自动平衡旋转机械设备的方法和装置的制作方法

文档序号:5233082阅读:419来源:国知局
专利名称:自动平衡旋转机械设备的方法和装置的制作方法
技术领域
本发明总的来说涉及旋转机械设备,尤其涉及自动获得平衡旋转机械设备的平衡解决办法的方法和装置。
背景技术
震动力会造成类似涡轮发动机的机械设备失效或不能有效地工作。在涡轮发动机环境下,许多高精度的部件在高温下高速旋转。因此,不平衡造成的显著震动会严重地损坏发动机组件。
为了避免这种缺陷,已开发了监视震动并指出旋转机械设备何时为不平衡的技术。可靠的发动机震动监视通常从加速度计开始。必需利用专用电缆把通常位于发动机深处的加速度计的电输出信号传送给信号处理电子设备。用电子设备来调整加速度计信号,以便进行机械存储或用于仪表显示。
一旦发现了平衡问题,就需要进行发动机震动分析,以便诊断和校正该问题。具体来说,不得不使发动机停止工作并对其进行分析,这种分析一般要把发动机固定在测试台上,这样做费时又费钱。
进行这种分析的普通方法首先进行震动测量。加速度计和转速计读出多个发动机速度下的震动数据,以便判断是否已超过了震动极限。如果在震动测量期间极限没有被超过,则发动机已被正确地平衡,不需要采取其它步骤。一旦超过了震动极限,通常首先假定存在平衡问题并执行平衡步骤。但是,如果震动没有因进行平衡而得到减轻,就采用频谱分析来正确地指出震动问题所在原因。
必需获得数据来对震动的振幅进行定量分析。在过去,为了获得作为速度函数的震动的振幅和相位,已在发动机运行的可用范围内的约十个离散采集点上执行稳态停顿。然后安装试验载体,这将是如何平衡系统的第一次猜测或一次尝试。接着在相同的离散采集点上执行第二次稳态停顿以测量因平衡载荷发生变化而造成的震动的变化。这种变化确定了利用最小二乘法计算新的平衡解法所使用的不平衡灵敏度值(系数)。通常假定发动机仍不平衡,计算新的平衡解法。该平衡解法在理论上是发动机整个运行范围的最好解法。
在另一种普通方法中,人工地逐个记录每一稳态停顿的数据,把记录的数据输入计算平衡解法的计算机。
根据现有技术的另一平衡系统,“机构技术公司(MechanicalTechnology Inc.)”的MTIPBS-4100TM,发动机的技术规格可被存储在计算机内,以便系统知道在何处进行稳态停顿。从这些停顿获得的数据被计算机利用最小二乘法进行处理以获得平衡解法。在第一次停顿之后,利用存储在计算机内的被测发动机型号的通用灵敏度或影响系数的PBS-4100TM系统进行一次性平衡,然后执行第二次稳态停顿以确认系统已得到平衡。在PBS-4100TM系统已经计算了平衡解法之后,该系统就提供显示以表示建议的解法和应被安装在发动机上的平衡载荷的大小。
这一方法的一个问题是难以保证在相同速度下执行第一和第二次稳态停顿。在第一和第二次稳态停顿会有10-15PRM(每分钟转数)的不同,这会对数据质量产生不利影响。尤其在发动机速度的公差范围内获得数据时更是如此。例如,可以对于3000RPM的目标速度在2950-3050RPM范围内获得数据。速度误差造成计算发动机特有灵敏度系数的误差和平衡计算误差。上述方法的另一问题是它需要相当长的时间来平衡未平衡的发动机。
发明概述本发明提供克服普通旋转机械设备平衡系统所具有的缺陷的方法和装置。
例如,本发明提供了优于普通方法的在缩短了的时间内平衡旋转部件的方法和装置。传动的数据采集提供了以分钟为单位的快速、准确的平衡解法,还消除了停顿或常速操作,节省了燃料。
此外,本发明能够更准确地估算未平衡旋转部件的平衡解法。实现更准确的估算的方法之一是在缓慢的发动机加速或减速期间进行自动或瞬时数据采集,以便不需要发动机速度出现停顿。这样一来,就能够既缩短了数据采集时间,又在更多的采集点上获得数据。利用具有实时处理能力的瞬时数据采集可以自动地获得50至100个采集点,而根据普通的稳态停顿方法只获得约10个采集点。平衡解法的精度因更多采集点的采用得到提高。所以,利用瞬时数据采集实现了比普通稳态停顿方法更精确的平衡计算。
具体来说,根据旋转部件的被测速度进行瞬时数据采集。于是,如果在第一次数据采集操作中,从1000RPM开始,每次递增50RPM直到4000RPM地采集数据,则数据采集就将在这些速度下精确地出现。对于随后的数据采集操作,与普通的稳态停顿方法相比,数据也将在这些精确的速度下被获得。因此,根据所获得的数据计算而得到的发动机特有灵敏度和平衡解法就比普通的稳态停顿方法所得到的精确。
还有,本发明还提供了在已计算了平衡解法之后和在其实施之前对该平衡解法的估算响应,以便允许用户确定该解法是否是所需要的。
此外,本发明还能够在从中已获得数据的采集点的范围内提出每个采集点的平衡解法,因此,用户能够根据系统的所需特性定做平衡解法。例如,用户能够计算特定速度范围或特定传感器的平衡解法。
本发明的平衡系统不需要从安装了旋转部件的结构,例如飞机、船等中拆卸该旋转部件,因此不需要使发动机停止工作。所以该系统通过允许用户在原位测试和平衡发动机而将昂贵的发动机拆卸降至最低程度并减少了不必要的维护。换句话说,不必在测试台上拆卸和连接发动机。
