用于生成风力涡轮机控制安排的方法和系统与流程

文档序号:13950517阅读:236来源:国知局
用于生成风力涡轮机控制安排的方法和系统与流程

本发明的实施例涉及用于确定用于风力涡轮机功率输出的控制安排(controlschedule)的方法和系统。



背景技术:

图1a示出了现有技术中已知的大型常规的风力涡轮机1,其包括塔架10和位于塔架10顶部的风力涡轮机机舱20。风力涡轮机转子30包括三个风力涡轮机叶片32,每个风力涡轮机叶片具有长度l。风力涡轮机转子30可以包括其它数量的叶片32,诸如一个、两个、四个、五个或更多。叶片32安装在位于塔架底部上方高度h处的轮毂34上。轮毂34通过从机舱20的前部延伸的低速轴(未示出)连接到机舱20。低速轴驱动齿轮箱(未示出),该齿轮箱加快了转动速度,并且继而驱动机舱20内的发电机,以便将由转动的叶片32从风中提取的能量转换成电功率输出。风力涡轮机叶片32限定了扫掠区域a,该扫掠区域a是由转动的叶片32划定的圆形区域。扫掠区域指示给定的空气质量中的多少被风力涡轮机1拦截,并且因此影响了风力涡轮机1的功率输出以及涡轮机1的部件在操作期间经受的力和弯曲力矩。如所示,涡轮机可以位于陆上或海上。在后面的情况下,塔架将连接到单桩三脚架格架或其它地基结构,并且该地基可以是固定的或浮动的。

例如,每个风力涡轮机具有风力涡轮机控制器,其可以位于塔架底座或塔架顶部。风力涡轮机控制器处理来自传感器和其它控制系统的输入,并生成用于诸如桨距致动器的致动器、发电机转矩控制器、发电机接触器、用于启动轴制动器的开关、偏航电机等的输出信号。

图1b示意性地示出了包括多个风力涡轮机110的常规风电厂100的示例,多个风力涡轮机110中的每一个的控制器与电厂控制器ppc130进行通信。ppc130可以与每个涡轮机双向通信。如粗线150所示,涡轮机将功率输出到电网连接点140。在操作中,并且假设风力条件允许时,风力涡轮机110中的每一个将输出高达由制造商指定的其额定功率的最大有功功率。

图2示出了风力涡轮机的常规功率曲线55,其在x轴上绘制风速并在y轴上绘制功率输出。曲线55是风力涡轮机的正常功率曲线,并将由风力涡轮发电机输出的功率定义为风速的函数。如本领域所公知的,风力涡轮机在切入风速vmin下开始生成功率。涡轮机然后在部分载荷(也称为局部载荷)条件下操作,直到在点vr处达到额定风速。在额定风速下,达到额定(或标称)发电机功率,并且涡轮机在满载荷下操作。例如,典型风力涡轮机中的切入风速可以是3m/s,并且额定风速可以是12m/s。点vmax是切出风速,其是风力涡轮机在输送功率的同时可以操作的最高风速。在等于或高于切出风速的风速下,出于安全原因,特别是为了减小作用在风力涡轮机上的载荷,关闭风力涡轮机。替代地,功率输出可以作为风速的函数逐渐下降到零功率。

风力涡轮机的额定功率在iec61400中被定义为风力涡轮机被设计要在正常操作和外部条件下实现的最大连续电功率输出。大型商业风力涡轮机通常被设计为20到25年的寿命,并且被设计为在额定功率下操作,使得不超过部件的设计载荷和疲劳寿命。

风力涡轮机中的个体部件的疲劳损伤累积速率在不同的操作条件下大幅变化。随着所生成的功率的增加,磨损速率、或损伤累积速率趋于增加。风力条件也影响损伤累积速率。对于一些机械部件,在非常高的湍流中操作造成了比在正常湍流中操作高许多倍的疲劳损伤累积速率。对于一些电气部件,可能由高环境温度引起的在非常高温度下的操作造成了比在正常温度下操作高许多倍的疲劳损伤累积速率(诸如绝缘击穿速率)。作为示例,发电机绕组的经验法则是绕组温度下降10℃将使寿命增加100%。

风力发电厂的年能源产量(aep)与形成风力发电厂的风力涡轮机的生产率有关,并且典型地取决于风力发电厂的位置处的年风速。对于给定风力发电厂而言,aep越大,则风力发电厂的运营商的利润就越大,并且供应到电网的电能的量就越大。

因而,风力涡轮机制造商和风力发电厂运营商总是在不断尝试增加给定风力发电厂的aep。

一个这种方法可以是使风力涡轮机在某些条件下过额定,换言之,允许风力涡轮机在一段时间内以最高高于风力涡轮机的额定或铭牌功率水平的功率水平进行操作(如图2的阴影区域58所示),以便在风大时生成更多的电能并因此增加风力发电厂的aep。具体而言,术语“过额定”应当被理解为是指通过控制诸如转子速度、转矩或发电机电流等涡轮机参数而在满载荷操作期间产生超过额定有功功率的功率。速度需求、转矩需求和/或发电机电流需求的增加将增加通过过额定所产生的附加功率,而速度需求、转矩需求和/或发电机电流需求的减少则将减少通过过额定所产生的附加功率。应当理解,过额定适用于有功功率,而非无功功率。在使涡轮机过额定时,涡轮机比在正常情况下运行得更加激进,并且发电机具有比针对给定风速的额定功率更高的功率输出。例如,过额定功率水平可以高达高于额定功率输出30%。这允许在更大的功率提取对运营商有利时,尤其是在诸如风速、湍流和电价等外部条件允许更有利润的发电时实现更大的功率提取。

过额定造成了风力涡轮机的部件上的更高的磨损或疲劳,这可能导致一个或多个部件的早期故障并且需要关闭涡轮机以便维护。这样,过额定的特征在于瞬时行为。当涡轮机被过额定时,其可能持续短至几秒钟,或者如果风力条件和部件的疲劳寿命有利于过额定,其可能持续延长的时间段。

尽管过额定允许涡轮机运营商增加aep,并且以其它方式修改发电,使之符合他们的要求,但是存在几个与使风力涡轮机过额定相关联的问题和缺陷。风力涡轮机通常被设计为以给定的标称额定功率水平或铭牌功率水平进行操作并操作经认证的年数,例如,20年或25年。因此,如果风力涡轮机被过额定,那么风力涡轮机的寿命可能缩短。

本发明寻求为涡轮机运营商提供一种灵活性,以(例如)通过返回经优化的aep而使其涡轮机按照符合其要求的方式进行操作。



技术实现要素:

在独立权利要求中限定了本发明,现在将涉及对独立权利要求的参考。在从属权利要求中阐述了优选特征

本发明的实施例寻求提高在采用对能量俘获和疲劳载荷进行折衷的控制方法时涡轮机运营商可获得的灵活性。这种控制方法的示例是使用过额定。

根据本发明的第一方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率水平如何随着时间的推移而变化,所述方法包括:

接收指示目标最小风力涡轮机寿命的输入;

基于测量的风力涡轮机站点和/或操作数据确定指示风力涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值;

通过如下方式改变指定涡轮机最大功率水平如何随着时间的推移而变化的初始预定义控制安排的参数:

i)调整初始预定义控制安排的参数;

ii)基于改变后的控制安排估计由涡轮机或者一个或多个涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命;

以及

iii)重复步骤(i)和(ii),直到所估计的由一个或多个涡轮机部件中的每者或者风力涡轮机所消耗的未来疲劳寿命足以允许达到目标最小风力涡轮机寿命为止。

可以改变所述参数直到所估计的由载荷最重的部件所消耗的未来疲劳寿命足以允许刚好达到目标最小风力涡轮机寿命为止,或者换言之直到使得所消耗的总疲劳寿命基本与目标最小风力涡轮机寿命相同为止。这可以基于目标最小风力涡轮机寿命的预定裕量(例如,距目标处于0到1个月以内,0到3个月以内,0到6个月以内或者0到12个月以内)来实现。

任选地,步骤(iii)还要求使在涡轮机寿命内的能量俘获最大化。

任选地,所述控制安排指示风力涡轮机可以被过额定到超过其额定功率的功率的量。

任选地,所述方法还包括针对涡轮机部件中的一者或多者中的每者接收指示该涡轮机部件的允许更换的最大次数的输入。于是,步骤(i)还可以包括针对涡轮机部件中的一者或多者调整在涡轮机的剩余寿命内可以对该部件进行更换的次数。步骤(i)还可以包括针对涡轮机部件中的一者或多者对在涡轮机的剩余寿命期间何时可以对所述部件进行更换做出调整。所述一个或多个涡轮机部件可以包括下述部件中的一者或多者:叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或变压器。

任选地,所述初始预定义控制安排指定了涡轮机最大功率水平随着时间推移的相对变化。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括使用来自条件监测系统的数据。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括与站点检查程序结合使用从风力发电厂传感器获得的数据,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数来确定作用于涡轮机部件上的载荷。所述传感器数据可以包括在风力涡轮机或风力发电厂投产和/或建造之前收集的传感器数据。

任选地,调整所述参数包括向控制安排施加偏移、放大、衰减(de-amplification)或者增益因子。可以对所述参数进行调整直到在所述安排的持续时间内消耗载荷最重的部件的疲劳寿命的全部或者大体上全部为止。可以通过使所述曲线在如下所示的线的上方和下方的面积相等来调整所述偏移:所述线表明在期望寿命内以在站点特有能力上设定的最大功率水平操作的个体涡轮机所引起的疲劳损伤。所述偏移可以被调整,直到由于根据所述控制安排操作涡轮机而随着时间推移所引起的疲劳损伤等于由于根据恒定最大功率水平操作涡轮机而随着时间推移所引起的疲劳损伤为止,所述恒定最大功率水平被设定在针对目标最小寿命的个体涡轮机最大功率水平。

任选地,所述初始预定义控制安排指定了最大功率水平随着时间推移的变化的梯度。调整所述参数则可以包括调整所述梯度。

任选地,所述控制安排指示随着时间推移应当引起的疲劳损伤的量,所述方法还包括基于一个或多个lue操作风力涡轮机,从而以控制安排所指示的速率引起疲劳损伤。

任选地,所述方法还包括将所确定的控制安排提供给风力涡轮机控制器,以控制风力涡轮机的功率输出。

所述方法可以仅执行一次,或者可以根据需要不定期地执行。替代地可以周期性地重复所述方法。具体而言,可以每日、每月或者每年重复所述方法。

可以提供一种被配置为执行文中所描述的方法的用于风力涡轮机或风力发电厂的对应的控制器。

仍然根据第一方面,提供了一种用于生成用于包括两个或更多风力涡轮机的风力发电厂的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率水平如何随着时间推移而变化,所述方法包括:

接收指示每个涡轮机的目标最小期望寿命的输入;

基于测量的风力涡轮机站点和/或操作数据确定指示风力涡轮机中的每者或者风力涡轮机中的每者的一个或多个涡轮机部件的当前剩余疲劳寿命的值;

通过如下方式改变指定发电厂最大功率水平如何随着时间推移而变化的初始预定义控制安排的参数:

i)调整初始预定义控制安排的参数;

ii)使用站点检查程序基于改变后的控制安排来估计由涡轮机或者一个或多个涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数来确定作用于涡轮机部件上的载荷并且包括风力发电厂的涡轮机之间的相互作用;以及

iii)重复步骤(i)和(ii),直到所估计的由一个或多个涡轮机部件中的每者或者风力涡轮机所消耗的未来疲劳寿命足以允许达到目标最小风力涡轮机寿命为止。

任选地,所述传感器数据包括在风力涡轮机或风力发电厂投产和/或建造之前收集的传感器数据。

任选地,步骤(iii)被进一步约束,以使得对于所述安排内的任何给定时间段而言,在所有涡轮机的功率都被加到一起时,功率之和不超过在从发电厂到电网的连接中能够承载的功率的量。

根据本发明的第二方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述方法包括:

接收指示一个或多个涡轮机部件中的每者在涡轮机的剩余寿命内要被更换的最大次数的输入;

基于测量的风力涡轮机站点和/或操作数据确定指示涡轮机部件中的一者或多者或者涡轮机的当前剩余疲劳寿命的值;

通过如下方式改变指定涡轮机最大功率水平如何随着时间推移而变化的初始预定义控制安排的参数:

iv)调整初始预定义控制安排的参数;

v)基于改变后的控制安排并考虑对一个或多个涡轮机部件的更换,

估计由涡轮机或者一个或多个涡轮机部件在所述改变后的控制安排的持续时间内所消耗的未来疲劳寿命;以及

vi)重复步骤(i)和(ii),直到所估计的由所述一个或多个涡轮机部件中的每者或者所述风力涡轮机所消耗的未来疲劳寿命足以允许达到目标最小风力涡轮机寿命为止。

可以改变所述参数直到所估计的由载荷最重的部件所消耗的未来疲劳寿命足以允许刚好达到目标最小风力涡轮机寿命为止,或者换言之直到使得所消耗的总疲劳寿命基本与目标最小风力涡轮机寿命相同为止。这可以基于目标最小风力涡轮机寿命的预定裕量(例如,距目标处于0到1个月以内,0到3个月以内,0到6个月以内或者0到12个月以内)来实现。

任选地,步骤(iii)还要求使在涡轮机的寿命内的能量俘获最大化。

任选地,所述控制安排指示风力涡轮机可以被过额定到超过其额定功率的功率的量。

任选地,步骤(i)还可以包括针对涡轮机部件中的一者或多者调整在涡轮机的剩余寿命内可以对该部件进行更换的次数。步骤(i)还可以包括针对涡轮机部件中的一者或多者对在涡轮机的剩余寿命期间何时可以对所述部件进行更换做出调整。

任选地,所述目标最小风力涡轮机寿命是对应于涡轮机设计寿命的预定目标值。

任选地,所述方法还包括接收指示用户定义的目标最小风力涡轮机寿命的输入。

任选地,所述初始预定义控制安排指定了涡轮机最大功率水平随着时间推移的相对变化。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括使用来自条件监测系统的数据。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括与站点检查程序结合使用从风力发电厂传感器获得的数据,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数来确定作用于涡轮机部件上的载荷。所述传感器数据可以包括在风力涡轮机或风力发电厂投产和/或建造之前收集的传感器数据。

任选地,调整所述参数包括向控制安排施加偏移、放大、衰减或者增益因子。可以对所述参数进行调整直到在所述安排的持续时间内消耗载荷最重的部件的疲劳寿命的全部或者大体上全部为止。可以通过使所述曲线在如下所示的线的上方和下方的面积相等来调整所述偏移:所述线表明在期望寿命内以在站点特有能力上设定的最大功率水平操作的个体涡轮机所引起的疲劳损伤。所述偏移可以被调整,直到由于根据所述控制安排操作涡轮机而随着时间推移所引起的疲劳损伤等于由于根据恒定最大功率水平操作涡轮机而随着时间推移所引起的疲劳损伤为止,所述恒定最大功率水平被设定在针对目标最小寿命的个体涡轮机最大功率水平。

任选地,所述初始预定义控制安排指定了最大功率水平随着时间推移的变化的梯度。调整所述参数可以包括调整所述梯度。

任选地,所述控制安排指示随着时间推移应当引起的疲劳损伤的量,所述方法还包括基于一个或多个lue操作风力涡轮机,从而以控制安排所指示的速率引起疲劳损伤。

任选地,所述方法还包括将所确定的控制安排提供给风力涡轮机控制器,以控制风力涡轮机的功率输出。

任选地,所述一个或多个涡轮机部件包括下述部件中的一者或多者:叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或变压器。

所述方法可以仅执行一次,或者可以根据需要不定期地执行。替代地可以周期性地重复所述方法。具体而言,可以每日、每月或者每年重复所述方法。

可以提供一种被配置为执行文中所描述的方法的用于风力涡轮机或风力发电厂的对应的控制器

仍然根据所述第二方面,提供了一种生成用于包括两个或更多风力涡轮机的风力发电厂的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率水平如何随着时间推移而变化,所述方法包括:

接收指示每个涡轮机的一个或多个涡轮机部件中的每者在涡轮机的剩余寿命内将要被更换的最大次数的输入;

基于测量的风力涡轮机站点和/或操作数据确定指示风力涡轮机中的每者或者风力涡轮机中的每者的一个或多个涡轮机部件的当前剩余疲劳寿命的值;

通过如下方式改变指定发电厂最大功率水平如何随着时间推移而变化的初始预定义控制安排的参数:

iv)调整初始预定义控制安排的参数;

v)使用站点检查程序,基于改变后的控制安排并考虑一个或多个涡轮机部件的更换,来估计由涡轮机或者一个或多个涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数来确定作用于涡轮机部件上的载荷并且包括风力发电厂的涡轮机之间的相互作用;

以及

vi)重复步骤(i)和(ii),直到所估计的由一个或多个涡轮机部件中的每者或者风力涡轮机所消耗的未来疲劳寿命足以允许达到目标最小风力涡轮机寿命为止。

任选地,所述传感器数据包括在风力涡轮机或风力发电厂投产和/或建造之前收集的传感器数据。

任选地,步骤(iii)被进一步约束,以使得对于所述安排内的任何给定时间段而言,在所有涡轮机的功率都被加到一起时,功率之和不超过在从发电厂到电网的连接中能够承载的功率的量。

根据本发明的第三方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据来确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机或者一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变初始控制安排以确定经优化的控制安排,所述优化包括:

基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命;以及根据一个或多个输入约束条件来约束控制安排的优化;

其中,所述输入约束条件包括一个或多个涡轮机部件的允许部件更换的最大次数,并且所述优化还包括改变风力涡轮机寿命的初始值,以确定目标风力涡轮机寿命。

根据本发明的第四方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据来确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机或者一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变初始控制安排以确定经优化的控制安排,所述优化包括:

基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命;以及根据一个或多个输入约束条件来约束所述控制安排的优化;

其中,所述输入约束条件包括目标最小风力涡轮机寿命,并且所述优化还包括改变在所述安排的历程中要对一个或多个部件执行的部件更换的次数的初始值,以确定部件更换的最大次数。

根据本发明的第五方面,提供了一种生成用于风力涡轮机的控制安排的方法,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据来确定指示风力涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机或者一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变初始控制安排以确定经优化的控制安排,所述优化包括:

基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命;以及根据一个或多个输入约束条件来约束所述控制安排的优化;

其中,所述优化还包括改变风力涡轮机寿命的初始值,以及改变在所述安排的历程中要对一个或多个部件执行的部件更换的次数的初始值,以确定一个或多个涡轮机部件的部件更换次数与目标最小风力涡轮机寿命的组合。

下述任选特征可以应用于所述第三、第四或第五方面。

所述控制安排可以在涡轮机的整个寿命内应用。

任选地,所述方法还包括通过改变部件更换的时机并改变部件更换的次数直到达到最大次数而优化控制安排。

任选地,能够更换的一个或多个涡轮机部件包括以下项中的一者或多者:叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或变压器。

任选地,所述初始控制安排指定了涡轮机可以进行操作的能够达到的涡轮机最大功率水平随着时间推移的相对变化。

任选地,所述输入约束条件还包括涡轮机设计所允许的涡轮机上限最大功率输出和/或涡轮机最小功率输出。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括将来自一个或多个涡轮机传感器的传感器数据应用于一个或多个寿命使用估计算法。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括使用来自条件监测系统的数据。

任选地,确定指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的值包括与站点检查程序结合使用从风电厂传感器获得的数据,所述站点检查程序基于风电厂传感器以及与风电厂和风力涡轮机设计有关的参数来确定作用于涡轮机部件上的载荷。

任选地,所述控制安排的优化包括改变控制安排,以使平准化能源成本(lcoe)最小化。可以使用lcoe模型确定lcoe,所述模型包括针对以下项中的一者或多者的参数:容量因子,其指示在一段时间内生成的能量除以如果涡轮机在该段时间内以额定功率连续操作将会生成的能量;可用性,其指示涡轮机将可用于发电的时间;以及场效率,其指示在一段时间内生成的能量除以如果涡轮机在完全不受上游涡轮机干扰的风内操作将会生成的能量。所述模型还可以包括针对以下项中的一者或多者的参数:与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的劳动力和设备、更换部件的制造或整修成本、以及将经整修或更换的部件运输到发电厂的运输成本;以及与磨损零件的更换相关联的服务成本。

任选地,经优化的控制安排是涡轮机可以进行操作的能够达到的最大功率水平的安排,并且其可以指定高于所述风力涡轮机的额定功率的最大功率水平。替代地,所述控制安排可以指定随着时间推移应当引起的疲劳损伤的量,所述方法还包括基于一个或多个lue来操作风力涡轮机,从而以由控制安排所指示的速率引起疲劳损伤。

控制安排可以指示涡轮机最大功率水平在涡轮机的寿命内如何变化。

任选地,所述方法还可以包括将经优化的控制安排提供给风力涡轮机控制器或风力发电厂控制器,以控制风力涡轮机的功率输出。

任选地,周期性地重复所述方法。可以每日、每月或者每年重复所述方法。

可以提供一种被配置为执行根据文中描述的第三、第四或第五方面的方法的用于风力涡轮机或风力发电厂的对应控制器。

根据第三方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述优化器包括:

优化模块,其被配置为接收:一组变量的初始值,该组变量为风力涡轮机的操作变量并且包括初始控制安排;一个或多个约束条件;以及指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的数据;

其中,所述优化模块被配置为:

通过根据涡轮机或者一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件将该组变量中的一者或多者从其初始值进行改变而使在优化模块处接收到的取决于所述变量的操作参数最小化或最大化,从而对控制安排进行优化;以及

输出经优化的控制安排;

其中,所述约束条件包括一个或多个涡轮机部件的允许部件更换的最大次数,并且所述优化模块还被配置为改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。

根据第四方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述优化器包括:

优化模块,其被配置为接收:一组变量的初始值,该组变量为风力涡轮机的操作变量并且包括初始控制安排;一个或多个约束条件;以及指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的数据;

其中,所述优化模块被配置为:

通过根据涡轮机或者一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件将该组变量中的一者或多者从其初始值进行改变而使在优化模块处接收到的取决于所述变量的操作参数最小化或最大化,从而对控制安排进行优化;以及

输出经优化的控制安排,

其中,所述约束条件包括目标最小风力涡轮机寿命,并且所述优化模块还被配置为改变在所述安排的历程中要对一个或多个部件执行的部件更换的次数的初始值,以确定部件更换的最大次数。

根据第五方面,提供了一种用于生成用于风力涡轮机的控制安排的优化器,所述控制安排指示涡轮机最大功率水平如何随着时间推移而变化,所述优化器包括:

优化模块,其被配置为接收:一组变量的初始值,该组变量为风力涡轮机的操作变量并且包括初始控制安排;一个或多个约束条件;以及指示涡轮机或者一个或多个涡轮机部件的当前剩余疲劳寿命的数据;

其中,所述优化模块被配置为:

通过根据涡轮机或者一个或多个涡轮机部件的剩余疲劳寿命以及所述一个或多个约束条件将该组变量中的一者或多者从其初始值进行改变而使在优化模块处接收到的取决于所述变量的操作参数最小化或最大化,从而对控制安排进行优化;以及

输出经优化的控制安排,

其中,所述优化模块还被配置为改变风力涡轮机寿命的初始值,以及改变在所述安排的历程中要对一个或多个部件执行的部件更换的次数的初始值,以确定一个或多个涡轮机部件的部件更换次数与目标最小风力涡轮机寿命的组合。

下述任选特征可以应用于第三、第四或第五方面的优化器。

任选地,所述初始控制安排指定了涡轮机可以进行操作的能够达到的涡轮机最大功率水平随着时间推移的相对变化。

任选地,所述优化器还包括被配置为接收该组变量的初始值和传感器数据的初始化模块,所述初始化模块被配置为计算所述操作参数的初始值。

任选地,所述一个或多个涡轮机部件是下述部件中的一者或多者:叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或变压器。

任选地,所述操作参数是涡轮机的平准化能源成本(lcoe),并且对控制安排进行优化包括使平准化能源成本(lcoe)最小化。可以使用lcoe模型确定lcoe,所述模型包括针对以下项中的一者或多者的参数:容量因子,其指示在一段时间内生成的能量除以如果涡轮机在该段时间内以额定功率连续操作将会生成的能量;可用性,其指示涡轮机将可用于发电的时间;以及场效率,其指示在一段时间内生成的能量除以如果涡轮机在完全不受上游涡轮机干扰的风内操作将会生成的能量。所述模型还可以包括针对以下项中的一者或多者的参数:与更换一个或多个部件相关联的成本,包括涡轮机停机时间、部件更换的劳动力和设备、更换部件的制造或整修成本、以及将经整修或更换的部件运输到发电厂的运输成本;以及与磨损零件的更换相关联的服务成本。

可以提供一种包括根据第三、第四或第五方面中的任何方面所述的优化器的控制器。

根据第三方面,提供了一种生成用于包括多个风力涡轮机的风力发电厂的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据确定指示涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变所述涡轮机中的每者的初始控制安排以确定经优化的控制安排,所述优化包括:

使用站点检查程序,基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或者涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数确定作用于涡轮机部件的载荷并且包括风力发电厂的涡轮机之间的相互作用;以及

根据一个或多个输入约束条件约束所述控制安排的优化;

其中,所述约束条件包括所述风力涡轮机中的每者的一个或多个涡轮机部件中的每者的允许部件更换的最大次数,并且优化模块还被配置为改变风力涡轮机寿命的初始值以确定目标风力涡轮机寿命。

根据第四方面,提供了一种生成用于包括多个风力涡轮机的风力发电厂的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据确定指示涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变所述涡轮机中的每者的初始控制安排以确定经优化的控制安排,所述优化包括:

使用站点检查程序,基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或者涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数确定作用于涡轮机部件的载荷并且包括风力发电厂的涡轮机之间的相互作用;以及

根据一个或多个输入约束条件约束所述控制安排的优化;

其中,所述约束条件包括风力涡轮机中的每者的目标最小风力涡轮机寿命,并且优化模块还被配置为改变在所述安排的历程中要对风力涡轮机中的每者的一个或多个部件执行的部件更换的次数的初始值,以确定部件更换的最大次数。

根据第五方面,提供了一种生成用于包括多个风力涡轮机的风力发电厂的控制安排的方法,所述控制安排针对每个风力涡轮机指示最大功率水平如何随着时间推移而变化,所述方法包括:

基于测量的风力涡轮机站点和/或操作数据确定指示涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件的当前剩余疲劳寿命的值;

应用优化功能,所述优化功能通过改变能量俘获与由涡轮机中的每者或者涡轮机中的每者的一个或多个涡轮机部件所消耗的疲劳寿命之间的折衷直至确定经优化的控制安排为止,来改变所述涡轮机中的每者的初始控制安排以确定经优化的控制安排,所述优化包括:

使用站点检查程序,基于当前剩余疲劳寿命和改变后的控制安排来估计由涡轮机或者涡轮机部件在改变后的控制安排的持续时间内所消耗的未来疲劳寿命,所述站点检查程序基于从风力发电厂传感器获得的数据以及与风力发电厂和风力涡轮机设计有关的参数确定作用于涡轮机部件的载荷并且包括风力发电厂的涡轮机之间的相互作用;以及

根据一个或多个输入约束条件约束所述控制安排的优化;

其中,所述优化还包括改变风力涡轮机寿命中的每者的初始值,以及改变在所述安排的历程中要对风力涡轮机中的每者的一个或多个部件执行的部件更换的次数的初始值,以确定风力涡轮机中的每者的一个或多个涡轮机部件的部件更换次数与风力涡轮机中的每者的目标最小风力涡轮机寿命的组合。

下述任选特征可以应用于第三、第四或第五方面的发电厂级方法。

任选地,所述初始控制安排针对每个涡轮机指定涡轮机可以进行操作所达到的涡轮机最大功率水平随着时间推移的相对变化。

任选地,所述传感器数据包括在风力涡轮机或风力发电厂投产和/或建造之前收集的传感器数据。

任选地,所述优化功能针对涡轮机部件中的一者或多者改变在涡轮机的剩余寿命内可以对部件进行更换的次数。所述优化功能可以针对所述涡轮机部件中的一者或多者改变在所述涡轮机的剩余寿命期间可以何时对部件进行更换。

任选地,所述方法可以被进一步约束,以使得对于在所述安排内的任何给定时间段,在所有涡轮机的功率都被加到一起时,功率之和不超过在从发电厂到电网的连接中能够承载的功率的量。

可以提供一种被配置为执行上述第三、第四或第五方面的方法的对应的风力发电厂控制器。

文中描述的方法中的任何方法可以体现在软件中,所述软件当在控制器的处理器上被执行时,将使所述控制器执行相关方法。

文中提及的站点检查软件包括本领域技术人员已知的用于基于建造前和/或投产前传感器数据以及其它站点信息(例如,地形等)来模拟风力涡轮机的操作以确定风力涡轮机和风力发电厂的操作特性的站点检查工具。所述站点检查工具还可以使用来自所述涡轮机或发电厂的操作数据或者来自类似的涡轮机或发电厂的操作数据(如果可得的话)。示例包括vestas(tm)站点检查工具。dnvgl提供了替代的站点检查软件包。其由“windfarmer”、“windfarmerbladedlink”和“bladed”这三个有关联的程序构成,它们允许用户实施全方位的性能和载荷计算。

附图说明

现在将仅通过举例的方式并参考附图来描述本发明,在附图中:

图1a是常规风力涡轮机的示意性正视图;

图1b是包括多个风力涡轮机的常规风力发电厂的示意性表示;

图2是示出风力涡轮机的常规功率曲线的曲线图;

图3是示出风力涡轮机随着时间推移而产生的功率可以如何随着涡轮机的目标寿命而变化的图表;

图4是示出用于风力涡轮机的不同功率安排的图表,在所述功率安排中,个体最大风力涡轮机功率水平在涡轮机的寿命内发生变化,以控制功率输出;

图5是示出在不同涡轮机部件之间累积的总寿命疲劳的示例性变化的图表;

图6是风力发电厂的简化平准化能源成本模型的示例;

图7是用于优化风力涡轮机控制策略的示例性优化器的方框图;

图8是用于确定风力涡轮机类型最大功率水平的方法的示例;以及

图9是风力涡轮机控制器布置的示意图。

具体实施方式

本发明的实施例寻求提高在采用对能量俘获和疲劳载荷进行折衷的控制方法时涡轮机运营商可获得的灵活性。具体而言,实施例提供了一种允许涡轮机运营商根据其要求来优化涡轮机性能(例如aep)的优化方法。

为了优化性能,在总风力涡轮机控制策略中有三个参数可用于改变。这些参数是(i)风力涡轮机的功率安排;(ii)风力涡轮机的剩余寿命;以及(iii)在风力涡轮机的剩余寿命期间允许的部件更换的次数。可以使这些参数中的一者或多者相对于其它参数中的一者或多者发生改变,以实现经优化的控制策略。所述参数还可以受到约束条件的限制。

例如,可以执行优化以在涡轮机寿命内提高其aep并提高利润率。涡轮机运营商可以指定一个或多个约束条件,之后可以执行优化。运营商可以要求最小风力涡轮机寿命(例如,19年)、最大次数的个体部件更换(例如,一个齿轮箱的更换)和/或特定的功率安排、安排曲线或形态、或者安排梯度中的一者或多者。

功率安排是风力涡轮机控制器例如在使涡轮机过额定时用来对剩余涡轮机寿命内的能量俘获和疲劳载荷进行折衷的变量。可以通过指定诸如个体风力涡轮机最大功率水平等变量的值而控制通过使给定涡轮机过额定而生成的附加功率。该最大功率水平指定了高于额定功率的功率,直到该功率,涡轮机才可以在过额定时进行操作。功率安排可以指定在涡轮机的寿命内的恒定最大功率水平。替代地,功率安排可以指定随着风力涡轮机的寿命而发生变化以使通过过额定能够生成的附加功率的量随着时间推移而发生变化的最大功率水平。例如,发电厂运营商可能希望以涡轮机部件的增加的疲劳寿命消耗为代价而在风力涡轮机寿命的早年期间生成更多的电力,因为在项目的早年发电的金融价值不成比例地高。

