多相流体测量系统的制作方法

文档序号:5363643阅读:319来源:国知局
专利名称:多相流体测量系统的制作方法
背景技术
1.发明领域本发明属于流量计量技术领域,其包含用于测量包含离散相的多相混合物的制品体积的系统,如包含油,气,及水相的混合物。更准确地说,该系统使用Coriolis流量计结合两相分离器以测量多相混合物中各组分或相的产品体积。
2.问题说明经常存在的情况是流经管线的物料含有多个相。用于本文时,所谓“相”指存在一种与其它物质相接触的物质。例如,油和水的混合物包含离散的油相和离散的水相。类似的,油、气、水的混合物中包含离散的气相和离散的液相,以及包含油相和水相的离散液相。用于本文上下文中时,所谓“物质”指包含气体和液体的物质。
当使用流量计测量多相流体相结合的体积或质量流量时会带来特殊的问题。特别是,在流量计被设计用于直接测量多相结合的液体,但其测量结果不能直接得出各相独自的测量结果。这一问题在石油工业领域尤为突出,因为其中产油和产气的井产生包含未处理的油、气和盐水的多相流体。
石油工业领域常用的解决方法是安装用于将油井和气井中的流体分别分离出油、气和水相的装置。油田或油田的一部分的生产井常常共用一个用于此目的的生产装置,其包含一个主产品分离器,一个井测试分离器,传输管线接口,盐水排泄井和安全控制部分。对油或气田生产的优化管理需要了解整个油田及油田中某一口井所生产的油、气和水各自的体积。所了解的信息用于提高油田的生产效率,及全部产品销售收入的再分配。
早期分离装置的安装包括安装大型的大容量容器型分离设备。这些设备包含水平或垂直的椭圆形压力容器及内部的阀件与挡板套件。工业术语中将用于从包含油和水的液相中分离出气相的装置称作“两相”分离器。使用两相分离器无法在实际生产条件下将油和水组分分离并直接进行体积测量,因为混合的油和水组分实际上不会从混合液流中分离出来。“三相”分离器可用于从液相中分离出气相并将液相分离为油相和水相。与两相分离器相比,三相分离器需要附加的阀件与挡板套件,且一般具有更大的体积以得到产品物质更长的停留时间以使产品物质经重力分离分别得到油、气和水组分。
老的压力容器分离器庞大且占用相对较大的表面积。在包括离岸生产平台和海底完井系统的安装场合中,可提供的表面积是非常有限且十分昂贵的。已进行了一些开发工作以尝试在表面积有限的地方使用小型组件进行多相测量。这些组件典型地需要使用核技术完成多相流体的测量。
Coriolis流量计是可以以振动管密度计方式工作的质量流量计。可利用各相的密度将某一相的质量流量转换为体积流量。但使用Coriolis流量计判定整个混合的流体中油、气和水各相的质量百分比存在许多困难。
美国专利5029482公开了使用源于经验的校正的方法,其通过将各气体和液体组分的质量百分比已知的混合气液流体流过Coriolis流量计而获得。源于经验的校正用于在Coriolis直接测量的总质量流量的基础上,计算气体和液体的百分比未知的气体和液体混合流体中的气体的百分比和液体的百分比。井中得到的流体混合物的组成可随时间改变,其缘于储层中压力消耗所引进的压力、体积和温度现象,并继而要求连续地确定密度数值。
美国专利4773257公开了可通过调整所测的总质量流量的含水量计算整个油和水流体中水的分量,并且相应的各个油和水相的质量流量可以通过将各相的质量流量除以各相的密度转化为体积流量。各相的密度须由实际的实验室测量得到。“257”号专利依靠分离装置完成气体从液相总体中的分离,且假设该分离是完全的。
美国专利5654502公开了一种自校准的Coriolis流量计,其使用分离器分别完成油和水密度的测量,而不需借助实验室的密度测量。油密度测量根据水含量进行修正,后者由水含量测量器或探头测量。“502”号专利依靠分离器从流经流量计的流体中消除气体,且未公开当气体作为流经Coriolis流量计的流体的一部分时进行多相流体计量的机理。
甚至三相分离器也不是一定可以将油相从水相中分离出来。需使用水含量探头测量分离的油相中的水含量,因为存留在明显分离的油组分中的残余水的含量一般可高达10%。此处所用术语“水含量”指多相混合物中水的含量,最经常地用于表示一个比值,其代表油-水混合物中油的体积与水的体积的关系。根据最通用的“水含量”一词的用法,井中产生的流体,如果每100桶油和水的液体中含有95桶水时,其水含量为95%。术语“水含量”有时也用来指所产生的总油量与所产生的总水量之比。术语“油含量”指油体积除以油和水总体积的结果。如本文所定义,术语“水含量”包括任何在数值上等于可表示包含水和油的液体混合物总体中水或油的百分比的值。