在预先把包括部件类型的特性的部件数据存储在存储器内的交互式计算机系统内平衡旋转部件的方法涉及到若干个步骤。这些步骤包括根据部件类型在预定速度范围内缓慢地改变该部件的转速,在改变该部件的转速的同时在该速度范围内的多个采集点处检测瞬时震动数据,根据瞬时数据判断该部件是否处于未平衡状态,以及当该部件处于未平衡状态时根据部件数据和瞬时数据计算平衡解法。检测瞬时数据的步骤可以包括产生瀑布文件(waterfall file)和显示被称为瀑布图的该瀑布文件数据的三维表示的步骤。瀑布图是数据在三个轴上的图形表示。例如,一个轴是RPM,第二个轴是频率,而第三个轴是震动的振幅。
具体来说,检测瞬时信号的步骤利用实时频谱分析仪采集和数字化震动信号和转速计信号。在发动机加速或减速时按照递增的RPM值采集数据。对于数据的每一个瞬态,利用“快速付里叶变换(FFT)方法”把时域数字化波形变换至频域。所得到的震动信号的FFT表示是系统所测震动分量频谱的特征的表述。
检测瞬时数据的步骤包括对瀑布数据进行处理以便获得部件的一个或多个位置在速度范围内的各个采集点处的同步的震动振幅和相位数据的步骤。进行测量的位置可由系统操作者选择。计算平衡解法所用的部件数据包括与部件类型有关的灵敏度(即影响)系数。操作者可把新的部件数据输入存储器。判断步骤包括将瞬时数据与预定的震动极限进行比较的步骤。
该方法可以包括根据平衡解法在确定的位置安装至少一个载荷的步骤。能够在拆下先前平衡载荷之后鉴别安装了载荷,或能够不拆下先前平衡载荷就鉴别安装了平衡载荷。能够鉴别和显示平衡解法的部件上的至少一个位置和要被安装在该至少一个位置处的校正载荷。另外,能够显示基于瞬时数据的部件的第一震动特征波形的图形,能够估算和显示基于平衡解法的部件的第二震动特征波形的图形。震动特征波形是作为部件转速的函数的同步震动振幅的图形,表示该旋转部件的平衡状态。
速度范围包括从空闲状态至最大功率状态的部件速度。可以根据部件类型利用在空闲状态速度和最大功率状态速度之间的两个速度来选择和确定速度范围。
本发明的平衡旋转部件的装置包括与部件连接的、在缓慢地改变部件的转速的时候在部件的速度范围内的多个采集点上检测瞬时数据的传感装置,与该传感装置连接的、执行产生用于详细震动分析的瀑布数据的频谱分析、根据瀑布数据产生平衡数据和将平衡数据与震动极限作比较的数据处理器,以及与该数据处理器连接的、当平衡数据超过震动极限就根据第一灵敏度系数和平衡数据计算平衡解法的装置。
附图概述现在参看仅作为例子给出的、在附图中所示的本发明的优选实施例更详细地描述本发明,其中

图1表示可按照本发明被平衡的一示范性涡轮发动机;图2(a)-2(c)表示将飞机发动机连接至本发明的发动机震动和平衡分析系统的示范性结构;图3(a)是本发明一实施例的示范性发动机震动和平衡分析系统结构;图3(b)是图3(a)系统的数据流图;图4是本发明的一示范性瀑布文件显示;图5是本发明的一示范性单级(single plane)平衡方法的流程图6(a)-6(m)表示本发明的直观的交互环境的示范性屏幕;图7(a)和7(b)表示本发明的一示范性双级平衡方法的流程图。
详细描述本专利文件的一部分公开内容包含受版权保护的内容。版权拥有者不反对任何人对在美国专利和商标局的专利文件或记录中载有的任一专利公开内容进行传真复制,但保留任何所有的其它版权。
虽然以下的描述是在飞机发动机系统的范围内,但本领域的普通技术人员都知道本发明可被应用于包括燃气轮机、压缩机、发电机、泵、电动机和汽轮机的其它类型的旋转机械设备。
图1表示可应用本发明的发动机震动和平衡分析系统的一示范性发动机。该发动机具有包括用于低压推进的扇叶1和增压器2的扇形物部分、包括高压气体产生装置或压缩机3和高压涡轮4的主要部分4和低压涡轮部分(LPT)5。发动机平衡系统使用震动数据和发动机速度数据。为了获得震动数据,必需把传感部件、例如加速度计连接至涡轮发动机来测量合适的数据。在图1的示范性发动机中,除其它位置外还在与扇形部分的扇叶1连接的扇形物轴承(未示出)上、在与扇形物部分的扇叶1连接的扇形物罩(未示出)上、在LPT部分5的涡轮尾架(未示出)上、以及/或者在主要部分的压缩机3的尾架上固定用于测量震动的一个或多个加速度计。各个位置处的加速度计相当于测量发动机的震动的一个平衡和震动通路。
许多种加速度计可被用来测量发动机的震动或检测及测量震动,例如压缩型或剪切型加速度计。在一种典型的压缩型加速度计中,机壳(mass)向压电元件施加压力。在一种典型的剪切型加速度计中,机壳向压电元件施加剪切力。虽然本发明不受加速度计类型的限制,但灵敏度为1至100PC/g、重量在10和50克之间以及频率范围为0至12KHz的通用型加速度计适合于本发明。此外,灵敏度在0.05至0.3PC/g之间、重0.5至2克和频率范围为1至25Khz的微型加速度计也是令人满意的。其它类型的可接受的加速度计包括以下类型的加速度计1)用于三维测量的;2)用于对工业机器进行永久监视测量的;3)在非常高温下使用的;4)用于校正和其它基准目的的;5)用于建筑物和其它结构上的震动测量的;以及6)用于非常大的冲击测量的。在某些飞机上已经安装有测量震动的加速度计。在飞机没有安装加速度计的情况下,优选的加速度计类型是DYTRANModel3174C高温加速度计。
在实际的加速度计的设计中,安排压电元件以便当组件震动时,该组件机壳自该压电元件施加与震动加速度成正比的力。应当指出,加速度计输出端的压电输出的直接加载会显著地降低加速度计的灵敏度和限制其频率响应。为了把这些影响减至最小,利用前置放大器把加速度计的输出信号馈送至远低于该加速度计阻抗的阻抗,该阻抗是适合于与一般测量和分析设备的相当低的输入阻抗连接的阻抗。还有,还可以使用速度换能器或位移探头来检测和测量震动。震动传感器可以是已有的发动机换能器或地面测试换能器。