给定涡轮机类型的个体风力涡轮机最大功率水平受到风力涡轮机机械部件的终极载荷极限和电气部件的设计极限的约束,因为最大功率不能被安全地增加到超过将使涡轮机经受比其终极设计载荷极限更高的机械载荷值或电气载荷的水平。个体风力涡轮机最大功率水平不能超过的该上限最大功率水平可以被称为“风力涡轮机类型最大功率水平”,并且该上限最大功率水平指定了所确定的载荷不超过该类型的风力涡轮机的设计载荷的最大功率水平。在下文的“最大功率水平计算”部分中给出了可以计算风力涡轮机类型最大功率水平的方式的示例。

个体风力涡轮机最大功率水平是在根据本发明的实施例的安排中指定的功率水平,并且可以被简单地称为最大功率水平。可以针对每个个体涡轮机对个体风力涡轮机最大功率水平进行细化,即,基于每个涡轮机的疲劳载荷值、基于风力涡轮机中的每者在其具体位置上或者在风力发电厂中的定位上所面临的条件中的一者或多者,来进行计算,其中个体风力涡轮机最大功率水平是针对给定站点中的每个涡轮机来确定的。可以设定个体风力涡轮机最大功率水平,使得由涡轮机或者由个体涡轮机部件消耗疲劳寿命的速率给出了与特定目标寿命相对应或者超过特定目标寿命的疲劳寿命。

风力涡轮机的剩余寿命指定了运营商为了优化aep而愿意接受的操作寿命的量。剩余寿命将取决于从实施aep优化方法的首次启动计的时间点,因为可用剩余寿命随着涡轮机操作而减少。

在风力涡轮机的剩余寿命期间允许的部件更换的次数也可以用于优化aep。由于涡轮机部件在不同的条件下以不同的速率发生疲劳,因而一些部件的实际寿命可能大大超过风力涡轮机的20年预期寿命,或者等效地所述部件能够在给定寿命内被过额定更大的量。具有更长寿命的部件不会推进总的涡轮机寿命,并且具有空闲生产能力。然而,具有更短寿命的那些部件则可能对过额定存在限制作用,并且可以通过在涡轮机寿命期间更换这些部件中的一者或多者而增加aep。具体而言,通过增加转矩而实现的过额定对齿轮箱、发电机和动力输出部件的疲劳寿命有尤其大的影响。相反,在通过增加转子速度而实现的过额定的情况下,叶片和结构部件的疲劳寿命受到更重的影响。

本发明的实施例的语境下的可更换部件被认为是主要部件,例如每者占据总风力涡轮机成本的5%或更高并且可以在现场进行更换的部件。只占风力涡轮机的总成本的一小部分的一般磨损部件则不必考虑。具体而言,考虑更换的部件可以包括叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或变压器中的一者或多者。

图3示出了优化的第一示例,其中相对于涡轮机的目标寿命改变功率安排。在该示例中,涡轮机的设计寿命为20年,并且在涡轮机的寿命内,功率水平是固定的。可以看出,在给定年度中产生的功率的量随着风力涡轮机寿命的减小而增加。随着涡轮机寿命减小,涡轮机或涡轮机部件的疲劳寿命的消耗速率可以增大,从而允许通过过额定而生成附加功率。可以取决于涡轮机运营商的偏好而应用优化。例如,涡轮机的使aep最大化的寿命、净现价(npv)或净现值(npw)可以被确定和选择。可以使用已知方法计算npv/npw。

图4示出了另一优化示例,其中,再次相对于涡轮机的目标寿命来改变功率安排。在该示例中,由所述安排指定的最大功率水平在涡轮机的寿命内是可变的。可以指定初始安排,例如,涡轮机运营商可以具有要使用的期望的安排形态。安排定义了个体风力涡轮机最大功率水平如何随着时间推移而变化,但是这可以以相对方式而非绝对方式进行。在该示例中,期望的安排401是在20年的涡轮机寿命内从风力涡轮机类型最大功率水平pmax到涡轮机类型的标称或额定功率水平pnom的线性安排。针对年平均风速低于涡轮机的设计风速的典型的示例性站点,通过虚线a示出了在20年寿命内个体涡轮机的站点特有的能力。对于具体涡轮机而言,当在涡轮机寿命内不超过涡轮机或某些涡轮机部件的疲劳寿命的情况下,不可能满足期望的安排401。因此,对所述安排进行调整,直到根据功率安排所引起的总疲劳不超过载荷最重的部件的设计疲劳寿命为止。

这可以通过估计在其持续时间内(例如,高达涡轮机设计寿命或者用户指定的涡轮机寿命)由于遵循所述安排而引起的疲劳损伤来实现。所引起的疲劳损伤可以使用站点检查功能来估计,并且可以以lue数据为补充,两者均考虑了鉴于给定微站点条件由载荷引起的疲劳损伤。所述安排可以被调整,直到载荷最重的部件的所得到的疲劳寿命等于该部件的设计疲劳寿命为止。换言之,所述安排可以受到调整,直到载荷最重的部件中的全部或基本全部疲劳寿命在所述安排的持续时间内被用尽为止。

可以通过调整所述安排的一个或多个参数而对所述安排进行调整。这可以包括:

-通过跨越整个安排加上或者减去一个值而对安排施加某一偏移量;

-向所述安排施加大于或者小于1的增益;

-用于经由调整相关参数而使控制安排非线性上升或者下降的任何其

它适当函数,用以按照需要以其它方式对所述安排进行扩展/压缩或者

使其增大/缩小,以改变安排的功率水平值。

在一个示例中,对安排进行调整可以是基于最疲劳部件的所引起的疲劳损伤对比时间、或者疲劳寿命剩余对比时间的等效曲线图而实现的,可以是通过功率安排曲线图并使用站点检查软件而确定的,以确定在发电厂内的特定涡轮机位置(或者称为涡轮机微站点)处在给定功率水平上将引起的部件的疲劳损伤。对曲线图进行调整,直到由每个安排定义的处于适用于期望的涡轮机寿命的等效疲劳曲线上的相应能力线以上和以下的面积相等为止。例如,这是通过使所述曲线在如下所示的线的上方和下方的面积相等而实现的:所述线表明在期望寿命内以在站点特有能力上设定的恒定的最大功率水平操作的个体涡轮机所引起的疲劳损伤。例如,其可能是与图3的虚线a等效的线,但是其表明个体风力涡轮机最大功率随着时间推移而引起的疲劳损伤。可以通过对功率安排曲线加上或者减去某一偏移量而使该曲线上移或下移直到使所述面积相等为止,或者通过调整该曲线的一个或多个参数而使该曲线放大或缩小,由此来实现面积均等化。于是,涡轮机或者涡轮机部件消耗的总疲劳寿命将达到20年的操作。通过线402示出了示例性安排,所述线402终止于黑方格i。

通过虚线b示出了对于同一示例性站点在19年寿命内,涡轮机的站点所特有的能力。可以看出,在19年寿命内的能力高于20年寿命内的能力。因而,通过线403给出了示例的所得到的19年安排可以具有比20年寿命安排402的初始最大功率水平值pi20yrs更高的初始最大功率水平值pi19yrs。安排403在19年上结束,其以黑方格ii指示。

在图4的示例中,安排调整还服从在20年寿命内安排的斜率或梯度应当等于初始安排401的斜率或梯度的附加约束条件。还可以应用如图4的示例中所用的另一约束条件,根据该约束条件,仅在达到标称功率水平(其可以是涡轮机的额定功率)之前安排的斜率等于初始安排401的斜率,从该点以后使最大功率水平保持在标称功率水平上。替代地,实施例可以采用涡轮机的降额定,以使由安排指定的最大功率水平被设定为低于涡轮机的额定功率的水平。

可以按照步进方式对安排进行调整,其可以是从pmax降低,或者从pnom增大,或者从线a的功率值开始增大,直到达到适当安排为止,对于该适当安排,载荷最重的涡轮机部件的疲劳寿命足以达到目标涡轮机寿命。例如,可以使初始最大功率水平pi从pnom以1%的步长增大或减小,直到达到适当安排为止。

还存在其它的用于根据涡轮机寿命的年数对功率安排进行优化的可能性。例如,安排可以全部开始于同一初始值(例如,pmax),并且使梯度发生变化,直到由每个安排所定义的处于适用于期望的涡轮机寿命的等效疲劳曲线上的相应能力线以上和以下的面积相等为止。

另一条线404示出了在考虑一次或多次部件更换这一因素的情况下涡轮机在20年寿命内可以实现的安排的示例。安排404终止于黑框i。一个或多个部件可能尤其易受到过额定所引起的疲劳损伤的影响。例如,如图5所示,在20年的操作之后,一个部件可能达到20年寿命疲劳极限,而其它部件则仍然留有一些寿命。在该情况下,更换引起更高的疲劳损伤速率的一个或多个部件将允许增加aep。在涡轮机的寿命内进行考虑,并且考虑到更换的总成本,这仍然可以在计算npv时增加涡轮机的利润率。

作为指定最大功率水平值的安排的替代方案,还可能指定疲劳损伤或者剩余疲劳寿命的安排,因为所引起的疲劳损伤的速率与涡轮机的最大功率水平设置有关。于是,对涡轮功率输出加以控制,以例如通过在涡轮机控制器中使用lue跟踪疲劳寿命来使剩余疲劳寿命保持在由安排指定的剩余疲劳寿命上。作为另一替代方案,还可以使用能量安排,因为其仍然指示涡轮机最大功率水平如何随着时间推移而变化。能量安排可以是每年、每日历月或者以类似时间进行的。

为了避免引起疑惑,安排也可以具有非线性形态,例如遵循多项式曲线的形态。

尽管安排被示为在其持续时间内连续变化,但是它们也可以按照阶跃方式变化,从而在诸如月、季度或年的特定时间段内指定给定的最大功率水平。安排可以(例如)是在涡轮机的寿命内的一系列年度值。

安排可以被计算一次,或者可以按照一定间隔重复计算。例如,可以每月或者每年计算所述安排。对于以年度为基础指定最大功率水平的安排,(例如)每月或每星期计算安排可以是有利的,因为对安排所做的改变可以向用户提示那些变化得比预期更快的参数。

如果安排被计算一次,那么该计算可以发生在风力发电厂投产之前,或者可以发生在投产后的任何时间。对于按照一定间隔重复的计算,首次计算可以发生在风力发电厂投产之前,或者可以发生在投产后的任何时间。

