值,如以上解释的,因此(AFJf)大于AFm然后,如在图4的步骤S109中指示的,如果通过对理论空燃比AFtl加上稀偏容许值f获得的值(AFff)小于实际空燃比(即,如果该实际空燃比大于通过对理论空燃比AFtl加上浓偏容许值f获得的值),即,如果在图5B中示出的单点划线p位于(AFci+ Cf的绝对值))稀侧的上方或者上,则发动机12起动所基于的车辆所需动力的阈值减小至小于发动机起动所需动力基准阈值PrsO的稀侧阈值Prs2,如在图4的步骤SllO中指示的。
[0035]然后,如果驾驶员仅以小程度压下加速器踏板46,S卩,如由图5C中的从时刻t17至时刻t22的单点划线r示出的,紧接着车辆所需动力Pr超过小于发动机起动所需动力基准阈值Prstl的稀侧阈值Prs2之后,发动机12起动。即,即使驾驶员需要的动力是如此小以致于发动机12在短时期后可能会停止,所需动力也不是通过增加第一电动发电机16和第二电动发电机22的输出而是通过起动发动机12来补充,使得喷射至发动机12中的燃料的量增加,并且实际空燃比被朝向浓侧导引。因此,能够校正空燃比的稀侧偏离(燃料短缺),并且能够使得实际空燃比接近理论空燃比AG。
[0036]当通过对理论空燃比AFtl加上浓偏容许值g获得的值(AFfg)不大于实际空燃比,并且通过对理论空燃比AFtl加上稀偏容许值f得到的值(AFff )不小于实际空燃比时,即,当在发动机12停止时的时刻t16处检测到的实际空燃比在图5B中的(AFtl+ Cf的绝对值))与(AFtl- (g的绝对值))之间时,控制单元90判定该实际空燃比在稀侧容许值与浓侧容许值之间的范围内,并且不改变发动机12起动所基于的车辆所需动力的阈值,如在图4的步骤Slll示出的。
[0037]如以上解释的,本实施方式的混合动力车辆10改变了在发动机12起动紧之前,或者在当发动机12停止后压下加速器踏板46时,发动机12起动所基于的车辆所需动力的阈值,从而使实际空燃比在发动机12起动之后接近理论空燃比AFtl,并且抑制发动机12的燃烧效率的降低。另外,本实施方式的混合动力车辆10能够使废气的特性保持于正常状态,从而抑制催化剂132的性能的劣化。
[0038]在以上描述的实施方式中,如在图1中示出的,本发明应用于下述混合动力车辆10:在该混合动力车辆10中,发动机12的动力通过动力分配装置20划分并且分配至第一和第二电动发电机16、22,并且发动机12和第二电动发电机22两者的输出都用于驱动车轮34。然而,本发明也可以应用于下述混合动力车辆10:在该混合动力车辆10中,发动机12在车辆的行驶期间以区别于如图1中示出的实施方式的方式间歇地起动和停止。例如,本发明可以应用于下述串接式混合动力车辆:在该串接式混合动力车辆中,发动机12仅用于产生电力,并且马达仅用于驱动车轮和再生。本发明还可以应用于下述并接式混合动力车辆:在该并接式混合动力车辆中,发动机通过传动装置驱动车轮并同时驱动发电机,并且存储的电能转移至马达并且用于运行车辆。
【权利要求】
1.一种混合动力车辆(10),包括: 发动机(12); 马达(22),所述马达(22)构造成驱动所述车辆; 空燃比传感器(131);以及 控制单元(90),所述控制单元(90)构造成根据车辆所需动力停止和起动所述发动机, 所述控制单元构造成:在当所述发动机停止时由所述空燃比传感器检测到的空燃比与理论空燃比之间的差超过预定值的情况下,改变使所述发动机起动的所述车辆所需动力的阈值,使得所述差减小。
2.根据权利要求1所述的混合动力车辆,其中,所述控制单元构造成:当由所述空燃比传感器在所述发动机停止时检测到的空燃比浓于所述理论空燃比时,将所述阈值设定为比基准值大的值。
3.根据权利要求1所述的混合动力车辆,其中,所述控制单元构造成:当由所述空燃比传感器在所述发动机停止时检测到的空燃比稀于所述理论空燃比时,将所述阈值设定为比基准值小的值。
4.一种控制混合动力车辆(10)的方法,所述混合动力车辆(10)包括发动机(12)、构造成驱动所述车辆的马达(22)、以及空燃比传感器(131),所述方法包括: 根据车辆所需动力停止和起动所述发动机;以及 在当所述发动机停止时由所述空燃比传感器检测到的空燃比与理论空燃比之间的差超过预定值的情况下,改变使所述发动机起动的所述车辆所需动力的阈值,使得所述差减小。
【文档编号】F02D29/02GK103726939SQ201310467523
【公开日】2014年4月16日 申请日期:2013年10月9日 优先权日:2012年10月11日
【发明者】尽田祐介 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1