可以用诸如磁转速计或光传感器转速计这样的转速计来确定发动机的旋转速度。在本发明中可以采用利用磁场来计算转速的涡流探针式磁转速计。在安装有飞机震动监视(AVM)系统的飞机上,典型的磁转速计通过测出在尾部故意加工的深的齿状物来测量发动机的RPM。典型的光传感器转速计利用从标记点反射回来的光束来测量速度。例如,该标记点是贴在扇叶的第一个叶片上的反射带。
可把飞机发动机分为成为三种结构中的一种1)无AVM;2)老式AVM;和3)新式AVM。在无AVM结构中,为了测量震动,必需由技术人员来安置震动传感器。AVM结构包括震动传感器。在老式AVM结构中,利用直接连接获取传感器输出,而在新式AVM系统中,利用座舱内的前面板连接器获取传感器输出。
具有无AVM平台的飞机包括波音727,737-200和757,DC10以及MD80。无AVM系统所需的设备依赖于发动机和飞机,可以包括两个加速度计,约250英尺的无AVM电缆组件(包括两个电荷放大器(已连接)和一个光传感器转速计,特定发动机的托架工具,以及带有BNC插头和电缆的震动分析仪。
图2(a)表示在飞机和本发明的震动分析和平衡系统之间典型的无AVM电缆连接。在无AVM系统中,发动机震动和平衡分析仪7直接与涡轮发动机6连接。根据这一示范性连接,三个或更多的数据通路与涡轮机上的三个或更多的传感器连接。通路1与转速计连接,通路2与扇叶轴承上的前震动传感器连接,通路3与涡轮机尾架上的后震动传感器连接。此外,利用与分析仪7连接的电源线向转速计和加速度计供电,以便开动系统进行震动和平衡分析。
采用表式AVM平台的飞机包括波音737-300。典型的老式AVM电缆连接如图2(b)所示。通常所需的机内设备包括在飞机一侧8的表式AVM电缆,转速计调节器盒9,以及带有BNC插头和电缆的震动分析仪7。在该老式AVM连接中,通路1与转速计调节器9连接,转速计调节器9与前震动(例如扇形移轴承)的通路2和后震动(例如涡轮机尾架)的通路3一道都与AVM外壳11和AVM客座12连接,以便经过AVM从飞机一侧8获得震动数据。电源线与转速计调节器9连接。
该新的AVM平台适合于所有新式飞机。图2(c)表示典型的新式AVM电缆连接。通常所需的设备包括连接分析仪7和飞机一侧8的新式AVM电缆,转速计调节器盒9,以及带有BNC插头和电缆的震动分析仪7。在该新式AVM连接中,通路1与转速计调节器9连接,轮速计调节器9与前震动通路2和后震动通路3一道都与位于飞机一侧8的AVM外壳13连接以获取数据。电源线与转速计调节器9连接。
在图2(b)和2(c)的AVM连接中,转速计调节器盒9接收发动机旋转的一系列脉冲并对于发动机速度的每次旋转输出一个脉冲。震动和平衡分析仪7的处触发输入接收转速计的脉冲、测量脉冲之间的时间并计算以RPM为单位的发动机速度。震动传感器测量所有频率的震动。为了发动机的平衡,进行平衡计算所需的震动分量是基频或同步震动分量。该分量的频率就是发动机转速的频率。根据外部触发信号计算的RPM值被用来确定在振幅和相位瀑布中的频率分量,以便获得平衡震动振幅和相位。
在发动机运行期间,飞机震动监视器将指示或传感器将检测震动。为了分析震动,航线机械师将引出电缆接至AVM或安装传感器(例如加速度计)和转速计。
若干个部件构成了图3(a)所示的说明性的发动机震动和平衡分析仪。从传感器接收震动数据和发动机速度,并通过外部触发输入把它们提供给包括一模数(A/D)变换器150(例如16位A/D变换器)的瞬时数据采集电路100,以便把采集的数据变换成为数字形式。每一震动传感器相当于一平衡通路。可以1)按照在选定的常速运行条件下采集震动振幅、相位和速度(RPM)信息的普通稳态速度方法或2)在采集在线震动振幅、相位和RPM数据的缓慢瞬时发动机加速或减速期间获得数据。预处理数字震动数据被传送给信号处理电路200内的数字信号处理器(DSP)存储器250。根据一示范性实施例,DSP存储器250是8兆字节的RAM,但根据发动机上的通路(传感器位置)数目,该存储器的容量可以更大一些。
在信号处理电路200内,DSP处理部分350利用实时频谱分析仪的功能处理震动和转速计信号(即所获得的瞬时数据)。在一种典型的实现中,信号处理电路200包括在50MHz下运行的的一32位DSP微处理器。按照预定的递增RPM变化(例如50RPM)对震动和转速计数据进行平均和处理,并将它们存入DSP存储器250的瀑布元件内。参考分析仪采集数据的能力来选择用于信号处理的发动机速度的递增变化。因此,为了获得最好的分辨率,最好在分析仪允许的条件下尽可能小地选择递增量。
在数据采集过程结束时,瀑布文件数据从存储器250写入磁盘。然后对瀑布数据进行后处理来提取平衡振幅和相位特征波形。
信号处理部分200由用户接口400进行控制,该用户接口400包括把DSP软件下载至DSP处理部分350的主机接口450。DSP存储器250把包括时间和瀑布文件以及振幅、相位和速度信息的可显示记录、例如图形可显示信息传送给主机接口450。可显示记录除表示数据外还表示在由用户输入的或预先存储在硬盘驱动器500内的数据绘图的震动极限。
在一示范性实施例中,用户接口包括在整个平衡过程中引导用户的MICROSOFT兼容图形用户接口。典型的主机接口可以是具有在33MHz下运行的伴随协处理器的标准80386或任选的80486。
