废气后处理系统和内燃机的制作方法

文档序号:11769471阅读:222来源:国知局
废气后处理系统和内燃机的制作方法与工艺

本发明涉及内燃机的废气后处理系统。此外,本发明涉及带有废气后处理系统的内燃机。



背景技术:

在例如发电站中使用的固定式内燃机的燃烧过程中、和在例如船舶上使用的非固定式内燃机的燃烧过程中,产生氮氧化物,其中这些氮氧化物通常产生在比如煤、沥青煤、原油、重燃油或柴油的含硫化石燃料的燃烧期间。由于这个原因,这些内燃机配有废气后处理系统,其用于离开内燃机的废气的清洁、尤其是脱氮。

为了减少废气中的氮氧化物,在从实践已知的废气后处理系统中主要使用所谓的scr催化转换器。在scr催化转化器中,发生氮氧化物的选择性催化还原,其中需要氨(nh3)作为还原剂用于氮氧化物的还原。因此,氨或者例如比方尿素的氨的前体物质以液态的形式在scr催化转化器的上游被引入到废气中,其中氨或氨的前体物质在scr催化转化器的上游与废气混合。为此,根据实践在氨的引入或氨的前体物质的引入与scr催化转化器之间设置混合部段。

尽管利用从实践中已知的包含scr催化转化器的废气后处理系统已经可以成功进行废气后处理,尤其是氮氧化物的还原,但是存在对于进一步改善废气后处理系统的需求。尤其是存在对于如下的需求,即:在这些废气后处理系统设计紧凑的情况下使有效的废气后处理成为可能。

从这点出发,本发明的目标基于:创造新类型的内燃机的废气后处理系统和带有这样的废气后处理系统的内燃机。



技术实现要素:

该目标通过如下所述的内燃机的废气后处理系统来解决。一种内燃机的废气后处理系统,也就是内燃机的scr废气后处理系统,包括:接纳在反应室中的scr催化转化器,导引到反应室并因而到scr催化转化器的废气供应管线,导引离开反应室并因而离开scr催化转化器的废气排放管线,配给到废气供应管线用于将尤其是氨或氨的前体物质的还原剂引入到废气中的引入装置,以及由废气供应管线提供的在引入装置的下游、用于使废气与还原剂在反应室或scr催化转化器的上游混合的混合部段。至少一个吹落装置定位在反应室内,用于净化scr催化转化器。

根据本发明的废气后处理系统包含热交换器,在所述热交换器的帮助下,废气的热能可从在scr催化转换器下游的废气传递给在scr催化转换器上游的废气。借助热交换器,废气温度可被设置到对于scr处理最佳的水平。在scr处理的放热反应期间被释放并存在于scr催化转化器下游的废气中的热能被传递给在scr催化转换器上游的废气。由于这个原因,通过增加scr催化转换器上游处的温度,有效的废气后处理是可能的。

根据本发明的进一步的有利发展,废气供应管线和废气排放管线被连接在反应室的共同侧上,其中这些废气管线中的一个在形成热交换器的部段中包围这些废气管线中的另一个。该进一步的发展允许在废气后处理系统设计紧凑且简单的情况下的有效的废气后处理。

优选地,邻近两个废气管线被连接的反应室的那侧,废气排放管线在外侧部分地包围废气供应管线,其中沿废气供应管线的流动方向看,在scr催化转化器的上游废气绕其循环的废气供应管线的一部段,一方面,被废气排放管线包围,另一方面,在反应室内延续。该进一步的发展允许在废气后处理系统设计尤其紧凑且简单的情况下的有效的废气后处理。尤其,可避免在废气供应管线的壁上的沉积。

根据本发明的进一步的有利发展,在scr催化转化器的长度和在scr催化转化器的上游废气绕其循环的废气供应管线的部段的长度之间的比达到至少1:5,优选至少1:8,尤其优选至少1:10。该进一步的发展允许在废气后处理系统设计尤其简单且紧凑的情况下有效的废气后处理。

进一步的改善在于:通过增加废气的压强水平来增加热传递。有利地,绝对压强被增加到至少0.2mpa,有利地到至少0.3mpa,最有利地到至少0.4mpa。为了能够省略用于增加废气压强的单独的压气机,适当的是:将热交换器以及因而还有scr反应器布置在至少一个废气涡轮机的上游。

