铠装的探测器的制作方法

文档序号:5363649阅读:281来源:国知局
专利名称:铠装的探测器的制作方法
背景技术
本发明整体上涉及一种用于在采煤过程中检测是否存在岩石的装置,具体而言,本发明涉及一种铠装的探测器装置,该装置采用灵敏的监控设备,例如用于开采操作过程中的辐射检测设备,目的是将几乎全部煤炭采出,同时几乎没有切入煤层顶板和底板岩石内的进刀。
在开采过程中采用灵敏的监控设备已经是公知的技术。此外,辐射传感器非常适用于采煤操作也是公知的。传统的应用只能在开采过程中对各种连续挖掘机的截割深度进行有限的控制。但是,由于不能将探测器安装到使其能够精确测量正被截割的煤层厚度的位置上,在实际使用中,需要精确测定刀头和岩石之间的距离,这段距离是应该避开的,这样就限制了伽马探测器的有效应用。在现有技术中,尺寸合适的探测器已经能够在正在截割的区域之外进行实时测量,然后以一种间接的方式推导和计算出最终必须知道的参数;即,刀头和岩石之间的距离。此外,这种传统的方法试图对未来的截割方案或后续进刀作出计划,而不是在当前的截割行程中作出实时的截割方案。由于地层、截割条件和其它操作变量存在很大的变化,因此这种方法仅取得了非常有限的成功,尤其是在连续采煤机方面。
在采煤过程中,辐射传感器例如伽马传感器目前主要用于检测由周围地层中的耐火粘土层和页岩层及其他非煤炭材料发出的放射线。放射线会根据非煤炭材料的类型的不同而从非煤层中放射出不同量的射线。当射线从岩石穿过煤层时将会衰减。通过这种测出或计算出的衰减来确定截割操作应该在何时停止,以避免切入岩石中。伽马射线的计算必须在一段时间后才能完成,因为射线的特性是一个统计结果,而且放射速度由一个围绕某一中心值的高斯分布来表示。
对从刀头到岩石之间需要避开的距离进行最精确的测量需要将传感器安装在正被截割的矿物区域附近,而不是安装在远离该区域或靠近某一其它区域的位置上。必须一直对数据进行计算,目的是对读数进行平均,以确定中心值。由于煤矿中的放射比较微弱,因此,需要视角很大,目的是在足够短的时间内得到数据,以利用这些数据控制实时截割操作。但是,传统设备中的大视角导致在需要测量的区域之外的位置上观察放射源,这样就使测量不精确。换言之,选择一个狭窄的视角将会降低计算速度,这样就需要更多的时间,由于采煤机必须连续工作,因此就导致精确度的降低。但是,将视角加大也会降低精确度。
射线检测设备非常敏感,而且必须免受恶劣环境的影响,这样才能发出精确、无噪音的信号。这种保护必须包括在采煤过程中防止受到物理冲击和应力,所述物理冲击和应力包括力、振动和磨损。但是,接近设备距离正被开采的矿物越近,那么设备受到的冲击、振动和应力也就越大。这样,就会在为实现精确测量而将传统的辐射探测器安装到正被开采的表面附近和为确保传感器完好无损并避免恶劣环境对数据的不利影响而提供足够的保护之间产生矛盾。在现有技术中,为确保传感器完好无损,需要将传感器安装到远离目标的位置上。另一传统方法是缩小检测部件,以使其更易于安装到技术上所需的位置上,但是,元件的敏感度随着其尺寸的减小而降低,而且精确度也以类似的方式下降。
一种采煤方法就是连续采煤法,在该方法中,用一个包括有一截割滚筒的机械穿过地层钻孔,而截割滚筒被连接到一个活动悬臂上。连续采煤机的操作人员必须在其视线受到正被开采下来的煤的遮挡的情况下控制采煤机。这是因为操作人员位于距滚筒上截齿的截割处有一定距离的位置上,而且采煤机部分、在采煤过程中产生的灰尘及由采煤机喷出的水雾也会挡住操作人员的视线。另外一种采煤方法就是长壁采煤法,这种方法也涉及到使用与一悬臂相连接的截割滚筒。与连续采煤相比,在长壁采煤法中,滚筒一次能够切割出一个最大可达1000英尺的切槽。连续采煤机和长壁采煤机均用于极其恶劣的条件下。
当能够确定煤层和岩层的边界时,采煤操作的效率较高。通过精确确定煤层和岩层的边界,就可以减少被切割下来的岩石量,同时,开采出来的煤炭量也最大。由于操作人员不能精确地观察到被开采的表面,因此降低了采煤机的性能,而且操作人员经常会开采到煤层和岩层的边界之外,经常会切入岩层,这样就会由于截煤成本的提高,从而提高开采成本,降低煤炭的生产效率,增加截割滚筒上截割刀具的更换成本。
传感器可被安装在采煤机上靠近截割滚筒的某一位置上,这是公知的。例如,美国专利4981327(Bessinger等人)。Bessinger等人描述了一种在长壁开采过程中用于通过将传感器安装在邻近采煤机滚筒的挡煤板上来检测煤层和岩层界面的方法和装置。Bessinger等人公开的传统设备的一个缺陷在于这种设备在采煤机的前滚筒已经完成其截割行程后才检测辐射,而不是在截割前检测辐射。因此,Bessinger的设备可能导致不完全截割煤层或截割到煤层-岩层边界之外,而且在确定截割操作已经进行到煤层外之前切入岩石。如果前部滚筒已将所有的煤开采下来,那么传感器就不能区分仅在交界处将所有的煤开采下来的状态和已经采下一些岩石的状态。另外,如果为了提供控制的基础而留下一些煤,那么这些残余的煤就不会被开采。由于不能区分上述两种截割状态,因此控制系统就不知道如何作出有效的反应,而且或者是反应不够快,或者是作出不正确的反应。探测器将不能确定控制系统是否已经过度反应或处于反应状态下,直到探测器到达已被截割的区域。更重要的是,对于连续采煤机而言,将传感器安装在截割滚筒例如Bessinger等人的从动滚筒的前方显然是不可能的。
其它能够就近安装的传感器也是公知的,图示的传感器D(图1)安装在一个采煤机上。与Bessinger的设备相同,传感器D在截割通道已经形成后检测辐射,而且不能确定到岩石的距离,直到留下一些测量用的煤为止。此外,公知的传感器缺乏所需的强度,这样就不能安装到正确位置上,从而不能精确确定煤-岩边界。
这样,就需要提供一种用于保证传感器同时精确确定煤层和非煤层之间的边界的装置和方法,从而提高煤炭产量并降低非煤副产品的产量。

发明内容
解决上述传统设备中存在的缺陷的一种方法就是将一个尺寸合适的传感器安装到需要测量的实际目标附近,以使视角较大,同时大体包围需要测量的区域。采煤机的移动速度在很短的严格时间间隔内由传感器来控制,目的是留出时间完成所需精确度的测量,同时允许采煤机在其它时间以最大的速度工作。