主机接口450与数字输入/输出(I/O)卡550连接,并把用于数字信号处理操作的频谱分析软件(即FFT算法32)下载至该数字I/O卡550。数字I/O卡550可以与在键盘、鼠标、打印机等上的功能键连接。用户接口400与磁盘驱动控制器600连接,并存储和接收来自内部硬盘驱动器500(即50兆字节的硬盘驱动器,120兆字节任选)和软盘700(例如1.44兆字节的3.5英寸软盘)的数据。按步骤地引导用户平衡发动机的平衡软件650存储在硬盘驱动器500内。通常存储在硬盘驱动器500内的其它信息包括频谱分析仪的软件、数据采集程序、各种发动机类型的数据、在数据采集结束之后的发动机运行数据和瀑布数据、以及平衡解法数据。各种发动机类型的数据包括如何采集数据的准备信息和特定发动机的平衡特性。从硬盘驱动器500输出给软盘700的信息通常包括发动机运行及瀑布数据和平衡文件。平衡文件包含在前一次运行中采集的震动数据,当在任何时刻与采用了该平衡文件的发动机的发动机灵敏度文件相结合时,该平衡文件可用来计算平衡解法。用户接口400还与视频图形适配器(MT)750连接,后者能够把视频数据传送给显示平衡解法、瀑布文件等的气态等离子显示器800和/或外部MT显示器850。示范性的瀑布文件显示如图4所示。
图3(a)所描述系统的数据流图如图3(b)所示。旋转部件20的震动数据和发动机速度数据分别由多个震动传感器22和速度传感器25进行检测。传感器相当于平衡通路。来自在震动传感器22和速度传感器25的数据信息输入给平衡分析仪的频谱分析部分。特别是震动传感器22的震动数据被利用FFT32从时域变换至频域。进行这一变换所需的参数可由用户利用如下设置的典型值进行修改F最大=500MHz,N=200行,重叠=最大。FFT32的结果在振幅瀑布部分34中被变换成为振幅频谱。互相关频谱部分36还计算被输入给相位瀑布部分38的互相关频谱,相位瀑布部分38确定震动传感器22对于速度传感器25(即转速计)的相位响应。每一振幅和相位频谱的采集由转速计进行触发。振幅瀑布部分34的平衡振幅可被用来在诊断部分40中进行频谱分析诊断。分别来自振幅瀑布部分34和相位瀑布部分38的平衡振幅和相位特征波形数据被保存在平衡震动数据文件42内。平衡数据文件42内的数据被用来与灵敏度文件46一道计算平衡解法44,灵敏度文件46包括与正在被平衡的发动机有关的灵敏度系数。
被设计成用于诊断至少包括与平衡有关的问题的震动问题的高性能实时频谱分析仪可被作为数字信号处理设备。实施本发明的一典型的分析仪是由“科学亚特兰大公司(Scientific-Atlanta,Inc.)”制造的型号为SA390的“动态信号分析仪”。还可以采用能够区分包括声学问题的关于平衡和非平衡问题的分析仪。频谱分析仪必需能够在整个发动机速度范围内进行发动机震动测量,最好包括多用途的时域(示波器)和频谱显示以利用识别震动源。这种设备消除了不必要的发动机拆卸并在显著地缩短时间和降低成本的情况下解决了震动问题。
通过采用能够实时地处理数据频谱或瀑布数据的频谱分析仪,发动机震动和平衡分析系统就可以执行瞬时数据采集以便进行多速多级的平衡,该瞬时数据采集期间,发动机从空闲状态被加速至满功率。该频谱分析仪在发动机的功率范围内采集包括振幅、相位和频率的多个震动数据。更多的数据提高了精度并产生更好的预测平衡解法。实时瞬时数据采集在提供了更多的数据采集点的同时还避免了普通平衡系统所具有的停顿。此外,发动机只需要运行约2至5分钟来获得数据,这不仅比普通方法的时间短,而且节省了燃料并缩短了获得平衡解法的时间。
本发明的发动机震动和平衡分析系统还合于从飞行发动机振动监视系统、例如ENDEVCOMICROTRAC IITM接收震动数据。因此,可把飞行数据作为数据运行输入到发动机震动和平衡分析仪并能够计算平衡解法。
上述发动机震动和平衡分析系统所执行的典型的单级平衡解法的平衡操作所包括的步骤如图5流程图所示。
在步骤ST1,安装连接发动机和分析仪的设备。控制到达收集关于发动机速度和震动程度的发动机运行信息。在收集了数据之后,在步骤ST3判断发动机震动是否超过预定的震动极限。如果没有超过震动极限,则在ST3就没有发现平衡问题。然后控制到达拆除设备的步骤ST4并在ST5结束操作。否则,如果超过了震动极限,就发现了平衡问题,控制到达步骤ST6,计算利用通用灵敏度系数对该问题的第一次尝试平衡解法或一次性平衡解法。然后,控制到达根据在步骤ST6中计算的一次性平衡解法安装校正载荷的步骤ST7。
在步骤ST7中安装完校正载荷之后,在步骤ST8中再次运行发动机来采集震动数据。然后在步骤ST9判断是否仍有震动问题存在。就是说,在步骤ST9中再把采集的数据与震动极限作比较以判断是否仍存在平衡问题。如果在步骤ST9没有发现平衡问题,控制就到达步骤ST10,拆除设备,在ST11结束操作。如果在步骤ST9仍有问题存在,就在步骤ST12根据前两次的运行计算新的发动机特有灵敏度。控制到达步骤ST13,根据该新的发动机特有灵敏度和在前一次发动机运行期间采集的数据计算新的平衡解法。再次执行步骤ST7、ST8、ST9。如果仍有平衡问题,就执行步骤ST12、ST13、ST7、ST8和ST9,直到问题被解决为止。一旦获得了所需的解法,就在步骤ST10拆除与发动机连接的各种电缆和设备,在步骤ST11结束操作,发动机能够正常地运行。