根据本发明的内燃机具有如上所述的废气后处理系统。

附图说明

本发明的优选的进一步的发展从附属权利要求和后面的描述中取得。本发明的示范实施例通过后面的内容更加详细地说明,但不被限制于此。附图中示出:

图1:根据本发明的带有废气后处理系统的内燃机的示意性透视图;

图2:图1的废气后处理系统的细节。

具体实施方式

本发明涉及内燃机的废气后处理系统,例如发电站中的固定式内燃机的废气后处理系统或者船舶上使用的非固定式内燃机中的废气后处理系统。尤其是,在以重燃油运行的船舶的柴油机上使用该废气后处理系统。

图1示出废气增压式内燃机1的布置,其带有废气涡轮增压系统2和废气后处理系统3。内燃机1可以是非固定式内燃机或固定式内燃机,尤其是船舶的非固定式运行的内燃机。离开内燃机1的气缸的废气在废气增压系统2中被利用,以便从废气的热能中汲取机械能用于压缩将要供给到内燃机1的充入空气。

相应地,图1示出带有废气涡轮增压系统2的内燃机1,所述废气涡轮增压系统包含多个废气涡轮增压器,也就是在高压侧的第一废气涡轮增压器4和在低压侧的第二废气涡轮增压器5。离开内燃机1的气缸的废气初始流经第一废气涡轮增压器1的高压涡轮机6并在其中膨胀,其中在此过程中汲取的能量在第一废气涡轮增压器4的高压压气机中被利用从而压缩充入空气。沿废气的流动方向看,第二废气涡轮增压器5布置在第一涡轮增压器4的下游,已经流过第一废气涡轮增压器4的高压涡轮机6的废气被引导经过其,也就是经过第二废气涡轮增压器5的低压涡轮机7。在第二废气涡轮增压器5的低压涡轮机7中,废气进一步膨胀并且在该过程中汲取的能量在第二废气涡轮增压器5的低压压气机中被利用,从而同样地压缩将要供应到内燃机1的气缸的充入空气。

除包含了废气涡轮增压器4和5的废气增压系统2之外,内燃机1还包含废气后处理系统3,该废气后处理系统是scr废气后处理系统。scr废气后处理系统3被连接在第一压气机5的高压涡轮机6和低压涡轮机7之间,使得离开第一废气涡轮增压器4的高压涡轮机6的废气可在其到达第二废气涡轮增压器5的低压涡轮机7的区域之前先被引导经过scr废气后处理系统3。因此,热交换器以提升的压强水平操作,因此改善了热传递。

图1示出废气供应管线8,借助该废气供应管线,从第一废气涡轮增压器4的高压涡轮机6流出的废气能够沿着布置在反应室10中的scr催化转化器9的方向(见图2)被引导。

此外,图1示出废气排放管线11,其用于使来自scr催化转化器9的废气沿着第二废气涡轮增压器5的低压涡轮机7的方向排放。

废气从低压涡轮机7流出,借助管线21流动到尤其是露天中。

导引到反应室10的废气供应管线8并因而导引到定位在反应室10中的scr催化转化器9的废气供应管线8与导引离开反应室10并因而离开scr催化转化器9的废气排放管线11通过旁路12联接,切断元件13被结合在所述旁路中。在切断元件13关闭的情况下,旁路12被关闭使得没有废气可以流经旁路。相反地,尤其当切断元件13被打开时,废气可流经旁路12,也就是越过反应室10并相应地越过定位在反应室10中的scr催化转化器9。

图2利用箭头14图示在旁路12借助切断元件13被关闭的情况下废气通过废气后处理系统3的流动,其中从图2中显见:废气供应管线8以下游端15敞开到反应室10中,其中在废气供应管线8的该端15的区域中的废气受到转过约180°的流动偏转,其中废气在流动偏转之后被引导通过scr催化转化器9。