当气体是流体的一部分,且小型组件不需要使用核技术来进行流体的直接测量时,仍有需要提供一种小型组件以完成多相流体的测量。由此,本发明的一个方面提供了在以下系统中可以完成多相流体测量的方法和仪器,该系统含有气体和液体的混合物,或是含有各种液体混合物的液体系统,无论该混合物是可混溶的或不可混溶的。
解决方法本发明通过提供一个全自动的基于Coriolis方法的井测试系统解决了如上所述的问题,其不需要人工采样或产品物料的实验室分析来完成相组分密度的测定。另外,该测试系统消除了由减压导致溶解气体释放所产生的体积测量误差。
本发明的井测试系统有两种操作模式。以正常井测试系统模式工作的测试系统测量 已从组分混合物,即包含油、气和水相的井头产品物料中分离出来的各组分的体积。井测试系统还有一种特殊的密度测量模式,其不需要对产品流体进行人工取样来进行密度测量。由该井测试系统得到的原位密度测量结果比实验室测量结果更精确,因为物料是在管线条件下接受测量的。
井测试系统还包含将含有多相井头产品流体的混合流体分离为独立组分的装置。使用阀歧管以选择性地使涡旋分离器中充满某个单井的产品。使用重力分离器保留多个井的油、气和水相混合物,同时重力作用将各组分从产品混合物中分离出来。当各组分被分离后,打开泄料阀以至少从重力分离器中部分排出产品组分混合物中的液体组分。
Coriolis流量计可以以质量流量计模式和密度计模式操作。这些测量计用于在油和水组分离开各分离器后分别测量其质量流量。密度测量通过多相流中分离的油组分得到。水分含量监视器用于得到分离的油相中的水含量结果。流体密度,温度,质量流量,和水含量测量结果一同用于计算产品流体中油和水相的体积流量。这种修正使油体积流量的计算更为精确。
在优选实施方案中,体积测试误差由于将加压气体源联至测试分离器而减至最小。该加压气体源用于使分离器压力即使在泄料阀打开以使测试分离器内的液体流出时也保持基本恒定。
其它突出的特点,目的和优点对于本领域技术人员,在阅读以下讨论及相应附图后将是显而易见的。
附图简述

图1.绘出本发明所述的自动井测试系统的布局示意图;图2.绘出图1所示系统操作的控制流程图;图3.是用假想数据做图,证明在Coriolis流量计中气体响应流体管的频率阻尼效应的实际作用;和图4.是用假想数据做图,表示驱动增益与透明气泡进入Coriolis流量计的过程时间之间的关系。
优选实施例详述图1绘出了用于石油工业的小型多相流体测量系统100的示意图。系统100包含多相流体进口管102,其联入水平的两相涡旋分离器104。然后,涡旋分离器104将气体排入其上方的气体测试流动管线106,并将液体排入其下方的液体测试流动管线108。气体测试流动管线106与液体测试流动管线108在流体测试完成后合并入排空管110。控制器112包括一个中央处理器及用于操纵系统100各部件的附属电路。为获得便携性,系统100固定在橇板结构114上,来自多个油或气井的多相流体经由产品歧管116进入系统100。排空管110进入三相产品分离器118以在得到市售商品前分离出气体、水和油相。
进口多相流体管线102沿箭头120方向接收来自产品歧管116的包含油、气和水的多相流体。文丘里管段122使用了众所周知的伯努利效应以降低文丘里管喉部的物流管102内的进口多相流体的压力。优选所得压力降低的幅度应使其压力与液体CORIOLIS流量计166内的内部工作压力大致相同。这一压力降低使物流管102内多相流体中的气体被释放或闪蒸。一个向上/下倾斜的部件124使多相流体的气相与液相在进入涡旋分离器前得到重力分离。一个水平放置的排放部件126向涡旋分离器104进料。
以剖面图方式绘出涡旋分离器104以示出其内部工作元件。水平放置的排放部件126的位置使物料以切线方向进入涡旋分离器104的筒状内部分离部分。这种排料方式在涡旋分离器104内部多相流体的液体部分128中产生旋风或气旋效应。
液体部分128主要是液相,其包含分离的水、油和包裹态气相。旋风效应产生的离心力对包裹态气相产生附加的分离,但其不可能完全排除包裹态气相,除非以相当低的流动速率为包裹态气相提供附加的重力分离。从涡旋分离器104中排出的液体部分128进入液体测量流动管线108。在涡旋分离器104的下部安装一个水阱130。阱中水可取出进行周期性水密度测量,或可在阱130中安装水密度计(图1中未示出)以便为控制器112提供水密度信息。
涡旋分离器中的多相流体的气相部分132主要是气相,其包括油或水的雾。使用雾收集筛134部分地凝聚雾,其以聚集态滴回液体部分128。