第一示例

根据第一示例,产生可以用于控制风力涡轮机的控制安排。可以定义相对安排,并且可以定义最小风力涡轮机寿命或者主要部件更换的最大次数中的一者或多者。之后,调整所述安排,以确保在使aep最大化的同时,涡轮机的疲劳寿命满足目标寿命。

使用过额定控制器根据文中描述的过额定控制技术之一对风力涡轮机进行操作,所述过额定控制器可以由风力涡轮机控制器实施。

寿命使用估计器(lue)可以用于确定和监测部件的寿命使用。寿命使用估计器可以用于确保所有涡轮机部件的疲劳载荷极限都保持在其设计寿命以内。可以测量给定部件经受的载荷(例如,其弯曲力矩、温度、力或运动),并且例如使用诸如雨流计数和miner法则或者化学衰变方程的技术来计算所消耗的部件疲劳寿命的量。之后,基于寿命使用估计器,可以按照不超过其设计极限的方式对个体涡轮机进行操作。用于测量给定涡轮机部件所消耗的疲劳寿命的装置、模块、软件部件或逻辑部件也可以被称为其寿命使用估计器,并且将使用同一缩写(lue)指代用于确定寿命使用估计的算法以及对应装置、模块或者软件或逻辑部件。下文将更详细地描述lue。

根据默认运行模式,过额定控制器将在风力涡轮机的预期或经认证的寿命内对基于功能或安排所应用的过额定的量进行控制。典型地,这是20或25年。

控制器被配置为接收来自(例如)站点运营商的输入参数,所述输入定义了风力涡轮机或者一个或多个具体涡轮机部件的新目标寿命。使用lue确定涡轮机或者相关涡轮机部件的到目前为止的寿命使用。这对风力涡轮机剩余的部件寿命的量施加了约束,并且因此为控制安排施加了约束。此外,经修订的目标寿命对剩余部件寿命必须扩展的时间量施加了约束。

可以使用站点检查软件离线或在线计算未来可用的疲劳寿命,并且未来可用的疲劳寿命可以用于规定经修订的控制安排。站点检查功能可以包括计算或者一项或多项模拟,以使用基于站点的历史数据来确定预期的疲劳损伤速率,所述历史数据包括在建造之前测量的站点气候数据和/或在建造之后测量的站点气候数据、和/或来自lue的数据。站点气候数据通常包括来自metmast或者基于地面的lidar的数据,并且可以包括风速、湍流强度、风向、空气密度、垂直风切变和温度。站点检查计算可以被远程执行或者按需要由涡轮机/发电厂级控制器执行。

可以向站点检查软件输入与给定wpp站点地貌、地形、风况等有关的信息或参数。可以通过站点勘测和/或由对wpp站点的了解提供地貌和地形信息,其可以包括斜坡、峭壁、wpp内的每个涡轮机的入流角等的细节。可以由metmast数据和/或由风力涡轮机和/或处于wpp所在位置处的wppc经历并记录的风况来提供风况,例如,风速(季节性的、年度的等等)、紊流强度(季节性的、年度的等等)、空气密度(季节性的、年度的等等)、温度(季节性的、年度的等等)等等。

站点检查工具可以包括一个或多个存储器、数据库或者其它数据结构,以存储并保持每种类型的风力涡轮机的疲劳载荷值、每种类型的风力涡轮机的风力涡轮机类型最大功率水平以及与wpp站点条件有关的信息和/或参数。

因此生成了经修订的控制安排,由此取决于寿命终止的新目标日期是早于还是晚于先前的目标日期(其可以是经认证的寿命)而对通过过额定所生产的附加功率进行调整,以使涡轮机暴露于更高或者更低的疲劳损伤累积速率。

对涡轮机控制安排进行修订的能力允许运营商随着时间的推移而改变它们的优先级。例如,本地电网上的主要发电机可能被中断操作以便进行寿命中间的检修,或者可能完全退役,并且电网可能需要额外的支持。这可以反映在明显更高的长期价目表中,因而对于运营商而言在短期内增加能量产生将是有利的。因此,运营商可以决定减小涡轮机寿命或者减小受影响的部件(例如齿轮箱和发电机)的寿命,并在接受更短的风力涡轮机或涡轮机部件寿命的同时通过过额定而生成附加的功率。

有可能使用除lue以外的方法来确定风力涡轮机或者涡轮机部件的寿命使用。相反,可以检查涡轮机至今的操作,并且能够计算到目前为止已经发生的疲劳损伤。这在针对风力涡轮机对过额定控制进行改装时可能是尤为有利的,而且再次使用站点检查软件离线计算未来可用疲劳寿命,并且未来可用疲劳寿命用于指定最大功率水平。站点检查功能还可以包括离线或在线计算或者一项或多项模拟,以使用基于站点的历史数据或者针对安装点所测量的站点数据来确定预期疲劳损伤速率,尽管在该情况下可以在没有可用的lue数据的情况下进行所述计算。

可以使用站点检查软件对风力涡轮机的直至采用了文中描述的功能的过额定控制器的装配日期的操作进行检查,以基于指定站点地貌、站点地形、站点气象条件等输入参数,使用与风力涡轮机在风力发电厂站点内的确切位置有关的测量值来计算涡轮机部件上的疲劳载荷,例如,所述测量值为能量输出、风速、风向、湍流强度、风切变、空气密度、涡轮机机械载荷测量(例如,来自叶片载荷传感器)、涡轮机电气部件温度和载荷、积冰事件、部件温度和条件监测系统输出中的一者或多者。这些值可以用于计算涡轮机部件到目前为止发生的疲劳损伤的估计。可以通过将所测量的值应用于站点检查功能风力涡轮机模型或模拟而计算涡轮机或者涡轮机部件的未来可用寿命,所述模型或模拟基于这些测量值中的一者或多者以及涡轮机的风力涡轮机类型最大功率水平的值来提供估计的疲劳损伤和/或剩余疲劳寿命作为输出。模拟或模型可以提供部件级的或者作为整体的涡轮机的疲劳损伤和/或剩余疲劳寿命。可以根据各种计算过程执行疲劳载荷计算。这种站点检查程序的各种示例将是本领域技术人员已知的,并且将不再详述。

所得到的对涡轮机或涡轮机部件所消耗的疲劳寿命的估计可以用于确定通过所述控制器应用的过额定策略。所述估计可以在对过额定控制进行初始化时用一次,所述初始化可以是在涡轮机受到改装的情况下在涡轮机寿命的中途执行的。替代地,可以在涡轮机的寿命期间周期性地执行所述估计,从而依据寿命疲劳消耗如何在整个涡轮机寿命内发生变化而对过额定策略进行周期性的更新。

过额定策略是基于风力涡轮机或风力涡轮机部件的剩余疲劳寿命确定的,而所述剩余疲劳寿命本身则基于风力涡轮机的操作寿命。所施加的过额定的量受到控制,以使涡轮机或者涡轮机部件以充分低的速率引起疲劳损伤,以确保涡轮机的疲劳寿命仅在预定涡轮机寿命结束时,并且优选地刚好在预定涡轮机寿命结束时用尽。

可以通过使用来自一个或多个条件监测系统的数据来进一步扩展或者代替对部件疲劳寿命估计的确定。条件监测系统(cms)包括在涡轮机齿轮箱、发电机或者其它关键部件中的处于传动系统的控制关键点上的若干传感器。条件监测系统在部件实际发生故障之前提供对部件故障的早期警报。因此,条件监测系统的输出可以被提供给控制器,并且可以被用作由所监测的部件所消耗的疲劳寿命的指示,并且尤其能够提供部件的疲劳寿命何时达到其终点的指示。这提供了估计所使用的寿命的附加的方式。

第二示例

提供第二示例以实施更一般的优化过程,其可以用于实施与上文描述的类似的种类的优化以及其它更一般的优化。第二示例的优化过程可以通过应用优化方案的控制器来实施。

涡轮机的完整财务成本模型、或者平准化能源成本(lcoe)模型被包含在内,并且被用于在安装过额定控制系统之前实施的离线计算中,或者作为风力涡轮机控制器或风力发电厂控制器的部分而被在线使用。lcoe模型的使用允许对过额定策略进行优化,并且还可以基于更换主要部件的成本而将更换主要部件考虑在内。如文中使用的,术语“平准化能源成本”是指对来自涡轮机的能量的成本的度量,该度量是通过将涡轮机的寿命成本除以涡轮机的寿命能量输出而计算出的。

图6示出了简化的lcoe模型的示例,其中,考虑了与建造并操作风力涡轮机和风力涡轮机发电厂相关联的各种成本。

风力涡轮发电机(wtg)成本将制造风力涡轮机的总成本考虑在内。运输成本将把涡轮机部件运输到安装站点的成本考虑在内。运行和维护(o&m)成本将涡轮机的运行成本考虑在内,并且可以随着操作和维护的发生而进行更新。维修技术人员可以将该信息提供给本地涡轮机控制器,提供给风电场控制器或者提供到别处。容量因子指示在给定时间段内(例如,在一年内)生成的能量除以在涡轮机在该时间段内以额定功率连续操作的情况下会生成的能量。可用性指示涡轮机将可用于生成电力的时间。场效率指示从风力中提取能量的效率,其受场内涡轮机的间距的影响。

只有受控制和部件更换策略影响的那些lcoe元素必须被包括在lcoe模型中,因为可以被包括在lcoe模型中的很多参数在建造涡轮机或风电场时就被固定了。受影响的元素为:

●操作和维护(o&m)成本

ο如果更换更多部件,则该成本增加

●容量因子

ο如果使用更加激进的过额定,并且因此生成更多的mwh,则容量因子增大

●可用性

ο如果更换更多的主要部件,则可用性因更换过程所需的停机时间而略微下降

ο如果更加激进的过额定引起了对磨损部件的增大的预防性更换或者未列入安排内的故障,则可用性略微下降

●寿命

ο取决于约束条件选择而减小或增加。

使涡轮机的财务成本(lcoe)模型包括在涡轮机或wpp控制器中允许确定更加灵活且有效的控制策略。例如,如果发现特定站点的条件对齿轮箱特别不利,那么该状况将被识别,并且运营商可以选择是否使涡轮机过额定,并将对齿轮箱进行一定次数的更换考虑在内。之后,涡轮机控制器能够确定何时应当更换齿轮箱,并使涡轮机相应地运行,并且还任选地在要更换齿轮箱时提供指示。

图7示出了用于优化风力涡轮机控制策略的示例性优化器的方框图,该优化器可以被结合到控制器中,并且可以用于实施本发明的各种实施例。

在算法启动时,运行一次被标示为“初始化”的方框。这为优化环路提供初始条件。被标示为“优化”的环路被周期性地执行,例如每天一次,每月一次或者每年一次。在该环路被执行时,其按需要尽可能多地运行,以使优化过程实现足够好的收敛度。遵循收敛,新的一组输出被发送至风力涡轮机控制器(x1)和运营商(其它输出),以实施所确定的控制策略。“计算lcoe的估计”的两个方框包含相同的计算方法。它们包括图6的所有尚未固定的元素,即,o&m成本、容量因子、可用性和寿命。例如,塔架capex已经是固定的,因而不必被包括在内。但是操作和维护(o&m)成本未被固定,因为齿轮箱可能工作强度更大,并且在涡轮机的寿命期间被更换一次,因而将该成本包含在内。

在图7中并未示出所有连接,其中,有很多类似的连接,例如在优化算法方框与“计算lcoe的估计”方框之间的连接。在图7中或者参考图7使用了下述符号:

●n:剩余寿命的周期(例如,年)数。如果需要,用户可以对其加以改变,以符合其期望的操作策略。

●x1:在第1...n年内的个体风力涡轮机最大功率水平的一维阵列,例如对于3wm涡轮机而言,为[3.5mw,3.49mw,3.48mw,3.47mw...]