本发明的一个方面提供了一种用于将尺寸合适的伽马探测器安装到达到所需精确度所需的理想位置上并能够在这些位置上有效利用测量结果的结构。一个实际问题在于探测器最理想的安装位置已经被喷洒装置所占用,而喷洒系统用于降低灰尘的危害。这个问题已经通过将喷洒总管和喷嘴安装到一个铠装的探测器内并进一步利用其喷洒性能改善探测器部件的完好性而得到解决。
本发明的另一方面提供一种通过精确测量穿过煤的射线来确定采煤机到岩石界面的距离,当煤炭已被采下时,这些煤炭介于采煤机和岩石之间。此外,还提供一种用于控制采煤设备的操作以利用这种测量能力的方法。
本发明的一个实施例提供了一种用于保护与采煤设备一起使用的检测部件的铠装探测器部件。这种铠装的探测器部件包括一个结实的壳体,该壳体内限定有一个用于容纳探测元件的内部空间,而探测元件用于在采煤环境下检测信号。该壳体包括至少一个窗口,所述窗口适合于为探测元件提供力和磨损保护,同时允许探测元件接收与一个区域有关的信号,所述区域包括采煤设备正在开采的区域。
本发明的另一实施例还提供了一种设置有开采设备和铠装探测器部件的开采系统,铠装探测器部件安装在开采设备上并用于保护与开采设备一起使用的探测元件。这种铠装的探测器部件具有一个结实的外壳,该外壳限定有一个用于容纳探测元件的内部空间,而探测元件用于在采煤环境下探测信号。该外壳包括至少一个窗口,所述窗口适合于为探测元件提供力和磨损保护,同时允许探测元件接收与一个区域有关的信号,所述区域包括采煤设备正在开采的区域。
本发明的又一实施例提供了一种用于采煤环境下的伽马探测器部件。这种部件包括一个闪烁元件、一个与闪烁元件以光学方式相连接的光电倍增管,一个窗口,一个电源、逻辑元件和防爆外壳,该防爆外壳包括一个密封盖、一个防爆壳体和窗口。光电倍增管、电源、逻辑元件和其它电子元件被安装在防爆壳体内。
本发明的再一实施例提供了一种包括下述步骤的采煤方法将一个能够在包括有一目标地层的采煤环境下接收信号的传感器安装在由一个结实的壳体限定的内部空间内;将该壳体安装到采煤设备上,用于检测信号;操作采煤设备并禁止在目标地层周围的任何区域内进行开采。
结合附图,通过阅读对本发明最佳实施例的详细说明,将会容易地理解上述的优点和特征。


图1为包括有一根据本发明最佳实施例的铠装探测器部件的连续采煤机的侧视图;图2为图1所示的铠装探测器部件的顶视图;图3为沿图2之剖面线III-III的剖视图;图4为沿图3之剖面线IV-IV的剖视图;图5为沿图2之剖面线V-V的剖视图;图6为图1所示的铠装探测器部件的透视图;图7为图1所示的铠装探测器部件的主要部分的底视图;图8为图1所示的铠装探测器部件的阴影部分的顶视图;图9为图1所示的铠装探测器部件的阴影部分的底视图;图10为根据本发明另一实施例的铠装探测器部件的透视图;图11为图1或图10所示的铠装探测器部件的探测器的透视图;图12为沿图11之剖面线XII-XII的剖视图;图13为根据本发明另一最佳实施例的铠装探测器部件的顶视图;图14为根据本发明另一最佳实施例的铠装探测器部件的透视图;图15为根据本发明另一最佳实施例的铠装探测器部件的侧视图;
图16为根据本发明另一最佳实施例的铠装探测器部件的局部剖视图;图17为根据本发明另一最佳实施例制成的控制面板的示意图;图18为根据本发明另一最佳实施例制成的悬臂速度调节元件的示意图;图19为根据本发明另一最佳实施例制成的悬臂速度调节控制阀的示意图。
对最佳实施例的详细说明在图1中示出了一个与采煤设备10相连接的铠装探测器部件30,该部件用于容纳检测部件100,而检测部件100用于采煤操作中。图示的采煤设备10是一个连续采煤机。采煤设备10包括一个活动悬臂16,该悬臂与一个截割滚筒12相连接。截割滚筒12设置有一个外表面14,在该外表面上安装有截割刀具或截齿13。采煤设备10还包括一个溜槽19,开采下来的煤炭溜入该溜槽中,以用于对其做进一步的处理。悬臂16能够沿箭头C所示的方向移动,而采煤设备能够沿箭头E所示的方向移动,其中箭头E的方向垂直于箭头C的方向。在采煤悬臂16的下部设置有一个悬臂挡块17。通过与溜槽19相接触的悬臂挡块17可防止悬臂16向下移过某一位置。
在图1中,采煤悬臂16上设置有两个铠装的探测器部件30、430。在悬臂16上,距截割滚筒12最近的点位于悬臂16的前部,或者位于顶部或底部边缘上。这种铠装的探测器部件有利地设置在悬臂16的上部18上,用于测定顶板的煤-岩界面(未示出),或者将铠装的探测器部件设置在悬臂16的下部20上,用于测定底板的煤-岩界面206。反之,如图所示,铠装的探测器部件30设置在悬臂16的下部20,而铠装的探测器部件430设置在悬臂16的上部18。探测器部件30和430可从下部或上部观察到截割滚筒12上的截齿13和正被截割的底板表面或顶板表面,或未被截割的煤层200的煤壁202之间的情况。未被截割的煤200对于采煤设备的操作人员而言就是目标地层。
探测器部件30、430还可沿采煤悬臂16的宽度横向设置在任何位置上。这种情况对于安装探测器部件30、430而言更为有利。例如,采煤设备10在完成第一次进刀后,将从煤壁202退出并沿横向移动,接着开始第二次进刀。有时,也会在第一和第二次进刀之间出现重叠情况。如果探测器部件30和430定位在能够观察到未采煤的位置上,那么即使出现重叠情况,探测器部件30、430的观察区域也会只有较小的部分被挡住。
一般可以在夹在上方的不透水页岩层和岩石层204(例如下方的耐火粘土)之间的地层中发现煤炭。有时,在页岩层中或在页岩层下会形成硫化铁块体。硫化铁块体是极其致密、坚硬且能够损坏截齿13的材料。除确定出未采煤层200和岩石材料204之间的煤-岩界面206外,探测器部件30还能够确定是否存在硫化铁块体。这样,由于将一探测器部件30安装在上部18,因此还可通过提醒采煤设备10的操作人员附近存在硫化铁块体而防止截齿13的损坏。