气体部分132排入气体测量流动管线106。气体测量流动管线106包含一个压力传感器135,其将气体测量流动管线106内的绝对压力读数经路径136送至控制器112。压力传感器135可得自市售产品,例如Rosemount of Eden Prairie,Minnesota提供的如Model 2088的压力传感器。管138将气体测量管线136与涡旋分离器104的底部相连。管138包含一个静压表140,连着一个用于传递气体测量流动管线106内的点144和涡旋分离器104底部点146间静压头压力信息的压力传感器142。通路148将压力传感器142与控制器112连接起来,后者根据来自压力传感器142的静压头数据打开或关闭电动节流阀150和174以进行压力调节,保证涡旋分离器104的正常操作条件,即防止涡旋分离器中气体在气体部分132排入液体测量管线108的位置或在液体部分128排入气体测量管线106的位置出现过载。路径152和176将控制器112与节流阀150和174连接起来,其可以是,例如购自Fisher of Marshall Town,Iowa的Model V2001066-ASCO阀。
在气体测量管线106中的Coriolis质量流量计154可以对气体测量管线106内的多相流体中的气体部分132进行质量流量和密度的测量。Coriolis流量计154与流量传感器156安在一起以便将表示这些测量结果的信号送至控制器112。Coriolis流量计154在电路上的设计使其可以测量气体测量管线106中流过的物质的质量流量、密度和温度。示范性的Coriolis流量计154包括ELITE Models CMF300356NU和Model CMF300H551NU,其由Colorado的Micro Motion of Boulder提供。
路径158将流量传感器156与控制器112相连以进行信号传输。气体测量管线106上的止回阀160保证液体沿箭头162的正方向流动,从而防止液体部分128进入气体测量管线106。
液体测量管线108包括静态混合器164,其搅动在液体测量管线108中液体部分128防止其中油,水和夹带的气相由于重力作用分离。Coriolis流量计166可以提供液体测量管线108中的液体部分128的质量流量和密度,且与流量传感器168相连以将表示这些测量结果的信号经路径170送至控制器112。
在液体测量管线108上装有一个水含量监测仪172,以测量液体测量管线108中液体部分128的水份。水含量监测仪的选型取决于流体中可能出现的水份量的多少。例如,电容仪价格相对较低,但如果水份量超过30体积%则需要其它类型的仪表。电容或电阻探头的工作原理是基于油和水的介电常数有显著差异。这些探头随水含量提高其灵敏度下降,故仅当水含量低于总流体体积的约20~30%时才能够提供准确性可接受的水含量测量。其30%的准确性上限远低于许多生产井的实际观测值。例如,一个油井总液体产品体积的99%可能是水,因而,基于电容或电阻原理的水含量测试仪应用于测量具有相对较低水含量的油组份的水含量。
可用于水含量测量的市售仪器包括近红外传感器、电容/电感传感器、微波传感器、和无线电频率传感器。每一类型的仪器均有相应的测试范围。因此,水份探头可以测量油水混合流体中水的体积百分比。
包括微波仪器的水份测量仪器可以检测水含量高达流体混合物的约百分之百时的水含量,但当介质为三相流体时其可能将气体组份判断为油。这种误判缘于微波检测仪器的下述工作原理在选中的波段内,水对微波能量的吸收为原油的六十倍多。对吸收数据的计算前提是不存在天然气,而天然气对微波辐射的吸收为原油的两倍。由此可见,微波水含量测试系统可通过对混合物中气体对测量的影响的补偿来修正水含量结果。
路径173将水含量测试仪172与控制器112相连。控制器112通过电操纵两通阀174控制液体测量管线108中的压力,其方式确保了涡旋分离器104与阀150配合进行正常的操作,即通过阀174的开合来防止气体部分132排入液体测量管线108,以及阻止液体部分128排入气体测量管线106。路径176将阀174与控制器112相连。液体测量管线108上的止回阀178保证液体沿箭头180的正方向流动,从而防止气体部分132侵入液体测量管线108。气体测量管线106和液体测量管线108经一个T型接头汇合为共同的排出管110,连接产品分离器118。
控制器112是一个自动化系统,其用于管理系统100的操作。基本上,其包括一个计算机84,其带有数据采集程序以及软件程序,与驱动电路和界面相结合用于操纵远程部件。优选的控制器112的形式为Fisher Model ROC364。