●x2:在第1...n年内的齿轮箱更换次数的一维阵列,例如[0,0,0,0,0,0,0,0,1,0,0,0,0,0]

●x3:在第1...n年内的发电机更换次数的一维阵列

●x4:在第1...n年内的主轴承更换次数的一维阵列

●x5:在第1...n年内的叶片组更换次数的一维阵列

以及任选的:

●x6:在第1...n年内的转换器更换次数的一维阵列

●x7:在第1...n年内的桨距轴承更换次数的一维阵列

●x8:在第1...n年内的桨距致动器(液压部件或电气部件)更换次数的一维阵列

●x9:在第1...n年内的偏航驱动机构更换次数的一维阵列

●x10:在第1...n年内的偏航轴承更换次数的一维阵列

●x11:在第1...n年内的变压器更换次数的一维阵列

●“_0”指示初始条件,例如,x1_0是x1的初始条件。

参考图7,优化过程需要确定给定涡轮机的若干常数以及使用若干物理参数和控制参数的值计算优化的初始条件。一旦已经计算出初始条件,优化过程就应用定义平准化能源成本与物理参数和控制参数的输入值之间的关系的函数来确定使平准化能源成本最小化而不超过某些优化约束条件的输入值的组合。

为了计算优化的初始条件,确定给定涡轮机的若干参数值,并将其输入到“初始化”方框中。对于任何给定周期性优化(例如,每月)而言,这些值为常数。它们是运营商输入的参数,并且可以随时改变,但是如果被改变,那么将在下一次运行优化时被应用。这些参数可以包括以下项中的一者或多者:涡轮机/个体涡轮机部件的寿命;齿轮箱更换成本;轴承更换成本;发电机更换成本;叶片更换成本;桨距系统更换成本;以及任何其它必要部件的更换成本。

例如使用站点检查功能和/或一个或多个lue来确定涡轮机的寿命和/或一个或多个部件的寿命,或者可以提供涡轮机的寿命和/或一个或多个部件的寿命作为要满足的约束条件。可更换部件包括叶片、桨距轴承、桨距致动系统、轮毂、主轴、主轴承、齿轮箱、发电机、转换器、偏航驱动机构、偏航轴承或者变压器。

确定更换每个所述部件的总成本。例如,对于更换齿轮箱而言,成本将考虑正在装配的是新的齿轮箱还是翻新齿轮箱、运输成本、以及吊车和人力成本。根据图6中的可用性部分,还包含涡轮机停机时间成本。

还包括其它成本,例如包括加权平均资金成本(wacc)等的金融成本以及计算未来涡轮机运行策略对lcoe的影响所需的任何其它元素。

寿命参数可以由运营商取决于其针对所述地点的操作策略来设置,或者可以作为优化的部分而被确定。其它常数基于最佳知识,因而它们可以偶尔被更新,但是这种更新将是相当稀少的。具体地,o&m成本只能被预先估计,并且可以随着时间的推移而以实际数据替代这些估计,由此获得对未来o&m成本的更为精确的估计。

“初始化”方框和优化算法使用以下变量:

●x1:在第1...n年内的最大功率水平的一维阵列,例如对于3wm涡轮机而言,为[3.5mw,3.49mw,3.49mw,3.48mw,3.47mw...]

●x2:在第1...n年内的齿轮箱更换次数的一维阵列,例如[0,0,0,0,0,0,0,0,1,0,0,0,0,0]

●x3:在第1...n年内的发电机更换次数的一维阵列

●x4:在第1...n年内的主轴承更换次数的一维阵列

●x5:在第1...n年内的叶片组更换次数的一维阵列

以及任选的:

●x6:在第1...n年内的转换器更换次数的一维阵列

●x7:在第1...n年内的桨距轴承更换次数的一维阵列

●x8:在第1...n年内的桨距致动器(液压部件或电气部件)更换次数的一维阵列

●x9:在第1...n年内的偏航驱动机构更换次数的一维阵列

●x10:在第1...n年内的偏航轴承更换次数的一维阵列

●x11:在第1...n年内的变压器更换次数的一维阵列

对lcoe的估计的初始计算使用来自运营商的针对初始条件进行的初始估计,即,x1_0、x2_0、x_0等。

图7中的标示为“测量数据”的信号包含来自传感器的数据以及由o&m过程确定的数据。来自传感器的测量数据可以是来自涡轮机或风力发电厂,并且可以包括下述选项中的一者或多者:

-诸如齿轮箱、发电机、主轴承、叶片、转换器、桨距轴承、桨距致动器(液压部件或电气部件)、偏航驱动机构、偏航轴承、变压器等的涡轮机部件中的一者或多者的lue值;

-风速和环境数据,或者由站点检查程序获得的其它数据;

-涡轮机部件中的一者或多者的cms数据。

来自操作和维护(o&m)活动的测量数据包含o&m成本,所述o&m成本可以包括基于至今的成本(如果有的话)的估计。可以将其与未来安排服务模式、来自同一风力发电厂或者其它风力发电厂的具有相同设计的其它涡轮机的经验、以及针对使用相同部件的具有不同设计的其它涡轮机的某些部件的经验一起使用,以在lcoe计算中给出未来o&m成本的估计。

根据初始条件,优化过程使用所述输入和约束条件通过直接计算lcoe或者通过计算某些lcoe变量而使平准化能源成本(lcoe)最小化。只需计算在建造涡轮机之后发生变化的lcoe的部分,即,受到o&m成本、容量因子、可用性和寿命影响的部分。运行优化,直至使lcoe最小化为止,例如,直到所计算出的lcoe中的逐步变化处于给定容差内为止。

针对优化的约束条件是优化算法在搜索lcoe的最小值时不能进入的区域。约束条件可以包括以下项中的一者或多者:风力涡轮机类型最大功率水平;涡轮机类型的最小功率输出;风电厂与电网的连接的最大有功功率容量,即,所有涡轮机的有功功率输出的最大和;以及任何其它适当约束条件。

约束条件还可以包括可以由用户定义的以下项中的一者或多者:

-最小或者目标期望风力涡轮机寿命;

-针对所有部件或者一个或多个给定部件的部件替换的最大次数;

-定义最大功率安排的形态的预定义最大功率水平安排或者预定义相对最大功率安排。

可以选择每个一维阵列的输入的数量,以使优化算法的运行时间更易管理。一维阵列x1、x2等在上文中被描述为被提供用于每年的操作。但是,有可能为每月或者每季度的操作提供输入,这将提供12倍或者4倍数量的输入。因此,可以使用年值。当然,可以按需要使用不同时间周期,具体取决于期望的计算时间或者优化粒度。

再次,为了使运行时间更易管理,可以选择风力涡轮机部件,以使得在优化中仅使用最相关的部件。可以基于部件寿命是否显著受高于额定风速的有功功率输出的影响而对要包括的部件进行选择,所述部件尤其可以是齿轮箱、发电机、主轴承和叶片。

另外或替代地,优化中使用的部件可以是基于它们的值而选择的。例如,只有具有涡轮机总成本的5%或更高的值的部件才被包括。

优化器算法在其每次运行到收敛时生成若干输出。表示涡轮机在第1...n年内的最大功率水平的安排的一维阵列x1可以通过将所述数据自动传送到风力涡轮机控制器以用作涡轮机功率需求直到下一次优化环路运行为止(例如,1个月以后)而用于闭环控制中。替代地,可以例如通过将最大功率水平数据发送至计算机系统以输出在显示器上从而由维修部门查看,来在没有自动控制环路的情况下以顾问身份使用最大功率水平。

其它一维阵列x2、x3、x4表示针对部件更换的安排。该安排数据可以被输出至另一计算机系统,从而允许采取行动。所述数据可以被直接提供到部件更换安排软件。替代地,包括建议更换日期的部件更换数据可以被用作咨询输出,该输出被发送至显示器,以由维修部门查看,从而决定部件更换计划的人工实施方式。

应当注意,上文描述的最大功率水平的一维阵列(x1)可以仅作为过额定水平而被提供,作为过额定水平或降额定水平而被提供,或者仅作为降额定水平而被提供,以使最大功率水平变量只需要指定超过(或者低于)额定功率的量。替代地,功率需求可以是每个周期内的速度需求和/或转矩需求,或者可以是疲劳寿命消耗,其中,通过如下文所述的寿命使用控制功能对功率进行控制。既使用速度需求又使用转矩需求的缺陷是用于计算最佳配置的计算时间将更长。

尽管上文将优化器描述为被周期性地执行,但是其也可以被偶然使用,甚至可以只用一次。例如,可以在安装过额定控制器的点处离线执行所述优化。替代地,可以将优化器体现在风力涡轮机处、风力发电厂处或者别处的控制器中,在该情况下,其将按照特定时间步长被执行。

如上文所述,优化可以在有或者没有lue的情况下执行,因为站点数据可以用于确定部件疲劳,并且因此给出涡轮机或者涡轮机部件可用的剩余寿命的指示。

尽管主要结合与过额定控制器一起使用的情况对优化算法进行描述,但这并不是必需的。可以将优化与对能量俘获和涡轮机疲劳载荷进行折衷的任何控制行为结合应用。这可以包括以下项中的一者或多者:通过例如降额定而改变功率需求;推力限制,其对功率输出进行限制,以通过以功率输出为代价降低功率曲线“拐弯”处的转子推力而避免高推力载荷;或者对能量俘获和疲劳载荷进行折衷的任何其它控制特征。

尽管所需的计算可以在任何位置实施,但是在实践中,诸如此类的战略性行为最好在风力发电厂控制器中实施,例如在scada服务器中实施。这允许在站点上直接输入服务数据,从而避免从站点到控制中心的通信问题。然而,所述计算也可以在控制中心执行。同样的内容适用于文中描述的其它方法,包括第一示例中的方法。