废气后处理系统3的废气供应管线8配有引入装置16,通过该引入装置可在废气流中引入还原剂,尤其是氨或氨的前体物质,需要还原剂以便以限定的方式在scr催化转化器9的区域中转化废气的氮氧化物。废气后处理系统3的该引入装置16优选是喷嘴,氨或氨的前提物质通过喷嘴被喷射到废气供应管线8内的废气流中。图2利用锥体17图示在废气供应管线8的区域中还原剂喷射到废气中。沿着废气的流动方向看,定位在引入装置16的下游并在scr催化转化器9的上游的废气后处理系统3的部段被描述成混合部段。尤其,废气供应管线8在引入装置16的下游提供混合部段18,废气可在scr催化转化器9的上游在该混合部段中与还原剂混合。

废气供应管线8以下游端15通到反应室10中。废气供应管线8的该下游端15配有挡板元件20,挡板元件可相对于废气供应管线8的下游端15移位。在示出的示范实施例中,挡板元件20可相对于通到反应室10中的废气供应管线8的所述端15线性移位。

挡板元件20可相对于废气供应管线8的下游端15移位,从而在下游端15处关闭废气供应管线8或在下游端15处打开废气供应管线8。尤其当挡板元件20在下游端15处关闭废气供应管线8时,优选将旁路12的切断元件13打开以便然后引导废气完全越过scr催化转化器9或接纳scr催化转化器9的反应室10。

尤其当挡板元件20打开废气供应管线8的下游端15时,旁路12的切断元件13可完全关闭或至少部分打开。尤其当挡板元件20打开废气供应管线8的下游端15时,挡板元件20相对于废气供应管线8的下游端15的相对位置尤其取决于通过废气供应管线8的废气质量流量和/或取决于废气供应管线8中废气的废气温度和/或取决于通过引入装置16引入到废气流中的还原剂的量。

在废气供应管线8的下游端15打开情况下挡板元件20的另外的功能在于:存在于废气流中的任何液态还原剂的液滴到达挡板元件,在那儿它们被拦截并被雾化以便避免这些液态还原剂的液滴到达scr催化转化器9的区域。在打开的下游端15的情况下,通过挡板元件20相对于废气供应管线8的下游端15的相对位置,尤其可以确定:在挡板元件20的区域中、在废气供应管线8的下游端15的区域中被偏转的废气是沿定位在径向内侧的部段的方向被引导或被转向得更多,还是沿定位在径向外侧的scr催化转化器9的部段的方向被引导或被转向得更多。

根据优选的实施例,废气供应管线8在下游端15的区域中漏斗状扩大,形成扩散器。因为如此,废气供应管线8的流动截面在下游端15的区域中增加,其中,如从图2中尤其显见的,可以设置:沿着废气的流动方向看在废气供应管线8的下游端15的上游,所述废气供应管线的流动截面开始变小。相应地,图2示出沿着废气的流动方向看在用于还原剂的引入装置16的下游,废气供应管线8的流动截面初始近似不变,但之后开始逐渐变细,最后在下游端15的区域中扩大。在该情况中,在废气供应管线8的下游端15处的该流动截面的扩大优选通过废气供应管线8的较短部段实现,而不通过在下游端15之前经由其废气供应管线8开始变细的那段部段实现。在废气供应管线的流动方向开始逐渐变细的废气供应管线8的那个轴向位置中,scr催化转化器9被布置在废气供应管线8的径向外侧。

优选地,挡板元件20是弯曲的,优选在面向废气供应管线8的一侧22上钟形地弯曲,形成用于废气的流动导向。挡板元件20的面向废气供应管线8的下游端15的那侧在挡板元件20的径向内部段上比在挡板元件20的径向外部段上具有到废气供应管线8的下游端15的更短的距离。因此,挡板元件20在中心处沿废气供应管线8的下游端15的方向迎着废气的流动方向被拉入或弯曲。

如从图2尤其显见地,废气供应管线8和废气排放管线11共同连接在反应室10的第一侧24上,或者从该共同侧24起始通向或延伸到反应室10中。

这里,废气供应管线8以这样的方式延伸到反应室10中使得废气供应管线8的下游端15邻近相反于反应室10的第一侧24定位的反应室10的第二侧23定位,而废气排放管线11在第一侧24通向反应室10中。因此,通过废气供应管线8供应入的废气在与废气供应管线8的下游端15相反地定位的反应室10的第二侧23的区域中被偏转大约180°,然后流经scr催化转化器9且随后通过第二侧24进入废气排放管线11的区域中。优选是圆形截面的反应室10的壁19在反应室10的第一侧24和相反定位的反应室10的第二侧23之间延伸。