当截割滚筒12的截齿13与煤壁202相接触时,一些未被截割的煤200就会被截割下来并沿朝向溜槽19的方向移动。根据操作人员对采煤设备10的操作情况,一些堆状的未截割煤200可能仍然保存在采煤设备10和煤壁202之间。煤堆的体积决定于截深。例如,如果采煤设备10以截齿13之直径的约2/3切入煤壁,那么煤堆的体积就如同附图中的标记210。但是,如果采煤设备10以截齿13的直径切入煤壁,那么煤堆的体积就如同图中的标记212。理论上讲,未截割煤的区域大体就是由理论上的截煤线214、截齿13和煤壁202限定而成的区域。但是,由于采煤设备10的震动和截割滚筒12的移动,一些未截割的煤一般会裂开并溜向溜槽19,这样就会留下第一未截割煤的区域210或第二未截割煤的区域212。应该知道采煤设备10的操作未必总是一致的,因此,就可能有很多未被截割的煤堆在第一未截割煤的区域210和第二未截割煤的区域212之间变化。
在整个采煤设备10上震动水平都很高,但在截割滚筒12附近,震动水平最高。除了由于截割滚筒的旋转和截齿13对煤壁202的截割而产生的震动外,截割滚筒12连续地将开采下来的材料抛掷到悬臂16上。具体而言,沿方向B旋转的截割滚筒12将材料抛向悬臂16。由抛掷到悬臂16上的高冲击力具有磨损性,而且能够在很大程度上腐蚀掉用在悬臂16上的钢板。所有从悬臂16的表面伸出的结构都可能在抛掷材料而产生的冲击力的作用下而断裂。因此,铠装的探测器部件30由能够被焊接到采煤设备10上的材料制成。铠装探测器部件30的局部或整体最好由高强度材料制成,例如能够使γ射线产生高衰减的硬化钢或高强度钢合金。此外,铠装的探测器部件30被固定到悬臂16上,以使其与悬臂16的表面平齐,或者固定到部分18或部分20上。
现参照图2至9,图中示出了铠装的探测器部件30。图2从一端示出了铠装的探测器部件30。如图所示,铠装的探测器部件30包括一个主体部件32和一个封盖部件74。主体部件32的外部由一个前表面42、一个前斜面36、一个顶面弧形部分40、一后斜面38、一背面44、一后底面62、一个后凸肩64、一个内部弧形表面66、一个前部接合表面72、一个前凸肩70和一前底面68限定而成。前斜面36大体面向由理论上的视线220和下部观察实线226(图1)包围而成的观察区域。封盖部件74的外部由一个前表面90、一个正面88、一个凸肩86、一个顶面84、一个弧形表面82、一个隆起部分80、一个具有背面78的凸缘76及一个底面92限定而成。
主体部件32装配在封盖部件74上,以使背面44、78位于同一平面内,前表面42、90位于同一平面内。当按照上述方式装配时,凸缘76抵靠在后部的底面62上,隆起部分80与后凸肩64相接合,顶面84支承在前部接合表面72上,凸肩86与前部凸肩70相接合,正面88与前部底面68相接合。此外,弧形表面82的边缘与内部弧形表面66的边缘相交并接触,以限定一个能够容纳探测元件100的空间。将探测元件100安装在一个介于主体部件32和底座部件74之间的空间内意味着在敏感的探测元件100和靠近截割滚筒表面14的恶劣截割环境之间(具体而言,是在主体部件32的后部斜面38和顶面弧形部分40上)设置了一个重要、坚固的壳体部分。
除了上述的结构特征外,图示的主体部件32还包括一条与流体设备(未示出)流体联通的通道58。在主体部件的前斜面36上还设置有至少一个安装在一观察孔46内的窗口48。从流体通道58朝向前斜面36延伸的是多个喷口60(见图3和6)。至少一个喷口60在一个邻近顶面弧形部分40的位置上延伸到前斜面36内。此外,一个喷口60延伸到每个窗口48内,具体而言是延伸到后壁54,而且定位在能够将通过开采操作而抛掷到窗口48内的某些或全部碎屑除掉的位置上。
主体部件32的斜面特征,即前斜面36和后斜面38被构造成能够在一定程度上使抛掷到铠装探测器部件30上的碎屑产生偏转的结构形式。具体而言,由于截割滚筒12沿方向B旋转,因此碎屑大体沿箭头F(图3)所示的方向抛掷到探测器部件30上。这样,背面38承受着抛掷碎屑的大部分力,而且窗口48能够免受大部分抛掷碎屑的袭击。主体部件32和封盖部件74被固定在一起,而且可相互拆卸,以能够拆下探测元件100。
图2从顶部示出了铠装的探测器部件30。邻近顶面弧形部分40设置在铠装探测器部件30的前表面36上的是一个由四个窗口48构成的观察窗46。由后壁54和前壁53部分限定而成的每个窗口48都凹入主体部件32内并包括一对孔50,这对孔设置在观察窗的底面52上并被一个窗口防护件56所分离。该窗口防护件56由高强度材料制成,而且窗口48的尺寸和结构能够限制在采煤过程中冲击窗孔50的碎屑。窗孔50位于一个允许射线穿过的非金属材料51的下方,例如可以是尿烷。此外,在窗口48内还包括侧面窗玻璃59(图2、6),该侧面窗玻璃允许射线穿过窗孔50,以从一个窗口48传递到另一窗口,从而防止挡住横向射线。请注意为简明起见,侧面窗玻璃59在图3中未被示出。窗口48在前斜面36内形成有一个凹入区域,从而为位于窗孔50下方的透明材料51提供更多的保护。
探测器部件30定位在使窗口48的观察区域由一个理论上的上部视线220和一个理论上的下部视线229(图1、3)限定而成的位置上。理论上的上部视线220穿过截割滚筒12从前壁53延伸,其使来自岩石材料204的辐射信息在很大程度上衰减。实际中的上边界就是上部观察实线222,该视线从窗孔50延伸出来并与截割滚筒12的外表面14相切,而且穿过截齿区域13延伸。探测部件30的最大观察范围,即每个窗口48的整个观察范围就是由上部观察实线222和下部观察实线226所限定的全部观察区域228。实际观察区域228小于介于下部观察实线226和理论上的视线220之间的观察区域。探测器部件30可以在下部观察实线226和下部实线229(图1)之间完成局部观察。每个窗口48的后壁54挡住了下部观察实线226和下部视线229之间的完整观察。
可从实际观察区域228实现辐射信息的最佳收集。这是因为从位于截齿区域13内的煤壁202上截割下来的煤不如煤层200中和第一、第二未截割煤210、212中的煤致密。这是因为截割下来的煤块被混合在一起并在截齿区域13内移动。密度较小的煤位于实际观察区域228内,来自岩石204的射线在进入探测器部件30之前衰减较小。
当截齿13接近岩石界面206时,悬臂16的移动慢下来,这样就允许截齿13从区域228内将大部分开采下来的煤运出。尽管悬臂16的移动速度放慢,但截割滚筒12的旋转速度是保持恒定不变的。这样就能够使截煤速度放慢,从而能够用截齿13将采下的煤更加充分地清入溜槽19中。