最大功率水平计算

接下来将描述用于确定可以应用到涡轮机的最大功率水平的示例性技术。

用于确定一种类型的风力涡轮机的风力涡轮机类型最大功率水平的方法可以包括:针对两个或更多测试功率水平模拟载荷谱,以针对两个或更多功率水平中的每者确定该类型的风力涡轮机上的载荷;将针对每个测试功率水平所确定的载荷与该类型的风力涡轮机的设计载荷进行比较;以及将该类型的风力涡轮机的风力涡轮机类型最大功率水平设定为使所确定的载荷不超过该类型的风力涡轮机的设计载荷的最大测试功率水平。

相应地,能够针对一个或多个类型的风力涡轮机确定风力涡轮机类型最大功率水平。

图8示出了详述可以与任何实施例结合使用的对涡轮机最大功率水平进行设置的示例的流程图。在步骤301中,执行检查,以确定一个或多个类型的风力涡轮机的风力涡轮机机械部件设计极限。在该示例中,利用离线计算机系统确定设计极限。然而,应当认识到,可以通过在线计算机系统或者与风力涡轮机和/或wpp相关联的任何其它软件和/或硬件实施所述功能。

风力涡轮机类型最大功率水平是:在给定类型的风力涡轮机要以风力涡轮机的部件的设计载荷的极限进行操作的情况下,当风力适当地高时允许该给定类型的风力涡轮机产生的最大功率水平。风力涡轮机类型最大功率水平有效地应用于涡轮机的设计寿命。因此,风力涡轮机类型最大功率水平将通常高于该类型的风力涡轮机的标称名牌额定值,因为标称铭牌额定值通常是更保守的值。

可以将下面的示例和实施例中使用的“一种类型的风力涡轮机”理解为具有相同的电气系统、机械系统、发电机、齿轮箱、涡轮机叶片、涡轮机叶片长度、轮毂高度等的风力涡轮机。相应地,出于本发明的实施例的目的,风力涡轮机的主要结构或部件的任何差异都将实际上产生新类型的风力涡轮机。例如,除了轮毂高度(例如塔架高度)不同之外其余都相同的风力涡轮机将是两种不同类型的风力涡轮机。类似地,除了涡轮机叶片长度不同之外其余都相同的风力涡轮机也将被认为是不同类型的风力涡轮机。50hz和60hz风力涡轮机也被认为是不同类型的风力涡轮机,它们是针对冷气候和热气候设计的风力涡轮机。

因此,风力涡轮机的类型未必对应于风力涡轮机的国际电工委员会(iec)类别,因为不同类型的风力涡轮机可以处于风力涡轮机的相同iec类别中,其中,每种类型的风力涡轮机可以基于风力涡轮机中的部件的设计而具有不同的风力涡轮机类型最大功率水平。

在下面的示例中,风力涡轮机的额定值是1.65mw(1650kw)的标称铭牌额定功率水平,其轮毂高度为78米,并且被设计为在特定的iec风级条件下服务。

之后,可以通过模拟针对第一测试过额定功率水平的载荷谱以识别出针对该第一功率水平的作用于该类型的风力涡轮机的载荷,来确定该类型的风力涡轮机的风力涡轮机类型机械部件的设计极限。载荷可以是机械载荷、疲劳载荷、风力涡轮机可能经历的任何其它载荷或者不同载荷的任何组合。在该示例中,考虑了机械载荷,然而应当认识到,也可以考虑其它载荷,例如疲劳载荷。模拟载荷谱的过程还可以包括可以用以确定该类型的风力涡轮机上的载荷的其它形式的分析或者可以是所述分析的外推。

载荷谱通常包括一定范围的不同测试用例,可以在风力涡轮机的计算机模拟中运行这些测试用例。例如,载荷谱可以包括针对如下情况的测试用例:持续10分钟的8m/s的风力、持续10分钟的10m/s的风力、不同的风向、不同的风湍流度、风力涡轮机的启动、风力涡轮机的停机等等。应当认识到,可能有很多不同的风速、风况、风力涡轮机操作条件和/或故障条件,可以在载荷谱的风力涡轮机模拟中运行针对它们的测试用例。测试用例可以包括真实的实际数据或者人工数据(例如,在与风力涡轮机相关的标准中定义的50年阵风)。载荷谱的模拟可以针对载荷谱中的所有测试用例确定影响风力涡轮机的力和载荷。该模拟还可以估计或者确定测试用例事件可能发生的次数,例如,可以预计持续10分钟的10m/s的风的测试用例在风力涡轮机的20年的寿命期间可能发生2000次,因此能够计算出在风力涡轮机的寿命内的风力涡轮机上的疲劳。所述模拟还可以基于所确定的影响风力涡轮机的载荷计算或确定风力涡轮机中的各种部件可能引起的疲劳损伤或载荷。

在该示例中,第一测试功率水平可以是1700kw,因为其高于在该示例中考虑的风力涡轮机类型的标称铭牌额定功率水平。之后,可以针对给定类型的风力涡轮机模拟载荷谱,以判断该类型的风力涡轮机是否能以该第一测试功率水平进行操作而不超过该类型的风力涡轮机的机械部件的最终设计载荷。如果模拟表明,该类型的风力涡轮机能够以第一测试功率水平进行操作,则可以针对第二测试功率水平重复相同的过程。例如,在该示例中,第二测试功率水平可以是1725kw。之后,可以针对给定类型的风力涡轮机模拟载荷谱,以识别该类型的风力涡轮机是否能以该第二测试功率水平进行操作而不超过该类型的风力涡轮机的机械部件的最终设计载荷。

如果不超过机械部件的最终设计载荷,则可以迭代地执行针对其它测试功率水平模拟载荷谱过程。在该示例中,测试功率水平以25kw的步长递增,但是应当认识到,递增步长可以是适于识别风力涡轮机类型最大功率水平的目的的任何步长,例如,5kw、10kw、15kw、20kw、30kw、50kw等,或者递增步长可以增大测试功率水平的百分比,例如,1%的增量、2%的增量、5%的增量等。替代地,所述过程开始于高的第一测试功率水平,并且针对每次迭代,使测试功率水平递减适当的量,直到识别出风力涡轮机类型最大功率水平为止,即该类型的风力涡轮机能够进行操作而不会超过最终设计限制的第一测试功率水平。

在该示例中,给定类型的风力涡轮机被识别为在1825kw上超过一个或多个机械部件的设计极限之前,能够在1750kw、1775kw和1800kw的其它测试功率水平上操作。因而,所述过程识别出该类型的涡轮机的风力涡轮机类型最大功率水平为1800kw。

在其它实施例中,由于所述类型的风力涡轮机在1800kw上不超过机械部件的最终设计载荷,但是在1825kw上超过机械部件的最终设计载荷,则所述过程可以进一步迭代地使测试功率水平递增较小的增量,例如5kw,以识别出风力涡轮机能否在1800kw和1825kw之间的功率水平上操作而不超过机械最终设计载荷。然而,在当前示例中,将1800kw的功率水平作为该类型的风力涡轮机的风力涡轮机类型机械部件设计极限。

之后可以针对要分析的任何其它类型的风力涡轮机执行确定风力涡轮机类型最大功率水平的过程。在图8的步骤302中,可以针对先前确定的风力涡轮机机械部件设计极限考虑或者评估所述类型的风力涡轮机中的电气部件的设计限制。

在步骤302中,可以考虑主要电气部件,以确保针对机械部件设计极限所确定的风力涡轮机类型功率水平不超过正在分析的类型的风力涡轮机的主要电气部件的设计限制。例如,主要电气部件可以包括发电机、变压器、内部电缆、接触器或者所述类型的风力涡轮机中的任何其它电气部件。

基于模拟和/或计算,然后判断主要电气部件是否能够以先前针对机械部件设计极限所确定的风力涡轮机类型最大功率水平进行操作。例如,在机械部件设计极限功率水平上的操作可能使得风力涡轮机内部的一条或多条电缆的温度升高,并且因而降低电缆的电流承载能力,而电流承载能力是由电缆导体的尺寸和散热状况确定的。因此,将针对新的温度条件计算电流承载能力,以便判断电缆是否能够以高达风力涡轮机类型最大功率水平的功率水平进行操作。可以针对其它电气部件考虑类似的考虑事项,例如,部件的温度、部件的容量等等,以识别出所述电气部件是否能够以高达机械部件设计极限的功率水平进行操作。

如果确定或者识别出主要电气部件能够以先前确定的机械部件设计极限进行操作,那么在图8的步骤303中,针对给定类型的风力涡轮机,将风力涡轮机类型最大功率水平设置或者记录为给定类型的风力涡轮机根据机械部件设计极限的最大功率水平。然而,如果确定或者识别出主要电气部件不能以先前确定的机械部件设计极限进行操作,那么可以采取进一步的调查或行动,以得到协调机械部件和电气部件两者的涡轮机类型最大功率水平。

一旦确定了每种类型的风力涡轮机的风力涡轮机类型最大功率水平,则可以将该参数用作上文描述的方法中的约束条件,以得到wpp中的每个风力涡轮机的个体最大功率水平(例如最大过额定功率水平)的安排。

wpp中的每个风力涡轮机的不同个体最大功率水平是有利的,因为wpp中的条件可能在wpp站点的各处不同。因此,情况可能是wpp中的某一位置上的风力涡轮机可能面对与wpp中的不同位置上的另一同类型风力涡轮机不同的情况。因此,同类型的两个风力涡轮机可能要求不同的个体最大功率水平,或者可以取决于优选实施方式向wpp中的该类型的所有风力涡轮机应用最小的个体最大功率水平。如文中所述,个体风力涡轮机特有的个体最大功率水平是作为确定安排的一部分而被确定的。

过额定控制

本发明的实施例可以应用于风力涡轮机或风力发电厂,通过应用过额定控制以确定要应用的过额定的量来操作风力涡轮机或风力发电厂。

过额定控制信号是由过额定控制器生成的,并被风力涡轮机控制器用来使涡轮机过额定。上面描述的控制安排可以被用于这种过额定控制器内或者与之结合使用,以设置通过过额定能够生成的功率的量的上限。生成过额定控制信号的具体方式对于本发明的实施例而言是无关紧要的,但是将给出示例以便于理解。

每个风力涡轮机可以包括过额定控制器作为风力涡轮机控制器的部分。过额定控制器计算过额定请求信号,其指示涡轮机使功率输出过额定到高于额定输出所达到的量。控制器接收来自涡轮机传感器的数据,例如,桨距角、转子转速、功率输出等,并且能够发送命令,例如,桨距角、转子转速、功率输出等的设定点。控制器还可以接收来自电网的命令,例如,来自电网运营商的命令,从而响应于电网上的需求或故障而提升或者降低有功或无功功率输出。