图7(a)和7(b)表示获得双级平衡解法所需的平衡操作的流程。与图5所示步骤相同的步骤在图7(a)和7(b)中用相同的标号来表示。如果用户希望计算双级解法,则在步骤ST9发现了平衡问题之后,在步骤ST14利用通用灵敏度计算第二次尝试解法。然后分别在步骤ST15和ST16安装平衡载荷和再次运行发动机。在步骤ST17把获得的数据与震动极限作比较以判断是否有平衡问题存在。如果没有,就执行步骤ST10和ST11。否则控制就到达步骤ST18,根据在前三次发动机运行期间(ST2,ST8,ST16)采集的数据计算新的灵敏度。在步骤ST19利用该新的灵敏度和最后一次运行的数据计算平衡解法。然后分别在步骤ST15和ST16安装载荷和再次运行发动机。在步骤ST17再进行比较以判断是否还需要进行平衡。如果还有问题,就执行步骤ST18、ST19、ST15、ST16和ST17,直到问题被解决为止。一旦确认不再有平衡问题存在,就执行步骤ST10和ST11,结束操作。
应当认识到该系统能够根据所需的级数通过修改上述处理进行双级以上的平衡。
可以采用具有全部内部频谱分析功能的开发体系结构的MICROSOFTWINDOWSTM操作系统进行交互式的用户/系统通信。把系统设计成PC兼容的。本技术领域公知的其它操作系统、例如DOS、OS/2TM等也适用于本发明,但WINDOWSTM是最佳的。
在本发明的一例示性实现中,各种操作模式都可由用户在用户输入数据和选择要被执行的操作的WINDOWSTM环境下进行访问。
系统用户在如参看图2(a)-2(c)所描述的那样恰当地布线并连接了必要的设备之后进入WINDOWSTM环境,如图6(a)所示地在发动机震动和平衡分析仪的屏幕上出现选项的主菜单。如果用户通过例如利用跟踪球把指针放在SETUP(设置)按钮上并按动跟踪球来选择SETUP按钮,就如图6(b)所示地出现Select Engine Type(选择发动机类型)屏幕。Select Engine Type屏幕包括一列表字段300,该表字段300列出包含了与多个发动机类型有关的技术规格的各种预先存储的数据文件。这些文件最好存储在图3(a)的硬盘驱动器500内。用户然后选择相应于要被平衡的发动机的合适的发动机类型。或者用户可以确定没有存储在存储器内的发动机类型,在这种情况下,发动机震动和平衡分析仪将提示用户输入与要被平衡的发动机的技术规格有关的数据。Select Engine Type屏幕还包括按照本领域熟知的方法分别改变驱动器和目录以及改变在表字段300内出现的文件的列表的表字段310以及下拉字段320和330。
在选择了相应于所需发动机的文件之后,出现图6(c)的MainMenu(主菜单)屏幕。这一屏幕提供了发动机类型的指示,关于该发动机的评述,以及震动传感器与分析仪连接的指示。其它发动机信息可被显示,本发明在这方面不受限制。在证实已选择了正确的发动机类型之后,用户就按动ACQUIRE DATA(采集数据)按钮,出现图6(d)的Engine Run Setup(发动机运行设备)屏幕。此时用户可以在发动机序号字段内输入具体发动机的序号。如果用户输入了序号,该序号就被保存,以便在运行结束时自动地保存与这一发动机有关的被采集的瞬时数据供将来作参考。Engine Run Setup屏幕上的Weight(载荷)和Angle(角度)字段允许用户输入在front plane(前级)或在rear plane(后级)的已有载荷的载荷信息。ACQUISITION(采集按钮允许用户选择所需的操作类型、即手动或自动。在手动操作模式中,如普通的稳态停顿方法所做的那样,对于特定的转速采集数据。在自动操作模式中,数据在发动机被逐渐加速时被自动地采集。数据将按照被编程的转速间隔被采集。例如,本发明的一示范性的数据采集周期可以是约2至5分钟,在该段时间内的50至100个采集点上采集数据。
选择CANCEL(取消)按钮将使系统返回到图6(c)的屏幕,不初始化所选的项目。选择OK按钮将把系统置成采集数据。如果这时没有出现转速计信号,就出现告诉用户已检测到不合适的RPM并提示用户检查与平衡系统连接的转速计的屏幕。用户还被询问是否需要继续数据采集。用户可以异常中止测试以对这一询问作出响应。如果检测到转速计信号,用户就可以肯定地对询问作出响应,继续进行测试。
如果继续进行测试,就出现图6(d)这样的屏幕。在采集与发动机速度和震动程度有关的发动机运行信息的时候出现图6(e)的屏幕。在一个实施例中,可以采用通常在数据采集之后以瀑布显示分式(例如图4)显示数据信息的频谱分析仪,当然也可以在进行数据采集的同时显示瀑布数据。当发动机运行在低于最小发动机RPM时,用户就可以选择START(启动)按钮。一旦按动START按钮,发动机速度就逐渐增大到最大速度。一旦达到发动机的最大速度,发动机就完成了其冲程。此时应按动STOP(停止)按钮来停止数据采集。一旦按动了STOP按钮,就出现图6(c)的Main Menu(主菜单),用户现在可以计算平衡解法。
当图6(c)中的BALANCE SOLUTION(平衡解法)按钮被按动时,就出现显示与运行有关的信息并指出发动机震动是否超过存储在图3(a)的硬盘驱动器500内的预定极限的Balance Menu(平衡菜单)屏幕。于是采集的数据被与存储在用户接口400的存储器250内的震动极限作比较,以判断是否有平衡问题存在。一示范性Balance Menu屏幕如图6(f)所示。一旦发现平衡问题,就可以按动CALCULATEBALANCE SOLUTION(计算平衡解法)按钮来计算对该问题的第一次尝试平衡解法或一次性平衡解法。