可从由下部观察实线226和下部视线229限定的观察区域内得到虽然重要但可靠性却较差的射线信息。当截齿13距离岩石界面206的距离越大,那么这些信息也就越重要,因为这些信息用于作出使悬臂16的移动放慢的逻辑决定。截齿13越接近岩石界面206,射线信息的可靠性也因为未截煤区域210、212的尺寸和形状的变化而变得越差,但是,在截割行程中,从比例上来说该区域的影响在该位置上很小。
本发明的另一实施例如图13所示,该实施例将一个格栅235安装到位于铠装探测器部件230内的窗孔50的上方。格栅235可由金属或类似的高强度材料制成,而且格栅的开口内充填有辐射射线能够通过的非金属材料151。格栅235仅使从岩石材料204发出的射线特征有一个很小的衰减。通过这种结构,就可以防止碎屑与窗孔50相接触,而且又不损失射线信息。
图4为铠装探测器部件30的剖视图,图中示出了与喷口60流体连接的通道58。喷口60与通道相58连接并朝向前斜面36延伸。喷口60被设置成能够以最佳方式除去碎屑的结构形式。具体而言,一些通过通道58输送的流体从后壁54上的喷口60流过整个窗孔50。这些流体用于打湿收集在窗口48内的碎屑。湿润的碎屑变得更加柔软也更易于弯曲,这样,潮湿就能够防止碎屑挤压到窗孔50上。变得如此结实的碎屑增加了作用于窗孔50和下面的透明材料51上的力,从而增加了透明材料51被通过旋转截齿13侵入部件的材料所破坏的可能性。
剩余的流体进入延伸到前表面36处的喷口60内。这些流体形成了分布到截齿13上的喷雾,以防止灰尘夹带在空气中。煤尘具有可燃性,而且能够被火花点燃。在煤矿中,火花通常是通过截割滚筒12对岩石和金属例如硫化铁的截割而产生的。
图5示出了铠装探测器部件30的另一剖视图。图中示出了容纳在一个薄型壳体111内的闪烁元件110。多个弹簧118设置在壳体111和一个刚性外壳102之间。图中示出了六个弹簧118。一个由弹性材料制成的套管108设置有多个由弹性材料制成的隆起104,而且套管的外部面向刚性外壳102。整个部件装配在用于探测元件100的区域内。在透明材料51的下方恰好没有设置弹簧118。一个O形环67围绕透明材料51延伸,从而将探测元件100与水及污染物隔开。图中还示出了一个通过一喷射通道63与流体通道58流体连接的主喷雾器65。该主喷雾器65向煤炭喷雾,以降低煤尘被点燃的可能性。
图6为铠装探测器部件30的透视图,图中以一个不同的角度示出了窗口48内的喷口60的出口延伸到斜面36及侧面窗玻璃59装配在防护件61内的情况。如图10所示的另一实施例示出了一种具有一主体部件132和一封盖部件174的铠装探测器部件130。部件30和130之间的主要区别在于喷嘴的出口位置。在铠装的探测器部件130中,喷嘴160在一个位于出口48下方的位置上朝向斜面36开口。此外,一流体通道158穿过封盖部件174延伸并与喷嘴160流体联通,而流体通道158类似于与喷嘴60流体联通的流体通道58。
尽管在图中未示出,但是应该知道喷嘴可以类似方式设置在窗口48和/或窗孔50附近。例如,喷口可设置在两侧和各个窗口48之间。此外,喷口可设置在窗口底面52和/或窗口防护件56上。
图7为主体部件32的底视图。窗孔50穿过内部弧形表面66延伸。透明材料51恰好设置在内部弧形表面66的下方一个覆盖窗孔50的位置上。主体部件32的内表面包括有多个沿后部底面62、前部凸肩70和前部接合底面72设置的内螺纹孔94。在主体部件32的前部底面68和前表面42上还设置有多个外螺纹孔96。
图8为封盖部件74的顶视图。封盖部件74的封盖顶面84包括多个沿凸缘背面78和封盖前表面90设置的外螺纹孔96。封盖部件74还包括多个沿封盖凸肩86设置的内螺纹孔94。如图所示,弧形表面82支承着探测元件100。主体部件32的外螺纹孔96(图7)与封盖部件74(图8)的外螺纹孔96相互配合,每个孔96都通过一个螺纹连接结构(未示出)例如螺钉、螺栓等与另一个孔96相连接。主体部件32的每个内螺纹孔94(图7)还与封盖部件74上的内螺纹孔94(图8)相配合并以与外螺纹孔96相类似的方式与封盖部件74上的各个内螺纹孔94相连接。
图9为封盖部件74的底视图,该封盖部件具有多个内螺纹孔94和外螺纹孔96。
铠装探测器部件30的精确位置决定于采煤设备10的物理特性。例如,铠装探测器部件30可沿采煤悬臂16设置,目的是使探测元件100的操作最佳。图示的实施例的一个优点在于铠装探测器部件30在采煤悬臂16上的位置靠近截割滚筒12。这种定位能够更精确地确定煤-岩界面206。铠装的探测器部件30可被焊接到采煤悬臂16的一个最佳位置上。如上所述,铠装的探测器部件30极其坚固,从而能够安装在更靠近截割滚筒12的位置上。
另一优点在于通道58与采煤设备10的流体源及喷嘴60相连接,从而使覆盖窗口48的碎屑量最少。设置在主体部件32的内部并邻近窗口48的喷嘴60能够连续除去碎屑,从而提高通过探测部件100得到的射线信息的精确度。在窗孔50的下方采用辐射衰减较低的非金属材料51能够使更多的射线信息到达探测元件100。
由于封盖部件74和主体部件32是可拆卸的,因此当探测元件100和窗口48出现的任何损坏都能够通过更换新部件而容易地实现维修或调整。封盖部件74可被焊接到与采煤悬臂16的表面相平齐的位置上,以防止在采煤过程中断裂。
参照图11、12和16,探测元件100包括一个闪烁晶体110,一个光电倍增器114,整体上被表示成电源和逻辑元件116的一个电源、一个信号调节器、逻辑电路和软件,所有部件都是辐射探测器100的组成部分。尽管辐射探测器被描述为一个探测元件100,但也可采用其它探测元件,例如光、红外线、无线电波或声学传感器来检测煤的存在。能够从岩石204或煤炭200中检测到信号并能够提高确定煤-岩界面206的精确度的任何探测元件都适用于本发明。