产品歧管116包含许多电动三通阀,例如阀182和184,其分别对应于产品源如油井186或气井188。本申请中可用的特别优选的三通阀为配有MATRYX MX200传动器的Xomox TUFFLINE 037AX WCB/318井开关阀。优选为接收某一相应单独井的产品流体配置一个阀,但其也可以接收来自一组井的产品。控制器112通过路径190传输信号来选择性地配置这些阀的状态。阀被选择性地进行配置以使来自一口井186或组合的井(如井186和188)的多相流体流入主管192以将流体送入多相流体进口管102,同时其它阀门被选择性地设置为经旁路管线194绕过系统100。
产品分离器118与压力传感器195及用于向控制器112传输信号的路径196相连。分离器118与气体外销管线,油品外销管线和盐水排放管线(未在图1中绘出)相连,其连接方式可为本领域技术员公知的任何传统方式。系统100的操作图2示出了代表用于程序控制器112的控制逻辑的过程P200的示意图。这些指令典型地存储于电子内存或电子存储设备中以便控制器112的读取与使用。实现过程P200的指令可存储于任何机器可读的介质中以便控制器112或以任何可行方式与系统100相连的类似设备进行读取\解码和执行。
过程P200由步骤P202开始,其中控制器112决定能否进入测试模式过程。根据图1,这意味着控制器112选择性地配置产品歧管116的阀182和184,以令一口井或与产品源186和188对应的操作者选定的井组的产品流过主管192并进入多相流体管线102。这一决定通常基于时间周期,例如对每个井每周至少测量一次。测量模式也可以连续方式进行,其中产品歧管116的各个阀门总是被选择性地配置以使流体流入系统100的同时其它阀的配置是经旁路管线194绕过系统100。这些类型的井测试计量通常用于在输送的基础上分配,通过产品分离器118到特定产品源,例如源186和188的总流体百分比。
手动阀196和197可通过开合选择性地隔离系统100,即阀196和197可同时闭合以移走所有固定在撬板114上的组分。电动阀199通常是闭合的。阀196与197之间的第二或冗余旁路管线198在打开阀199并关闭阀150和174时允许流体绕过系统100。
测试开始于步骤P204,其中控制器112关闭或打开阀150和174以降低或提高流过涡旋分离器104的总流量,目的在于从多相流体中将气体从液相中分离出来。不需要降低流过系统100的总流量,因为控制器112可打开阀199以使流体流过内部旁路198。准确的流量取决于涡旋分离器和液体测量管线108的物理容积,以及源186和188可送入系统100的流体的数量。
降低流过系统100的流量的目的在于通过使用涡旋分离器104,加上重力分离的帮助,消除液体测量管线108中的夹带气泡,同时保持足够高的流量以防在余下的液相中油从水中显著地分离出来。也可能通过增加流量基本上完全气相与液相的分离,并由涡旋分离器104产生的离心力完全该分离。为此,控制器112监测Coriolis流量计166的驱动增益或电位计电压,如图3和4所示。
图3是用假设数据做图,证明在Coriolis流量计166中气体响应流体管的频率阻尼效应的实际作用(也参见图1)。透射率的log值作图,为以加在Coriolis流量计166驱动线圈上的变换电压的频率,如频率f0、f1和f2的函数。透射率Tr等于表驱动线圈输出值除以驱动输入,即Tr为驱动增益 第一条曲线300对应于式(1)之无阻尼系统,即被测流体中无气体存在。第二条曲线302对应于阻尼系统,其中有气体存在。曲线300与302均有极值存在,在自然频率fn时分别为304与304’。
图4是用假想数据做图,表示驱动增益与透明气泡进入Coriolis流量计166成为多相流体中夹带的气泡的过程400的时间之间的关系。气泡于时刻402进入并于时刻404离开。驱动增益在图4中以百分比的形式表示,并于时间间隔如t1、t2和t3处以时间的函数的形式绘图。控制器112(亦见图1)被编程以监测驱动增益或透过率,即将其与阈值406进行比较。若曲线408的驱动增益或透过率超过阈值406,则控制器112判别为密度测量受到透明气泡的影响。因此,Coriolis流量计166仅将在驱动增益小于阈值406时获得的密度值用于步骤P206。阈值406的准确值取决于特定仪表的设计及拟使用的环境,并应允许多相流体内存在小于一到两个百分比的气体。