根据本发明,废气后处理系统3包含热交换器25,在热交换器的帮助下废气的热能可从在scr催化转化器9下游的废气传递给在scr催化转化器9上游的废气。在scr处理的放热反应期间被释放并存在于scr催化转化器9下游的废气中的热能被传递给在scr催化转化器9上游的废气。因此,废气温度可被设置到对于scr处理最佳的温度,并且使得有效的废气后处理成为可能。

废气供应管线8和废气排放管线11被共同连接在反应室10的第一侧24上,其中这些废气管线8、11中的一个在形成热交换器25的部段中包围这些废气管线8、11中的另一个。在示出的优选的示范实施例中,邻近两个废气管线8、11被连接的反应室10的第一侧24,废气排放管线11在外侧部分地,优选同心地,包围废气供应管线8。

因此,在废气后处理系统3设计紧凑且简单的情况下,存在于scr催化转化器下游的废气中的热能能够可靠地传递给在scr催化转化器9上游的废气。不存在沉积形成在废气供应管线8的区域中的危险。

废气排放管线11在混合部段18的区域中包围废气供应管线8。沿废气供应管线8的流动方向看,被废气排放管线11的一部段包围的废气供应管线8的部段定位在用于将还原剂引入到废气中的引入装置16的下游,并相应地在混合部段18的区域中。

沿废气流动方向看,scr催化转化器9的长度l1和在scr催化转化器9的上游废气绕其循环的废气供应管线8的部段的长度l2之间的比达到至少1:5,优选至少1:8,尤其优选至少1:10。因此,存在于scr催化转化器9下游的废气中的热能能够可靠地传递给在scr催化转化器9上游的废气。

在scr催化转化器9的上游废气绕其循环的废气供应管线8的部段,一方面,被废气排放管线11包围,另一方面,在反应室10内延续。在scr催化转化器的上游废气绕其循环的废气供应管线8的该部段的长度l2因此由被废气排放管线11包围的局部部段的长度l21和在反应室10内延续的局部部段的长度l22构成。

反应室10和/或废气排放管线11和/或废气供应管线8以这样的方式外形成形,使得:从废气的流动方向看,用于废气的流动截面在scr催化转化器9的下游逐渐缩小。在示范实施例中,这通过催化转化器10的第一侧24的圆锥形的外形成形确保。通过这样的流动截面的逐渐缩小,限定的流动速率在形成热交换器25的、在外侧包围废气供应管线8的废气排放管线11的部段中被调整,,从而传递尤其有效的热能传递给在scr催化转化器9上游的废气,所述热能存在于scr催化转化器下游的废气中。

在图1的内燃机1的情况中,废气后处理系统3定位在废气增压系统2的垂直上游。对内燃机1的气缸的接近是自由的,然而,废气涡轮增压器4和5的可接近性是受限的。然而,当在涡轮增压器4、6上维修操作变得需要时,反应室10可被简单拆卸。与在图1中所示的废气后处理系统3在废气增压系统2上游的垂直布置相比,废气后处理系统3被倾侧90°靠近废气增压系统2的水平布置也是可能的,然而其中在这样的水平布置的情况下,布置的长度增加。然而,内燃机1和废气增压系统2于是可不受限制地用于维修工作,而无需拆装反应室10。

尤其优选地,本发明与两级增压的四冲程发动机或与两冲程发动机一起使用,就所述的发动机来说,在scr催化转化器的上游的废气温度小于300℃。在这些发动机中,利用本发明废气温度可被调整到对于scr处理最佳的水平。

附图标记列表

1  内燃机

2  废气增压系统

3  废气后处理系统

4  废气涡轮增压器

5  废气涡轮增压器

6  高压涡轮机

7  低压涡轮机

8  废气供应管线

9  scr催化转化器

10  反应室

11  废气排放管线

12  旁路

13  切断元件

14  废气导向

15  端

16  引入装置

17  喷射锥体

18  混合部段

19  壁

20  挡板元件

21  管线

22  侧

23  侧

24  侧

25  热交换器

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1