光电倍增管114与电源和逻辑元件116被容纳在一个防爆外壳120内,该防爆外壳包括一个O形圈122、一个窗口124和一个壳体126。其它电子元件也可包括在壳体120内,例如过滤和放大器部件(未示出)。外壳120本身被装配在由特性材料制成的套管108(图12)内。电力输入、控制元件和信号通过一个导管137进入外壳120内,而导管137穿过一个密封盖128(图16)延伸到外壳120内。窗口124最好由蓝宝石或其它耐恶劣环境并允许光脉冲通过的材料制成。窗口124及一个灯管135用于使闪烁元件110与光电倍增管114以光学方式连接并密封外壳120的一端,而O形圈用于密封外壳120的另一端,从而满足“矿井安全和卫生管理条例”(MineSafety & Health Administration)中有关防爆外壳的要求。除了一个蓝宝石窗口124外,还可采用另一个由强度较小的材料制成的窗口,以使闪烁元件110与外壳120以光学方式连接在一起。
将外壳120安装在弹性体套管108内具有一定的优点。首先,光电倍增管114、电源和逻辑元件116被制造成能够安装到外壳120内的小尺寸形式,从而使其动态隔离。将光电倍增管114、电源和逻辑元件116全部安装在外壳120内能够使这些元件在满足防爆标准的防电磁干扰的壳体内整体起作用。来自逻辑元件116和光电倍增管114的所有信号都不受外界环境的影响,而且不受电磁干扰,当试图探测微弱的γ射线时,这一点尤其重要。
对于设计用于采煤机截割滚筒附近的γ探测器而言,一个重要的方面就是避免产生添加到信号中的噪音。在采煤环境下,从γ探测器发出的信号中的噪音以两种方式产生。噪音可能以机械方式产生或以电学方式产生。当闪烁元件相对移动,从而发出自然光时,就会以机械方式产生噪音。同样,闪烁元件与光电倍增管之间的机械连接也能够在振动过程中产生移动并产生闪光。光电倍增管内的部件能够产生转动,从而使输出产生不良的变化,而且这种不良变化也作为信号被发出。本发明通过设置多种隔振和防冲击措施来消除以机械方式产生的噪音源。用于探测器100上的所选元件包括一个具有很高共振频率的支承装置。本发明还提供一种共振排列非常低的弹簧118,弹簧118包围着设置于刚性动态外壳120内的闪烁晶体110。其它的隔离部件由包围刚性动态外壳120的弹性体材料108构成。使用这种支承装置的结果就是确保包围振动敏感元件的支承元件之共振频率不会与通过周围弹簧118传递的频率动态接合。这样,敏感元件就能够免受破坏性的高振动和冲击力的作用。传统的方法依赖于简单的机械隔离部件,而这些隔离部件需要占用大量的空间,因此不能安装到最理想的位置上。此外,如果在图示的实施例中没有设置铠装,那么以传统方式设计的外壳就会通过开采材料的直接撞击而迅速损坏。
本发明的图示实施例还有效地解决了由采煤设备中的电机和其它部件以电学方式产生噪音的问题。这一点可通过将重要的电子元件例如电源、放大器、过滤器、鉴别器、增益调节电路、逻辑电路和其它电子元件(即电源和逻辑元件116)安装在一个密封外壳120内来完成。安装在外壳120内的电子元件能够免受来自采煤设备的电磁辐射的影响。外壳120内的放大器能够在将信号从探测器传递给采煤机的控制系统之前将信号放大。这些经过特殊调节和放大的信号当其通过抗震电缆进入采煤机控制系统内时基本不受感应电磁射线的作用。矿井安全规程规定电气和电子设备应安装在防爆外壳内,目的是防止点燃探测器周围的煤尘或气体。图示实施例的一个特征在于探测器100被构造成能够在探测器内满足防爆要求的结构形式。在探测器上设置的防爆外壳允许电子元件安装在探测器内,这样敏感的、微弱信号就不必在防护结构的外部传输给设置在较远位置上(通常为很多英尺)的电子元件。此外,防爆外壳120还受到铠装探测器部件30的保护。
所有这些都能够以不需要很大空间的形式被实现,小体积的探测器可根据需要安装在靠近目标地层的位置上。一般用于保护采煤机上的电气系统的防爆盒其体积非常大,以至于一般不能安装在那些位置上。
对正被截割的煤层之厚度进行的测量其精确度决定于测量的速度。而测量的速度又决定于闪烁晶体或元件110的体积和效用及正被截割的目标材料的视野开放程度。一般用于从一个待测区域有选择接收射线同时滤掉来自另一区域的射线并不适用于本申请。由于岩石中的大部分γ射线具有较低的能量,因此闪烁元件110的表面面积比其体积更为重要,因为低能量辐射一般是在元件110的表面附近被收集到的。对于一个给定的体积,圆筒形闪烁元件110的理想比例是一个长度与直径之比很大的比率。由于位于细长的圆筒形截割滚筒12下方的目标区域是一个沿采煤机的长度方向延伸的较狭窄的条带,因此闪烁元件110的主轴线应该与该条带平行。具体而言,晶体110在垂直目标条带轴线的方向上的尺寸应该很小,以为闪烁元件110提供足够的保护,从而防止其受到来自除目标区域外的其它方向的射线的干扰。
用于闪烁元件110的动态支承装置最好对长度和直径比较高的碘化钠(NaI)晶体有效,因为NaI晶体容易因振动、冲击、剪切或弯曲力的作用而断裂。沿元件110的长度延伸的径向弹簧和沿屏蔽件102的长度延伸的弹簧118可提供这种保护,而且还能够防止由于机械振动而产生的噪音进入到信号中,其中闪烁元件110设置在屏蔽件102内。
一旦为能够承受高振动而对长度直径比较大的最大尺寸的碘化钠闪烁元件110进行正确支承,那么另一个问题就是提供机械保护,以防止受到由采煤机滚筒12抛向探测器100的物体的影响。这种保护必须在视线没有被严重挡住的前提下由闪烁元件110的表面部分来实现。这种特殊的观察要求可由安装在窗口区域上方的防护件61来完成,以允许大部分射线沿条带的长度方向不受防护件遮挡地到达位于闪烁元件表面的多个位置上。设置在探测器内部的径向弹簧118有选择地用于减小低能量射线的衰减。
总之,除了为电子元件提供的特殊环境保护外,在采煤机滚筒12截煤时,这些特征能够使敏感度极高的探测器对快速变化的条件作出反应。但是,为进一步提高测量的精确度,当采煤机滚筒12接近岩石时,可放慢其移动速度。通过在煤岩界面206附近放慢悬臂16的移动速度而添加到截割行程中的时间可以仅为3或4秒,这样就能够作出精确、自动的截割决定,从而节省用于整个截煤循环的时间。
闪烁晶体110可由任何能够将射线辐射转换为光脉冲或信号的合适材料制成。闪烁晶体110最好由碘化钠制成,碘化钠是一种能够产生最大光输出强度的公知材料。闪烁元件110的常规尺寸一般为1.42英寸的直径和10英寸的长度。光脉冲通过窗口124传递给光电倍增管,而该光电倍增管又将光脉冲转换成电信号。然后,对电信号进行分析,以确定距煤一岩界面206的距离。例如,对高于预定能量水平的计算速度(count rate)进行测量并与一个输入基准或校正基准相对比,然后发出一个逻辑命令,以使悬臂16的移动速度放慢,接着停止悬臂16的移动。