图9示出了涡轮机控制器布置的示意性示例,其中,过额定控制器901生成过额定控制信号,风力涡轮机控制器能够使用所述控制信号而向涡轮机应用过额定。过额定控制信号可以是取决于检测涡轮机的操作参数和/或本地条件(例如,风速和风向)的一个或多个传感器902/904的输出而生成的。过额定控制器901包括可以用于过额定控制的各个方面中的一个或多个功能控制模块。可以提供附加的功能模块,可以组合模块的功能,也可以省略一些模块。

个体涡轮机最大功率水平的值是由优化器907根据文中所述那样确定的安排所提供的。其提供了根据所述安排涡轮机能够进行操作所达到的最大功率水平。

附加功能模块生成功率需求,并且一般将起到降低涡轮机控制器所遵照的最终功率需求的作用。附加功能模块的具体示例是操作约束条件模块906。过额定利用了通常存在于部件设计载荷与每个涡轮机在运行中所经受的载荷之间的差距,所经受的载荷通常比计算设计载荷的iec标准模拟条件更良好。过额定使得在高风力时增加对涡轮机的功率需求,直到达到操作约束条件(温度等)指定的操作极限为止,或者直到达到为了避免超过部件设计载荷而设定的功率上限为止。通过操作约束条件控制模块906实施的操作约束条件将可能的过额定功率需求限制为各种操作参数的函数。例如,在保护功能准备好在齿轮箱油温超过65℃时发起停机的情况下,操作约束条件可以规定,对于超过60℃的温度,最大可能过额定设定点信号作为齿轮箱油温的函数而线性下降,从而在65℃上达到“不可能进行过额定”(即,等于额定功率的功率设定点信号)。

来自功能模块的最大功率水平和功率需求被提供给最小化功能,方框908,并选择最小值。可以提供另一最小化方框909,其选择来自过额定控制器901的最小功率需求以及任何其它涡轮机功率需求,例如电网运营商指定的那些功率需求,以产生由风力涡轮机控制器应用的最终功率需求。

作为替代,例如,过额定控制器可以是图1b的ppc控制器130的部分。ppc控制器与涡轮机中的每者通信,并且能够接收来自涡轮机的数据,例如桨距角、转子转速、功率输出等,并向个体涡轮机发送命令,例如,桨距角、转子转速、功率输出等的设定点。ppc130还接收来自电网的命令,例如,来自电网运营商的命令,以响应于电网上的需求或故障而提升或者降低有功或无功功率输出。每个风力涡轮机的控制器与ppc130通信。

ppc控制器130接收来自涡轮机中的每者的功率输出数据,因而知道每个涡轮机的功率输出以及作为整体的发电厂在电网连接点140处的功率输出。如果需要,ppc控制器130可以接收用于作为整体的发电厂的功率输出的操作设定点,并在每个涡轮机之间对其进行划分,以使输出不超过运营商分配的设定点。该发电厂设定点可以是从0直至发电厂的额定功率输出的任何位置。发电厂的“额定功率”输出是发电厂中的个体涡轮机的额定功率输出之和。发电厂设定点可以高于发电厂的额定功率输出,即,整个发电厂被过额定。

ppc可以直接接收来自电网连接的输入,或者其可以接收作为总发电厂输出与标称或额定发电厂输出之间的差异的度量的信号。所述差异可以用于为个体涡轮机的过额定提供基础。理论上,可以仅使单个涡轮机过额定,但是优选的是使多个涡轮机过额定,并且最优选的是向所有涡轮机发送过额定信号。发送到每个涡轮机的过额定信号可能不是固定控制,相反可以是每个涡轮机可以执行的过额定的最大量的指示。每个涡轮机可以具有相关联的控制器,所述控制器可以被实施在涡轮机控制器内,或者可以集中实施,例如,被实施在ppc处,所述控制器将实施图9所示的功能中的一者或多者,以判断涡轮机是否能够对过额定信号做出响应,并且如果能,则判断过额定多大的量。例如,在涡轮机控制器内的控制器确定给定涡轮机处的条件是有利的并且高于额定风速,则其可以做出积极响应,并使给定涡轮机过额定。由于控制器实施过额定信号,因而发电厂的输出将增加。

因此,集中地或者在每个个体涡轮机处生成过额定信号,该信号指示一个或多个涡轮机或者作为整体的发电厂的涡轮机可以执行的过额定的量。

寿命使用估计器

如上面所描述的,本发明的实施例利用寿命使用估计器(lue)。现在将更详细地描述寿命使用估计器。估计寿命使用所需的算法将在部件之间改变,并且lue可以包括lue算法库,其包括以下中的一些或全部:载荷持续时间、载荷转速分布、雨流计数、应力循环损伤、温度循环损伤、发电机热反应速率、变压器热反应速率以及轴承磨损。另外可以使用其它算法。如上所述,寿命使用估计可以仅用于所选择的关键部件,并且对算法库的使用使得能够选择新的部件用于lue,并且为该部件设置从库中选择的适合的算法以及具体参数。

在一个实施例中,针对涡轮机的所有主要部件实施lue,所述主要部件包括:叶片;桨距轴承;桨距致动器或驱动机构;轮毂;主轴;主轴承壳体;主轴承;齿轮箱轴承;齿轮齿;发电机;发电机轴承;转换器;发电机终端箱电缆;偏航驱动机构;偏航轴承;塔架;海上支撑结构(如果存在的话);地基;以及变压器绕组。替代地,可以选择这些lue中的一个或多个lue。

作为适当算法的示例,可以将雨流计数用于叶片结构、叶片螺栓、桨距系统、主轴系统、转换器、偏航系统、塔架和地基估计器中。在叶片结构算法中,将雨流计数应用于叶片根部弯曲摆振和挥舞力矩以识别应力循环范围和平均值,并将输出发送到应力循环损伤算法。针对叶片螺栓,将雨流计数应用于螺栓弯曲力矩,以识别应力循环范围和平均值,并将输出发送到应力循环损伤算法。在桨距系统、主轴系统、塔架和地基估计器中,还将雨流计数算法应用于识别应力循环范围和平均值,并将输出发送到应力循环损伤算法。应用雨流算法的参数可以包括:

-桨距系统-桨距力;

-主轴系统-主轴转矩;

-塔架-塔架应力;

-地基-地基应力。

在偏航系统中,将雨流算法应用于塔架顶部扭矩以识别载荷持续时间,并将该输出发送到应力循环损伤算法。在转换器中,将发电机功率和rpm用于推断温度,并且在该温度上使用雨流计数来识别温度循环和平均值。

可以通过将叶片摆振载荷和桨距速度作为输入而输入到载荷持续时间算法或轴承磨损算法来监测叶片轴承中的寿命使用。针对齿轮箱,将载荷转速持续时间应用于主轴转矩,以计算所使用的寿命。针对发电机,将发电机rpm用于推断发电机温度,其用作热反应速率发电机算法的输入。针对变压器,从功率和环境温度中推断变压器温度,以向变压器热反应速率算法提供输入。

在可能的情况下,优选使用现有的传感器来提供其中算法对其进行操作的输入。因此,例如,风力涡轮机通常直接测量叶片结构、叶片轴承和叶片螺栓估计器所需的叶片根部弯曲摆振和挥舞力矩。针对桨距系统,可以测量气缸的第一腔室中的压力,并可以推断第二腔室中的压力,从而能够计算桨距力。这些仅是示例,并且可以直接测量作为输入所需的其它参数,或可以从其它可用传感器输出中推断所述其它参数。针对一些参数,如果不能以足够的精度推断出一个值,则使用附加的传感器可能是有利的。

用于各种类型的疲劳估计的算法是已知的,并且可以在以下标准和文本中找到:

载荷转速分配和载荷持续时间:

guidelinesforthecertificationofwindturbines,germainischerlloyd,section7.4.3.2fatigueloads

雨流:

iec61400-1‘windturbines–part1:designrequirements’,annexgminers求和:

iec61400-1‘windturbines–part1:designrequirements’,annexg幂定律(化学变性):

iec60076-12‘powertransformers–part12:loadingguidefordry-typepowertransformers’,section5。

发电厂级控制

文中描述的方法中的任何方法均可以在风力发电厂级别执行,由此生成包括每个风力涡轮机的个体控制安排的发电厂控制安排。这样做具有允许考虑给定发电厂中的涡轮机之间的相互作用的好处。

对上游的一个或多个涡轮机的功率需求/功率水平的改变影响紧跟上游的一个或多个涡轮机的任何涡轮机的功率输出和疲劳损伤累积速率。站点检查软件包括有关涡轮机在风力发电厂内的定位的信息,并且考虑了涡轮机在风电场内相对于彼此的相对位置。因此,在站点检查软件实施的计算中将来自上游涡轮机的尾流效应考虑在内。

在一些风力发电厂的情况下,从发电厂到市电电网的连接的功率承载能力小于在所有的涡轮机均以风力涡轮机类型最大功率水平生成功率时的情况下由每个涡轮机生成的功率之和。在这种情况下,风力涡轮机或者风力发电厂的控制安排被进一步约束,以使得对于所述安排内的任何给定时间段而言,在所有涡轮机的功率都被加到一起时,功率之和不超过从发电厂到电网的连接所能够承载的功率的量。

文中描述的实施例在确定涡轮机的控制安排时依赖于对涡轮机属性和涡轮机站点属性的分析。包括通过站点检查软件执行的那些计算在内的各种计算可以是在一个或多个不同计算系统中离线执行的,并且所得到的控制安排被提供给风力涡轮机或者发电厂控制器。替代地,所述计算可以是在风力涡轮机控制器或发电厂控制器处在线执行的。

上文描述的实施例是非排他性的,并且所述特征中的一者或多者可以组合或协作,以便通过为风力发电厂中的每个风力涡轮机设置最大功率水平而获得改进的过额定控制,改进的过额定控制考虑了风力涡轮机所面临的或者对风力涡轮机造成影响的环境和站点条件。

应当指出,本发明的实施例既可以应用于恒速涡轮机,又可以应用于变速涡轮机。涡轮机可以采用主动桨距控制,由此通过顺桨而实现高于额定风速的功率限制,顺桨涉及使每个桨叶的部分或全部发生旋转,以减小迎角。替代地,涡轮机可以采用主动失速控制,其通过沿与主动桨距控制中使用的方向相反的方向对叶片进行变桨距以使其失速而实现高于额定风速的功率限制。

尽管已经示出并描述了本发明的实施例,但是应当理解这种实施例只是通过举例的方式描述的。本领域技术人员将想到很多变化、修改和替换,而不脱离所附权利要求定义的本发明的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1