在使用CORIOLIS流量计时,通常的情况下电位计电压降低反比于图4曲线400所示事件400。有时表的程序中设定感应该振幅的降低,并以振动振荡线圈达到最大设计规格振幅的形式对其做出响应,直到气体阻尼效应反转。
在步骤P204中用控制器112以所述方式打开和/或关闭阀150和174直到驱动增益降至低于阈值406,而步骤P206包括用Coriolis流量计166测量不含包裹的气体的液相的密度。这一密度测量值应代表不含气泡的液体的密度。在以下讨论中将所测密度值表示为ρL,并用于描述无夹带气体的包含气体和油的液体的密度。作为对液体测量管线108中多相流体进行直接测量的替代手段,还可能将所得多相流体的样品进行实验室分析或通过使用基于经验的流体校正的近似密度测量以得到不太优选的近似ρL。
在步骤P208中,控制器112依照制造商的说明,根据流过CORIOLIS流量计154和166的总流量及来自压力传感器135和压差表140的压力信号,选择性地调节阀150和174以使涡旋分离器104中的分离效果最佳。在这一步骤中,配置产品歧管116使其引流以激活井测试计量过程。与步骤P204相比,涡旋分离器104在这一步骤中起不同的作用,因为控制器112不进行如图4所示的通过对阀150和174进行调节以使驱动增益降至低于阈值406。在此情况下,流过液体测量管线108的液相主体中可能包含夹带的气泡。
步骤P210包括使用Coriolis流量计166测量包含包裹的气泡的液体测量管线108中的液相主体的总质量流量QTL,及该液相主体的密度。该密度测量值在以下讨论中计做ρmeas。
在步骤P212中,控制器112测定多相流体中气体的干气密度ρgas。气体密度可使用American Gas Association基于气体重量得出的众所周知的公式,由压力和温度信息计算出来,或者实验室分析可以由多相流体中产品气体的实际测量值提供其它经验性的校正公式。另一种测量气体密度的替代技术是在步骤P204同时,或在单独的步骤P210(其中控制器112如图4所示通过对阀150和174进行选择性调节以使驱动增益强度最小)中,由Coriolis流量计154进行实际的密度测量。在一些情况下,还可能假设气体密度为常数,因为气体密度与液体密度相比相对较低,故将气体密度假设为常数所产生的偏差是可以接受的。
在步骤P214中,控制器112计算液相中的气体空隙分率XL,其中(2)XLi=ρcalc-ρmeasρcalc,]]>其中XLi表示流过Coriolis流量计166的多相流体中气体空隙的气体空隙分率,i表示逐次迭代,ρmeas是如上所述得自步骤P210的密度测量值,而ρcalc是计算或估算的密度值,其近似于具有约XLi的空隙分率的多相流体的密度。式2可用于收敛迭代计算。由此,由第一个猜想值开始进行计算是可行的,如使用来自特定产品源186的测试测量循环中储存的ρcalc值或一个猜想的值如0.8g/cc。
一个特别优选的提供初始猜想的ρcalc值的方法是由水含量测试仪172得到水含量测量结果。然后可假设多相流体混合物中不含气体并通过式3计算ρcalc。
(3)ρalc=WC(ρw-ρo)+ρo其中WC是以液体混合物中水量除以液体混合物总体积的分率形式表示的水含量,ρw是液体混合物中水的密度,ρo是液体混合物中油的密度。所得ρcalc的初始猜想值是无气体空隙的液体混合物的理论值。当Xi大于零时,测量的密度ρmeas应小于ρcalc,前提是ρw和ρo的取值正确。ρw和ρo的取值可源于实验室测量,其是基于对分别包含油和水相的液相主体的样品的测量。例如,水密度值可来自与水阱130相连的水份仪。这些值还可使用发表于American Petroleum Institute的经验公式近似至可接受的精度。
在步骤216中,控制器112进行计算以决定最终的ρcalc猜想值是否适用于式2来计算XLi,其中Xi值收敛入可接受的偏差范围内。下一个ρcalc猜想值根据下式计算(4)ρcalci=(ρgasXLi)+(1-XLi)ρL其中ρcalci是根据式2由XLi计算的下一个ρcalc猜想值,ρL是液体混合物的密度,其它数值的定义同上文。
步骤P218是对收敛过程的测试,并在满足下式时退出收敛(5)D<|ρcalci-ρcalc|其中D是代表可忽略的偏差,如0.01g/cc,的界限的绝对值,或Coriolis流量计166可得的近似的精度极限,ρcalci是根据式4计算得到的当前值,ρcalci-1是式2前次迭代时的ρcalci的旧值,其中根据ρcalci产生Xi值。
如果步骤P218中控制器112发现不收敛,则在步骤P220中以新的ρcalci猜想值代替旧的ρcalc猜想值,而后重复自P214至P218的步骤直到出现收敛。