弹性体套管108允许射线穿过,因此仅有微小变化甚至没有变化的射线进入探测元件100内。多个开口106穿过壳体111和刚性外壳102延伸,以允许射线进入探测元件100内并能够被闪烁晶体110探测到。开口106与设置在铠装探测器部件30之主体部件32上的孔50相对应。
通过将这些电子元件安装在外壳120内,就可以在很大程度上降低噪音并能够避免将高压从外部电源传送给光电倍增管114。
如上所述,对铠装探测器部件30的一点考虑在于降低振动和冲击,因为振动和冲击都将在探测元件100的信号中产生噪音,尤其是在闪烁晶体110内产生噪音。这样,闪烁晶体110、光电倍增管114、电源和逻辑元件116均被装入弹性体套管108内,该套管能够吸收一些产生振动的噪音。可由硅橡胶制成的弹性体套管108还用于防止闪烁晶体110受到采煤机上用于控制煤尘的水和/或化学物质的影响。此外,多个围绕壳体111的周边延伸的弹簧118还提供了额外的保护。
弹簧118可被调节成能够在屏蔽件102内达到所需共振频率的结构形式。具体而言,弹簧118可通过改变其宽度、厚度、形状和材料类型而实现调节。通过将探测元件100的共振频率与弹簧118调成一致,这种调谐操作或者单独完成,或者与另外一组直接包围位于弹性体套管108内的闪烁晶体110的弹簧(未示出)接合完成,这样,闪烁晶体110就能够与更高的共振频率隔开并可防止与较低的频率产生共振。
可安装一个标称厚度为0.01英寸、标称宽度约为0.75英寸的弹簧118,以使其能够局部在开口106的上方延伸。比较细小而且由弹性体隆起部分104支承的弹簧118能够在开口106的上方延伸,而不会对能量在约80千电子伏特以上的入射射线的通道产生负面影响。如图5和11所示,可以省去一根位于开口106上方的弹簧118,从而留下一个宽度约为0.75英寸的间隙。邻近该间隙的弹簧118将增加低能量射线(30-80千电子伏特)的衰减,但对较高能量的入射射线则仅产生微小的影响。
可通过将封盖部件74从主体部件32上移开的方式将探测元件100装入探测器部件30内或从该部件30内取出。或者,可通过一个开口101(图6)将探测元件100安装到探测器部件30内或从该部件30内拆卸下来。
参照图15,探测元件100可被装配到一个弹性体套管150内。探测元件100的一端103设置有一个闪烁晶体110,其另一端105设置有一个电源116。套管150被安装到端部103上。套管150由允许射线通过的弹性体材料制成。套管150包括多个凸棱152,这些凸棱可从端部103朝闪烁晶体110成锥形。探测元件100以下述方式安装到探测器部件30内使套管150形成一个能够安装到开口101内的楔形。
在图14所示的另一种变形结构中,探测元件100可通过一个前部安装板331安装到探测器部件330内或从将其从探测器部件内拆下。板331设置在主体部件332内并从一个前部斜面336延伸到一个后部斜面338处。此外,板331必须延伸足够的长度,以能够通过该板容易地安装和拆卸探测元件100。
一旦采煤设备10开始切割煤壁202,那么闪烁晶体110就会接收从岩石材料204发出的射线。来自闪烁元件110的光脉冲通过光电倍增管114转换成电脉冲。通过计算脉冲的总数量(及散脉),就可以确定正在截割的材料类型。尽管从煤炭200中也会发出一些射线,但是与来自岩石204的射线相比其数量很小。当悬臂16将滚筒12下放,以允许截齿13切入煤200中时,由于煤炭被采下,而且对由岩石204发出的射线的吸收量减小,因此到达探测器100的射线量就会增加。被测量的辐射还要在一定程度上受到岩石界面206的形状的影响,这样,界面206的上升将增加正被测定的辐射量,而界面的下降将降低正被测定的辐射量。一旦来自岩石204的射线增加到一个操作人员选定的水平上,那么探测器的逻辑元件116将发出一个信号,以使悬臂16的一定速度放慢到一个预定的速度。这种较低的速度将为探测器提供更多的时间对辐射水平作出更精确的测定。操作人员还可以选定一个能够使悬臂16的移动进一步放慢的第二水平,从而能够更为精确地测量。最后,一旦作出了精确的测定,那么悬臂16的移动就会停止。
由于铠装探测器部件30被焊接到与采煤设备10平齐的位置上,因此岩石和其它碎屑就不大可能将铠装的探测器部件30从采煤设备10上撕裂下来。被抛掷到窗孔50上的所有碎屑可用喷嘴60喷掉,或至少将碎屑打湿。当仍然对煤炭进行探测时,采煤设备10继续穿过未被截割的煤200前移。当检测到的辐射水平的变化与煤到位于煤岩界面处206的岩石的变化相一致时,采煤设备10就会停止,并根据闪烁晶体110、光电倍增管114和逻辑元件116输入和翻译的新的辐射信息沿一个新的截割方向移动。
参照图17和18,图中示出了另一最佳实施例。图17示出了一个与探测器100内的逻辑元件116电连接的控制面板350。该控制面板350允许操作人员将界限值输入到探测器的逻辑元件116内。一旦辐射水平达到这些界限值,那么悬臂16的移动就会减小,以提高测量的精确度。接着,逻辑元件116作出逻辑决定并将控制信号发送给控制阀(将在下文中参照图18加以说明)。通过使用一个菜单开关358,操作人员可选择三个界限值中的任何一个,或调整在显示器352上显示出来的位置。开关355和356允许显示器在一个数值范围内滚屏,直到到达所需的数值。接着,可用菜单开关358选择下一个需要调整的调整点,该过程可反复进行,直到所有的调整点都已被调整到所需的数值。
在图18所示的实施例中,一个设置在主管路361上并由控制面板350电控的主控制阀362通向三个液压控制阀364、366和370。一个第一流量调节管路363包括一个第一控制阀364并将主管路361和通向一液压缸(未示出)的管路374连接起来。一第二流量调节管路366包括一个第二控制阀368,也将主管路361和管路374连接起来。一个第三调节管路370包括一个第三控制阀372,而且也将主管路361和管路374连接起来。