称为通用灵敏度或影响系数的复数值是对于每一种型号的发动机预先存储在发动机震动和平衡分析仪存储器250内的一部分数据。每一存储的通用灵敏度系数表示与某一型号发动机的发动机震动因平衡载荷的变化而通常如何变化有关的数值。通过组合采集的震动数据和通用灵敏度数据,分析仪就能够计算一次性平衡解法。
一旦用户按动Balance Menu屏幕上的CALCULATE BALANCESOLUTION按钮,就出现图6(g)所示这样的BALANCE SOLUTION屏幕。当一次性平衡解法被计算时,就显示表示发动机平衡凸缘的图形,示出要被安装的载荷的建议重量、部件号和孔位。最好整个发动机速度范围内对于所有有效的震动和平衡通路利用最小二乘法来计算平衡解法。Thomas P.Goodman在发表于1965年8月的“Journal ofEngineering for Industry”的第273-279页上的“计算平衡校正的最小二乘法”(“A Least Squares Method for Computing BalanceCorrections”)论文中描述了这种算法。
计算规定的一次性平衡解法的预测震动数据并将其与最后一次运行的震动数据一道进行显示。在每一次运行之后,不首先计算平衡解法,用户可以观察数据,并可以通过分析凝谱震动特征波形就确定了震动问题不是平衡问题。于是,对于所计算的每一平衡解法,在相应于所计算的平衡解法的平衡载荷被安装之后,当前(即与前一次运行相关的)震动特征波形的图形可以与估算的作为结果的震动特征波形一道被显示。因为数据量几乎(如果不是总是)不适合于按照作出这种结论所需的方式对震动数据特征波形进行分析,所以普通系统没有寻找故障的能力。
为了在计算平衡解法之前分析震动问题,用户启动图6(f)的Balance Menu屏幕的菜单条的Vibration Data(震动数据)。在VibrationData不出现子菜单,该子菜单包括Select new Data File(选择新的数据文件)和Plot Vibration Data(画出震动数据的图形)的选项。SelectNew Data File选项应首先被选择,这样就允许用户确定要进行分析的所需文件。此后,用户启动Plot Vibration Data选项,系统对于选定的文件显示震动特征波形的图形。
能够在拆下以前的平衡载荷之后鉴别安装了平衡载荷,或能够不拆下以前的平衡载荷就鉴别安装了平衡载荷。在安装了校正载荷之后,用户可以再次运行发动机并如上所述地采集数据,以便判断是否有震动问题存在。于是再把采集的数据与震动极限作比较以判断是否有平衡问题存在。如果存在问题或为了保证实现正确的平衡,用户应当在载荷发生了变化之后计算新的发动机特有灵敏度。于是,根据载荷变化采集了新的运行的数据之后,与新的平衡解法不同,应当计算新的发动机特有灵敏度。发动机特有灵敏度与通用灵敏度的不同之处在于与对被确定类型的发动机操作的估算不同,它们是所测试发动机所特有的。为了再次计算灵敏度,用户启动Balance Menu屏幕的菜单条上的Sensitivity Data(灵敏度数据,出现图6(h))的屏幕。
为了计算新的灵敏度,用户选择Calculate New Sensitivities(计算新灵敏度)选项,出现图6(i)的Sensitivity Menu(灵敏度菜单)屏幕。用户现在能够选择所需的平衡类型,即单级还是多级(在发动机上的平衡位置)。例如,如图6(i)所示,可以选择Front plane(前级)、rear plane(后级)或dual plane(双级)。如果要进行前级或后级平衡,则只需要两个数据采集文件来计算新的发动机特有灵敏度。但是,如果要进行双级平衡,就需要双级的载荷变化的三个数据文件。
如果用户按动了CALCULATE FRONT PLANE(计算前级)按钮,就出现第一数据文件屏幕(未示出),屏幕上列出存储在系统存储器内的采集数据文件,用户可据此选择第一数据文件。然后,具有相同表格的第二数据文件屏幕(未示出)出现,以便用户选择第二数据文件。在选择了这两个数据文件之后,就出现图6(j)所示的Sensitivity Menu(灵敏度菜单)屏幕,显示选择的概要。此时用户应选择菜单条上的SaveSensitivities(保存灵敏度)选项,以保存刚选择的信息。
在保存了灵敏度之后,它们就被自动地装入以供下一平衡解法所用。如果用户选择任意的灵敏度用于计算,用户就可以利用图6(h)所示屏幕的Select New Sensitivity File(选择新灵敏度文件)选项存取文件。在屏幕上出现一系列文件,用户从这些文件中选择解法所需的新的灵敏度文件(未示出)。用户然后应再选择菜单条的Sensitivity Data(灵敏度数据)选项(即出现类似图6(h)屏幕的屏幕),在这个时候选择Plot Sensitivity Data(画出灵敏度数据的图形)选项来画出所选级的数据的图形。出现图6(k)这样的Plot Sensitivity(画出灵敏度图形)屏幕,示出所选文件的当前灵敏度。
然后,用户应当请求发动机震动和平衡分析系统计算新的调整平衡解法。该被计算的新的调整平衡解法将以新采集的数据和所计算的发动机特有灵敏度为基础而不是以通用灵敏度为基础。用户再小心地对选择的调整平衡解法进行测试以保证已消除了震动问题。如果这种问题仍然存在,用户就应当命令发动机震动和平衡分析系统根据在发动机运行时采集的所有数据计算新的发动机特有灵敏度,如上所述地继续下去,直到获得了可接受的调整平衡解法为止。每一调整平衡还允许用户精细地修正平衡解法。