水含量可由下式计算(6)WC=ρL-ρOρW-ρO]]>其中WC是水含量,ρo是液体混合物主体中油的密度,ρw是所述液体混合物主体中水的密度。由此,当多相流体中没有气相时水份仪172在某种程度上是多余的,且由于其值对于这一迭代收敛技术是一个不再需要的值而可以任选地去除。
在步骤P214A中,可提供一个更苛刻的或非迭代的方法,前提是由水份仪172测得的水含量值处于使仪器以可接受的准确度和精度工作的范围内。仪器读数是流体组份的函数,这使得同时解析三个方程的系统成为可能,并得到三个变量的计算值。三个方程如下(7)ρwqw+ρoqo+ρgqg=ρmix,(8)f(sat)=M(9)qw+qo+qg=1其中ρw是流体中水的密度,ρo是流体中油的密度,ρg是流体中气体的密度,ρmix是混合流体的密度,qw是水的体积分流量(即水含量),qo是油的体积分流量,qg是气体的体积分流量,f(sat)是流体组分的函数,其对于一个特定型号的满量程读数为M的水份仪是唯一的。
如果水份仪是微波仪,函数f(sat)=M可近似为(10)mwqw+moqo+mgqg=M,其中mw是纯水的仪表读数,mo是纯油的仪表读数,mg是纯气体的仪表读数,其它变量的定义同上文。其中,对于一个典型的仪表,mw=60,mo=1,mg=2,可由式8至式11计算qw,即(11)qw=(ρmix-ρo)-(M-1)(ρg-ρo)(ρw-ρo)-59(ρg-ρo)]]>
其中变量的定义同上文。且,(12)qg=M-1-59qw,and(13)qo=58qw-M+2.
一旦在步骤P218得到收敛结果,则在步骤P222中需要使用Coriolis流量计154测量于步骤208的流动条件下流过Coriolis流量计154的气相主体的质量流量QTG和密度ρmgas。
步骤P224包括求解流过气体测量管线106的气相主体的气体空隙分率XG,其根据下式(14)XG=Pmgas-PLPgas-PL]]>其中XG是对应于气相主体的总体积的气体体积的分率,ρmgma是得自步骤P222的数值,ρgas是得自步骤P212的数值,ρL是得自步骤P206的数值。
在步骤P224中,如果需要,则对来自水含量测定仪172的水含量数值进行调节,以补偿液相总体中出现的气体。例如,当气体空隙分率XLi为已知,即可能据此数据对基于样品仅含油和水的假设的微波吸收仪的水含量测量结果进行修正。
步骤P226包括使用如上所得数据分别解析气相主体和液相主体中三个不同相的质量流量。可使用如下各式(15)QL=QTL*(1-Xi)+QTG*(1-XG);(16)QG=QTL*XiQTG*XG;(17)Qo=QL*(1-WC);(18)Qw=QL*WC;(19)VL=QLρL;]]>(20)VO=QOρo;]]>(21)VG=QGPgas;]]>和(22)VW=QWPW,]]>其中QL是流过系统100的液相的总质量流量;Xi是由步骤P214中测定且在步骤P218中得到收敛结果的液相主体的气体空隙率;QTG是步骤P222中测得的气相主体的气体总质量流量;XG是由步骤P224测定的气相主体的气体空隙率;QG是流过系统100的气体的总质量流量;QO是流过系统100的油的总质量流量;QW是流过系统100的水的总质量流量;QO是流过系统100的油的总质量流量;WC是如步骤P224所需进行了修正的得自水含量测量仪172的水含量结果;VL是流过系统100的液相的总体积流量;ρL是由步骤P206测定的液相密度;VO是流过系统100的油的总体积流量;ρo是流动条件下油的密度;VG是流过系统100的气体的总体积流量;ρgas是流动条件下气体的密度;VW是流过系统100的水的总体积流量;ρw是流动条件下水的密度。
控制器112在步骤P228中产生系统的输出值,包括直接温度、密度和所测得质量流量及各相的体积和质量流量的计算结果。这些质量流量可对时间进行积分以得到测量间隔内的累积产量。
控制器112在步骤230中与包括产品歧管116在内的系统元件互相作用以使井的效率最佳化。例如,如果油田的驱动能量受气顶控制,则当油开采后气顶耗尽时生产效率最佳。希望在生产气之前先生产油,且当油耗尽时气-油接触层会向下移动至以前的油层。这种气-油接触层的移动会使之前主要生产油的井变为主要生产气。针对这种油井产气量急剧增加的适当的反应通常是关闭该井或降低其产率以使储层的驱动能量不致耗尽,而控制器112的程序可执行这一操作。类似的响应可被编入程序以去除油-水接触,或甚至通过在所有参数均相同的条件下优先开发生产低成本的井,最后才对高消耗的井进行生产的方法可从财会角度优化当前的经济效益。