可通过用控制面板350上的开关357来确定一个截割方向的方式使截割滚筒12开始工作,而开关357一般由操作人员来控制。如图所示,开关357可设置在控制面板350上,一个用于开采设备10的局部控制面板上,一个用于采煤设备10的遥控面板上,或上述形式的任意组合。为简明起见,可以假设悬臂16的主要由开关357来控制。在截割循环开始时,所有的控制阀364、368和372都被打开。当截割滚筒12靠近煤-岩界面206时,辐射探测器100就会检测到γ射线的增加,而这种增加又会被翻译成脉冲数量的增加,而脉冲数量的增加又会显示在脉冲计算器354的显示面板353上。一旦脉冲数量达到操作人员利用控制面板350选定的第一临界设定值,如上所述,一个由探测器100的逻辑元件116发出的信号就会关闭第一控制阀364。这样就降低了液压流体的流量,从而通过放慢悬臂16的下降速度(如果在向下的行程中执行截割操作)或上升速度(如果在向上的行程中执行截割操作)来降低截割滚筒12的截割速度。悬臂16的上升或下降速度被称为回转速度。
当第一控制阀364关闭时,回转速度分别决定于第二和第三流量调节控制管路366、370的控制阀368、372。控制阀368和372均处于打开状态时的变换速度应该为每秒二到三英寸。
当脉冲数量达到第二预定的调整值时,探测器100内的逻辑元件116发出一个第二信号,以关闭第二流量调节控制阀368。这样,就可以将回转速度下降到每秒二分之一英寸。当脉冲数量达到一个第三个预定的调整值时,该第三预定值应该设为在煤-岩界面206处期望看到的脉冲数量,由计算器352发出的一个第三信号关闭第三控制阀372,从而使悬臂16停止移动。
如上所述,菜单控制部件358允许一个人输入不同的设定值。备用开关360允许操作人员将辐射探测器100从采煤设备10的控制回路中取出。
如果操作人员选择停止悬臂16的移动,那么他就会松开悬臂控制开关357。这样就可以关闭主控制阀362,从而使悬臂16停止移动。当停止悬臂16的移动时,三个控制阀364、368、372返回打开位置。如果悬臂16过早地停下来,那么操作人员就能够通过简单地启动方向控制开关357来“冲击”悬臂16。此外,如果第三控制阀372被关闭,从而使悬臂16停止移动,而且已经作出判断距煤-岩界面206仍然有一定距离,那么操作人员就能够冲击方向控制开关357。这样,悬臂16将继续移动,直到在约为两秒的时间内,检测到γ脉冲的数量,在该点上,悬臂16的移动通过关闭第三控制阀372而再次停止。
除了冲击悬臂16外,操作人员还可以选择启动备用开关360,该开关将脉冲控制部件352和悬臂16隔开。这样就能够使操作人员完全控制悬臂16的移动,对于截割地形断续的条件或存在大石头或岩石的条件,或者对于顶板坍塌的条件而言这一点十分有利。
菜单控制部件358用于选择和预定不同的脉冲量参数。一个可以想象的实施例提供了一种滚动菜单,该菜单包括有一定范围的计算速度。可从这个计算速度范围内选择三个参数,用于放慢悬臂16的回转速度和最后停止悬臂的回转。
图19示出了控制阀的另一实施例。主控制阀362可用一个变量控制阀来替代三个液压控制阀364、368和372,该变量控制阀允许满流量、无流量和介于二者之间的增量流量。
因为有时就属于这种情况,由设置在采煤设备10之顶部18上的辐射探测器100记录下来的脉冲数量(及穿过顶板的辐射读数)与由设置在下部20上的辐射探测器100记录下来的脉冲数量(穿过底板的读数)不同。此外,有时来自顶板的辐射读数“很热”或很高,而底板的读数则有些不确定。假设煤层沿整体厚度大体相同且略有起伏的地层延伸,那么还可以想象与传统方法相比,一个与一选定厚度值相接合的辐射探测器100可用于更精确地开采煤层。
例如,可在悬臂16的背面安装一个电位器500(图1)。该电位器500是一种用于了解截割滚筒12所在位置的有效仪器。通过来自一个辐射探测器的读数了解到煤岩界面,并了解到煤层在一般位置上的厚度为近似厚度,那么电位器500就能够用于确定截割操作应该何时在采煤机道的任意位置上停止,在该位置上,来自另一辐射探测器100的读数仅能就煤岩界面206的位置提供很少的帮助。尽管该实施例是以一对辐射探测器100的形式来进行说明的,但是,显然,电位器500可以与一个辐射探测器相连接。
本发明提供了一种应用到采煤设备(例如连续采煤机)上的铠装探测器部件,该部件用于探煤和探测煤层和岩层之间的边界。尽管本发明已接合最佳实施例作出了说明,但容易理解本发明并非局限于上述的实施例。可对本发明作出变形,以接合未在本文中公开的任意数量的变化、改变、替换或等同结构,但这些都落入本发明的保护范围和构思范围内。例如,尽管已经就连续采煤机对本发明作出了说明,但其它采煤设备例如长壁采煤机也可安装本发明。此外,尽管已就采煤操作对本发明作出了说明,但是,本发明还可应用到各种矿石和矿物的开采操作中。此外,尽管图中示出了四个窗口48,但也可以采用具有一个或多个窗孔50的任意数量的窗口。此外,尽管已对本发明的多个实施例作出了说明,但应该理解本发明的多个方面可仅包括上述实施例中的一些。因此,本发明并非局限于上述的说明,其保护范围仅由所附权利要求书来限定。
权利要求
1.一种用于保护应用到开采设备上的探测元件的铠装探测器部件,所述铠装探测器部件包括一个紧固的壳体,该壳体包括有一个用于容纳探测元件的规定内部空间,所述探测元件用于在开采环境下检测信号;所述壳体包括至少一个窗口,所述窗口能够为所述探测元件提供保护,以免受来自异物的力的作用,同时允许所述探测元件接收与一个区域有关的所述信号,所述区域包括正被开采设备截割的区域。
2.根据权利要求1的铠装探测器部件,其特征在于所述壳体包括一个喷嘴。
3.根据权利要求1的铠装探测器部件,其特征在于,所述壳体包括一个封盖部件;一个固定到所述封盖部件上的主体部件,所述主体和底部部件形成所述的规定内部空间,所述主体部件包括一个顶面;一个流体通道;一个前斜面,沿所述前斜面设置有至少一个喷嘴,所述喷嘴与所述流体通道流体联通。
4.根据权利要求3的铠装探测器部件,其特征在于所述封盖部件可相对所述主体部件移动,以能够在不将铠装探测器部件从开采设备上拆下的前提下拆下探测元件。
5.根据权利要求3的铠装探测器部件,其特征在于所述主体部件和封盖部件以机械方式固定在一起。