在计算了一次性的或调整平衡解法之后,就出现具有图6(g)的平衡菜单条的屏幕(未示出),向用户提供包括在图6(g)的平衡菜单条上未示出的Select Plane(选择级)选项的若干个选项。Return(返回)选项使用户返回到以前的屏幕或窗口。假定发动机震动和平衡分析仪与兼容的打印机连接,则Print(打印)选项允许用户向打印机传送数据拷贝。此外,Save(保存)选项把平衡解法和建议保存在软盘的文件内。全部平衡震动数据都在每一次的发动朵运行之后被自动保存。
用户还可以利用Adjust Weights(调整载荷)选项减去、增加或合并载荷。还有,用户可以设定平衡解法所允许的最大数目的载荷。根据用户的意愿可以拆除或不拆除最后一次运行的载荷而进行新的运行。还有,如果在安装载体之前已经有载荷,系统能够补偿通过根据已有载荷的拆除计算新的解法而确定的载荷。
Select Plane(选择级)选项允许用户选择平衡解法所需的级。Select Plane下的子菜单提供级选项。于是用户例如可以要求分析仪显示前级或后级平衡解法,或者当在前后级模式中采集数据时重新计算前级解法或后级解法。
Customige(定制)选项允许用户在确定平衡解法时规定要被考虑的某一平衡和震动通路。例如,用户可以对于特定的传感器或RPM范围定制平衡载荷。如果所需解法在选择Customige选项时被修改,系统就将对于定制数据重新计算载荷建议(即平衡解法)。
数据压缩、载荷通用性以及在外部存储数据的能力都可以是非常重要的。Main Menu(图6(c))中的Data Management(数据管理)按钮提供这些能力。一旦按动Data Management按钮。就出现图6(e)的屏幕。按动Sum Weights(载荷求和)按钮使用户能够手动地输入载荷类型及位置和计算所输入载荷的净重和矢量和。按动Plot Data(画出数据的图形)按钮使用户能够比较不同运行的两个震动特征波形或两个不同序号发动机之间的震动(例如运行)。一旦按动了Plot Data按钮,用户就被提示选择第一和第二序号的发动机作比较。然后可以如图6(m)所示地一起画出各次发动机运行的数据。按动Export data toFloppy(输出数据给软盘)按钮使用户能够把与所选的当前序号发动机有关的全部信息以外部方式存储在软盘上。
瀑布数据用来确定平衡计算的震动振幅和相位,还用来寻找与不平衡有关的震动问题的原因和对该震动问题进行诊断。例如,可以利用频谱分析仪的功能来分析瀑布数据以便寻找不平衡问题的原因。瀑布文件内的各个记录可被进行后处理以确定震动频率和趋向。这种文件还指出震动信号的正确性以利于正确地指出设备的问题所在。
平衡数据的普通方法利用模拟跟踪滤波器获取稳态速度状态下的同步(1/转)震动水平。有时出于诊断目的,在发动机加速或减速期间采集瞬时数据,但出于与非实时频谱分析仪有关的采集限制,现有技术没有试图平衡这一数据。
虽然已描述了本发明的具体实施例,但由于本领域的普通技术人员可以作出改进,所以应认识到本发明不受此限制。本申请设想在此所公开和要求保护的基础发明的精神和范围内的任何以及所有的改进。
权利要求
1.在交互式计算机系统中平衡旋转部件的方法,包括部件类型的特性的部件数据预先存储在存储器内,所述方法包括以下步骤按照部件类型在预定速度范围内改变部件的旋转速度;在改变部件的旋转速度的同时在速度范围内的多个采集点上检测瞬时数据;按照瞬时数据判断部件是否处于不平衡状态;当部件处于不平衡状态时,根据部件数据和瞬时数据计算平衡解法。
2.权利要求1的方法,其中的检测步骤还包括根据瞬时数据产生瀑布数据的步骤。
3.权利要求2的方法,其中的检测步骤还包括对瀑布数据进行处理以便获得部件在速度范围内的采集点处的震动的振幅和相位数据的步骤。
4.权利要求3的方法,还包括以下步骤显示被处理的瀑布数据;和当部件处于不平衡状态时,分析被处理的瀑布数据以判断是否存在平衡问题。
5.权利要求1的方法,其中所述判断步骤包括把瞬时数据与预定震动极限作比较的步骤。
6.权利要求1的方法,其中所述检测数据步骤包括在部件的一个或多个位置处测量部件在速度范围内的采集点处的震动的振幅和相位的步骤。
7.权利要求6的方法,其中所述测量步骤包括选择部件上的一个或多个位置的步骤。
8.权利要求6的方法,还包括以下步骤根据瞬时数据产生瀑布数据;和对瀑布数据进行处理以获得部件在速度范围内的采集点处的震动的振动和相位数据。
9.权利要求1的方法,其中在所述计算步骤中使用的部件数据包括与部件类型相关的灵敏度系数。
10.权利要求1的方法,还包括把新的部件数据输入到存储器的步骤。
11.权利要求1的方法,还包括根据平衡解法在被确定的位置上安装至少一个载荷的步骤。
12.权利要求1的方法,还包括鉴别平衡解法的将要被安装在部件的一个位置上的载荷的步骤。
13.权利要求12的方法,还包括以下步骤根据瞬时数据显示部件的第一震动特征波形;根据平衡解法估算部件的第二震动特征波形;以及显示部件的第二震动特征波形。
14.权利要求1的方法,其中的速度范围包括从空闲状态至最大功率状态的部件速度。
15.权利要求1的方法,还包括根据部件类型选择将由空闲状态速度和最大功率状态速度之间的两个速度确定的速度范围的步骤。
16.权利要求1的方法,其中的部件数据包括多种部件类型的特性,该方法还包括从多种存储器类型中选择部件类型的初始步骤。