本领域的技术人员应该理解在不偏离本发明的范围与实质的情况下可以对以上所述的优选实施例进行表面上的修改。因此,在这里,为了保护发明的所有权利,本发明人根据Doctrine of Equivalent阐明了其全部的意图。
权利要求
1.一种用于测量含有多个液相和一个气相的流体环境的多相流体测量系统(100),其包括将来路多相流体分离为液相主体和气相主体的分离器(104),其中液相主体具有包含夹带气体的液体主体组份,气相主体包括气体主体组份,该系统还包括用于测量所述液相主体流量的流量计(166),其中所述系统包括控制器(112),其被设置为测量所述液相主体的流量,并经计算得出所述液相主体中离散的液相和离散的气相的流量。
2.如权利要求1所述的多相流体测量系统(100),其中所述流量计(166)包括一个质量流量计。
3.如权利要求2所述的多相流体测量系统(100),其中所述质量流量计(166)是一个Coriolis质量流量计。
4.如权利要求1所述的多相流体测量系统(100),其中对所述液相主体的所述流量的所述计算不用经验性校正,但用于测定选自密度和粘度的流体性质的经验性校正除外。
5.如权利要求4所述的多相流体测量系统(100)还包括液体测量管线(108),其使来自所述分离器(104)的第一液体以所述第一液体中基本不夹带气泡的方式流动,和在所述液体测量管线(108)中测定所述第一液体密度ρL的密度计(166)。
6.如权利要求5所述的多相流体测量系统(100)还包括测定所述液相主体的密度ρmeas的第二密度计;和所述控制器(112)还被配置为用于根据所述密度ρmeas与所述密度ρL之间的相关性计算空隙分率XL,并将所述空隙分率XL用于所述液相主体组份的总流量QTL,以提供分别对应于所述液相主体的液体与气体组份的流量QL与QG。
7.如权利要求6所述的多相流体测量系统(100),其中所述控制器(112)还被配置来使用迭代收敛计算进行空隙分率XL的计算。
8.如权利要求7所述的多相流体测量系统(100),其中所述控制器(112)还被配置成根据所测密度值与基于所述空隙分率XL的理论密度值之间的差值来收敛所述迭代收敛计算。
9.如权利要求8所述的多相流体测量系统(100),其中所述传感器(112)还被配置来使用非迭代方法计算进行空隙分率XL的计算。
10.如权利要求9所述的多相流体测量系统(100),其中所述传感器(112)还被配置来进行空隙分率XL的计算,其包括将所述迭代法计算结果与所述非迭代法计算结果进行比较。
11.如权利要求6所述的多相流体测量系统(100)还包括气体密度计(154)在所述多相流体测量系统的温度与压力下计量气体密度ρgas;和所述传感器(112)还被配置成根据所述气体密度ρgas和所述液体密度ρL以及所述空隙分率XL来计算密度ρCalc。
12.如权利要求11所述的多相流体测量系统(100),其中所述传感器(112)还被配置为根据所述密度ρCalc等于所述气体密度ρgas与所述空隙分率XL的乘积加上一减所述空隙分率XL之差与所述液体密度ρL的乘积的关系来计算所述密度ρCalc。
13.如权利要求12所述的多相流体测量系统,其中所述传感器(112)还被配置为使用迭代计算测定所述液相主体的流量,即将逐次的XL值迭代ρCalc值直到ρCalc对于ρmeas的误差收敛到可接受的范围内,ρmeas的值由测量密度ρmeas的所述方法测定。
14.如权利要求13所述的多相流体测量系统(100),其中所述传感器(112)还被配置为根据气体空隙率XLi等于所述密度ρCalc减去所述密度ρmeas后除所述密度ρCalc的商的关系迭代所述密度ρCalc的值,其中XLi是基于ρCalc迭代近似值的气体空隙分率。
15.如权利要求11所述的多相流体测量系统(100)还包括水含量测定仪(172),其在使用环境下、在液相主体含有一个油相和一个水相时根据所述密度ρCalc测量所述液相主体的水含量WC。
16.如权利要求15所述的多相流体测量系统(100),其中所述水含量测定仪(172)的工作原理是基于所述水含量WC等于所述密度ρCalc减油密度后除以水密度减油密度之差的关系,其中所述油密度为所述液相主体中油的密度,所述水密度为该液相主体中水的密度。
17.如权利要求1所述的多相流体测量系统(100)还包括密度计(154),其测量来自所述分离器的气体组份主体的密度ρmsas;气体流量计(154),其测量所述气体组份主体的流量。