17.平衡旋转部件的方法,包括以下步骤按照部件类型在部件速度范围内改变部件的旋转速度;在第一次运行期间改变部件的旋转速度的同时在速度范围内的多个采集点上检测瞬时数据;根据在第一次运行期间检测的瞬时数据判断部件是否处于不平衡状态;当部件处于不平衡状态时,根据部件类型的第一灵敏度系数和瞬时数据计算第一平衡解法;根据第一平衡解法或根据用户输入的载荷变化改变部件的第一载荷量;在速度范围内改变包括变化了的算一载荷量的部件的旋转速度;在第二次运行期间改变部件的旋转速度的同时在速度范围内的多个采集点上检测瞬时数据;根据第二次运行期间的瞬时数据判断部件是否处于不平衡状态。
18.权利要求17的方法,还包括以下步骤根据在第一和第二次运行期间检测的瞬时数据计算第二灵敏度系数;和根据在第二次运行期间检测的瞬时数据和第二灵敏度系数计算第二平衡解法。
19.权利要求17的方法,还包括根据部件类型选择将由空闲状态程度和最大功率状态速度之间的两个速度确定的速度范围的步骤。
20.权利要求17的方法,其中所述改变第一载荷量步骤还包括根据第一平衡解法安装载荷的步骤。
21.权利要求17的方法,其中所述改变第一载荷量步骤还包括输入用户希望的载荷变化和根据用户希望的载荷变化安装和/或拆除载荷的步骤。
22.权利要求17的方法,其中所述检测瞬时数据步骤包括在部件的一个或多个位置处测量部件在速度范围内的采集点处的震动的振幅和相位的步骤。
23.权利要求22的方法,其中所述测量步骤包括选择部件上的一个或多个位置的步骤。
24.权利要求17的方法,还包括选择第一平衡解法所需的机翼和显示被选级的第一平衡解法的步骤。
25.权利要求24的方法,其中的被选级包括单级和多级的情形之一。
26.权利要求17的方法,还包括从多种部件类型中选择与部件相关的部件类型的步骤。
27.权利要求17的方法,还包括以下步骤当部件处于不平衡状态时,根据部件类型的第二灵敏度系数和在第二次运行期间检测的瞬时数据计算第二平衡解法;根据第二平衡解法或根据用户输入的载荷变化改变部件的第二载荷量;在速度范围内连续地改变包括变化了的第二载荷量的部件的旋转速度;在第二次运行期间连续地改变部件的旋转速度的同时在速度范围内的多个采集点上检测瞬时数据;根据在第三次运行期间的瞬时数据判断部件是否处于不平衡状态;根据在第一、第二和第三次运行期间检测的瞬时数据计算第三灵敏度系数;以及根据在第三次运行期间检测的瞬时数据和第三灵敏度系数计算第三平衡解法。
28.平衡旋转部件的装置,包括测量装置,与部件连接,在连续地改变部件的旋转速度的同时在部件速度范围内的多个采集点处检测瞬时数据;数字处理器,与所述测量装置连接,对瞬时数据执行频谱分析以产生瀑布数据、根据瀑布数据产生平衡数据以及把平衡数据与震动极限进行比较;以及与所述数字处理器连接的、在平衡数据超过震动极限时根据第一灵敏度系数和平衡数据计算第一平衡解法的装置;其中的部件载荷分布根据第一平衡平衡解法来调整。
29.权利要求28的装置,还包括显示瀑布数据的装置。
30.权利要求28的装置,还包括显示平衡解法的装置。
31.权利要求28的装置,其中所述测量装置包括在部件上的一个或多个位置处测量部件在速度范围内的采集点处的震动的振幅和相位的装置。
32.权利要求31的装置,还包括与所述测量装置连接的、用于输入部件上的一个或多个位置的输入装置。
33.权利要求28的装置,其中所述测量装置在两次独立的运行期间检测瞬时数据,所述计算装置根据至少两次瞬时数据检测操作计算第二灵敏度系数,所述计算装置还根据在最近一次瞬时数据检测操作中检测的瞬时数据和第二灵敏度系数计算第二平衡解法。
34.权利要求28的装置,其中所述旋转部件是固定在飞机上的发动机。
35.权利要求28的装置,还包括存储包括与多种部件类型的每一种相关的灵敏度系数的部件数据以及存储瞬时数据的存储器;输入装置,与所述存储器连接,用于接收选择部件类型的选择信号,部件类型确定了将要被平衡的部件的第一灵敏度系数。
36.权利要求35的装置,其中所述输入装置还包括输入包括规定的速度或速度范围的数据检测操作数据的装置,将对于该规定的速度或速度范围计算平衡解法,所述测量装置根据该操作数据检测瞬时数据。
37.权利要求35的装置,其中所述输入装置还包括输入规定的速度或速度范围的装置,将对于该规定的速度或速度范围计算平衡解法。
全文摘要
平衡旋转机械设备(20)的方法和装置涉及到在待分析发动机的运行速度范围内对瞬时数据进行瞬时采集(100)。瞬时数据的频谱利用捕获RPM触发的瀑布数据(34,38)的实时频谱分析仪(7)来获得。此外,计算机计算一次性平衡解法。平衡解法(44)被显示在视频显示屏幕(850)上。它包括基于被采集的数据和通用灵敏度系数(46)的对平衡问题的建议解法和该建议解法的预测震动状态。通过采集第二组数据,就能够证实该一次性平衡解法是否解决了该平衡问题。如果问题仍存在,操作者可以根据至少两次以前的数据采集操作计算发动机特有灵敏度系数。然后根据最近的一次运行和所计算的发动机特有灵敏度系数计算新的调整平衡算法。
文档编号F01D25/00GK1158173SQ95194517
公开日1997年8月27日 申请日期1995年6月13日 优先权日1994年6月14日
发明者P·J·格拉比尔 申请人:环球合伙人有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1