18.如权利要求17所述的多相流体测量系统(100),其中所述传感器还被配置成使用所述密度ρmgas根据密度来计算所述气相主体的空隙分率XG。
19.一种在包含一个液相和一个气相的流动环境下进行多相流体测量的方法(P200),所述方法包含下列步骤将进口多相流分离为液相主体和气相主体(P204),液相主体具有含夹带气体的液体组份主体和气相主体具有气体组份主体;测量所述液相主体的流量(P210);和进行计算(P226),以量化所述液相主体中离散的液相和离散的气相的流量。
20.如权利要求19所述方法(P200),其中所述计算步骤不用经验性校正,但用于测定选自密度和粘度的流体性质的经验性校正除外。
21.如权利要求20所述方法(P200),其中所述测量所述液相主体的流量的步骤包括以下步骤自分离装置中以所述第一液相主体中基本不含夹带气泡的方式流动第一液体;且测量(P206)所述第一液体的密度ρL。
22.如权利要求21所述方法(P200),其中所述测量所述液相主体的流量的步骤还包括以下步骤在所述液相中可能包含夹带气泡的正常流动条件下测量所述液相主体的密度ρmeas(P210);根据所述测定的密度ρmeas和所述密度ρL间的关系计算空隙分率XL(P214);和将所述空隙分率XL应用于所述液相主体的总流量QTL,以分别给出所述液相主体的所述液体组份流量QL和所述气相组份流量QG。
23.如权利要求22所述方法(P200),其中所述计算所述空隙分率XL的步骤(P214)包括以下步骤进行迭代收敛计算。
24.如权利要求23所述方法(P200),其中所述迭代收敛计算的收敛基于所测密度值与基于空隙分率XL的理论密度间的差值。
25.如权利要求24所述方法(P200),其中所述计算所述空隙分率XL的步骤(P214)包括以下步骤进行一个非迭代计算。
26.如权利要求25所述方法(P200),其中所述计算所述空隙分率XL的步骤(P214)包括以下步骤将来自所述迭代解析的结果与来自所述非迭代计算的结果进行比较以得到一个最佳结果。
27.如权利要求22所述方法(P200)还包括以下步骤在多相流测量系统的温度和压力下测定气体密度ρgas;测量所述液相主体的液体密度ρL;根据所述测定的密度ρmeas和所述密度ρL间的关系计算空隙分率XL(P214);根据所述气体密度ρgas、所述液体密度ρL和所述计算空隙分率XL的步骤确定的空隙分率XL计算密度ρCalc(P216)。
28.如权利要求27所述方法(P200),其中所述密度ρCalc的所述计算(P216)根据如下关系进行Pcalc=(PgasXL)+(1-XL)PL,其中XL是所述液体组份主体的空隙率。
29.如权利要求28所述方法(P200),其中所述密度ρCalc的计算(P216)包括以下步骤将逐次的XL值迭代ρCalc值直到ρCalc对于ρmeas的误差收敛在可接受的范围内,ρmeas的值在所述测量密度ρmeas的步骤测定。
30.如权利要求31所述方法(P200),其中所述迭代ρCalc值的操作基于如下关系XLi=(Pcalc-Pmeas)/Pcalc.其中XLi是基于ρCalc的近似迭代值的气体空隙分率。
31.如权利要求30所述方法(P200)还包括如下步骤根据密度ρCalc计算所述液相主体的水含量WC(P224)。
32.如权利要求31所述方法(P200),其中计算所述液相主体的水含量WC(P224)的操作基于如下关系WC=(Pcalc-Po)/(Pw-Po),其中ρo是所述液相主体中油的密度,ρw是所述液相主体中水的密度。
33.如权利要求22所述方法(P200)包括以下步骤测量气相主体的密度ρmgas(P222);和测量所述气相主体的流量(P222)。
34.如权利要求33所述的方法还包括以下步骤用由测量密度ρmgas的所述方法中测定的所述密度ρmgas根据密度来计算所述气相主体的空隙分率XG。
全文摘要
一种自动井测试系统(100),其使用一个连接了一对Coriolis流量计(154,166)的两相涡旋分离器104测量三相流体的体积流量。测量根据过程(P200)进行,其包含一个迭代收敛技术。测量由于使用实时密度和来自水含量测定仪(P172)和一个水密度计的水含量值而得以改进。
文档编号E21B47/10GK1415070SQ00818016
公开日2003年4月30日 申请日期2000年10月18日 优先权日1999年10月28日
发明者R·E·杜顿, C·斯特勒 申请人:微动公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1