6.根据权利要求5的铠装探测器部件,其特征在于所述主体部件和封盖部件用螺栓固定到一起。
7.根据权利要求3的铠装探测器部件,还包括一个设置于所述主体部件上的前板,所述前板可从所述主体部件上拆卸下来,以能够在不将铠装探测器部件从开采设备上拆下的前提下拆下探测元件。
8.根据权利要求3的铠装探测器部件,还包括一个或多个开口,所述开口的下方设置有允许射线透过的材料。
9.根据权利要求8的铠装探测器部件,其特征在于所述材料包括辐射衰减较小的非金属材料。
10.根据权利要求9的铠装探测器部件,其特征在于所述辐射衰减较小的非金属材料包括尿烷。
11.根据权利要求8的铠装探测器部件,还包括所述一个安装在所述开口上方的格栅。
12.根据权利要求8的铠装探测器部件,其特征在于所述主体部件设置有多个适合喷射流体的喷口,所述喷口与所述流体通道流体连接。
13.根据权利要求12的铠装探测器部件,其特征在于所述喷口设置在邻近所述开口的所述前斜面上。
14.根据权利要求12的铠装探测器部件,其特征在于所述喷口设置在位于所述开口上方的前斜面上。
15.根据权利要求12的铠装探测器部件,其特征在于所述喷口设置于位于所述开口下方的前斜面上。
16.根据权利要求12的铠装探测器部件,其特征在于所述喷口设置在位于所述开口的上方、下方和附近的前斜面上。
17.根据权利要求3的铠装探测器部件,其特征在于所述底部和主体部件由适合于使γ射线产生高衰减的材料制成。
18.根据权利要求17的铠装探测器部件,其特征在于所述适合于使γ射线产生高衰减的材料包括表面硬化钢。
19.根据权利要求17的铠装探测器部件,其特征在于所述适合于使γ射线产生高衰减的材料包括高强度钢合金。
20.根据权利要求1的铠装探测器部件,其特征在于所述部件能够被焊接到开采设备上。
21.根据权利要求8的铠装探测器部件,其特征在于所述探测元件包括一个安装在一壳体内的闪烁晶体,所述壳体设置有多个与所述一个或多个开口相对应的孔。
22.根据权利要求21的铠装探测器部件,还包括一个光电倍增管、一个电源和逻辑元件。
23.一种用于开采的γ探测器部件,其包括一个闪烁元件;一个可与所述具有一窗口的闪烁元件以光学方式相连接的光电倍增管;一个电源;一个防爆外壳,其特征在于所述光电倍增管和所述电源安装在所述的防爆外壳内。
24.根据权利要求23的γ探测器部件,还包括安装在所述防爆外壳内的逻辑元件。
25.根据权利要求24的铠装探测器部件,还包括多个沿所述闪烁元件的长度延伸的弹簧,而所述闪烁元件安装在一个壳体内;一个封闭所述壳体并沿所述部件的长度延伸的刚性外壳;一个包围所述刚性外壳的弹性体材料。
26.根据权利要求25的铠装探测器部件,其特征在于所述窗口由蓝宝石构成。
27.一种开采装置,其包括开采设备;一个铠装的探测器部件,该部件安装在所述开采设备上并用于保护应用到所述开采设备上的探测元件,所述铠装探测器部件包括一个坚固的壳体,该壳体包括一个用于安装探测元件的规定内部空间,所述探测元件用于探测采煤环境中的信号;所述壳体包括至少一个窗口,所述窗口适合于为所述探测元件提供保护,以使探测元件免受来自物体的力,同时允许所述探测元件接收与一个区域有关的所述信号,而所述区域包括正被开采设备截割的区域。
28.根据权利要求27的装置,其特征在于所述壳体包括一个封盖部件;一个被固定到所述封盖部件上的主体部件,所述主体部件和封盖部件形成了一个空间,该空间的尺寸和结构允许安装探测元件,所述主体部件包括一个顶面;一个流体通道;一个前斜面,沿所述前斜面设置有至少一个喷嘴,所述喷嘴与所述流体通道流体联通。
29.根据权利要求28的装置,其特征在于所述封盖部件可相对所述主体部件移动,以能够在不将铠装探测器部件从开采设备上拆卸下来的前提下拆下探测元件。
30.根据权利要求29的装置,其特征在于所述主体部件和封盖部件以机械方式固定在一起。
31.根据权利要求30的装置,其特征在于所述主体部件和封盖部件通过螺栓固定在一起。
32.根据权利要求28的装置,还包括一个位于所述主体部件上的前板,所述前板可从所述主体部件上拆卸下来,以能够在不将铠装探测器部件从开采设备上拆卸下来的前提下拆下探测元件。
33.根据权利要求28的装置,还包括一个或多个开口,所述开口的下方设置有允许射线穿过的材料。
34.根据权利要求33的装置,其特征在于所述材料包括低辐射衰减的非金属材料。
35.根据权利要求34的装置,其特征在于所述低辐射衰减的非金属材料包括尿烷。
36.根据权利要求33的装置,还包括一个安装在所述开口上方的格栅。
37.根据权利要求33的装置,其特征在于所述主体部件设置有多个喷口,所述喷口适合于喷射流体并与所述流体通道联通。
38.根据权利要求37的装置,其特征在于所述多个喷口沿所述前斜面定位在所述开口附近。
39.根据权利要求37的装置,其特征在于所述多个喷口沿前斜面定位在所述开口的上方。
40.根据权利要求37的装置,其特征在于所述多个喷口沿前斜面定位于所述开口的下方。
41.根据权利要求37的装置,其特征在于所述多个喷口沿前斜面定位在所述开口的上方、下方和附近。
42.根据权利要求28的装置,其特征在于所述底座和主体部件由适合于在很大程度上使γ射线衰减的材料制成。
43.根据权利要求35的装置,其特征在于所述适合于在很大程度上使γ射线衰减的材料包括表面硬化的钢。
44.根据权利要求35的装置,其特征在于所述适合于在很大程度上使γ射线衰减的材料包括高强度钢合金。
45.根据权利要求27的装置,其特征在于所述部件能够被焊接到开采设备上。
46.根据权利要求28的装置,还包括一个用于容纳所述探测元件的刚性外壳,所述外壳设置有多个孔,这些孔与所述主体部件上的一个或多个开口相对应。
47.根据权利要求46的装置,还包括安装在一个防爆外壳内的一个光电倍增管和一个电源。
48.一种开采方法,其包括下述步骤将一个能够在采环境下接收信号的探测器安装在一个坚固壳体的规定内部空间内,所述开采环境包括一个目标地层;将所述壳体安装在开采设备上,用于探测所述的信号;操作所述的开采设备;禁止在所述目标地层周围的任何区域内进行开采。
49.根据权利要求48的方法,其特征在于所述壳体包括一个封盖部件;一个主体部件,所述主体部件包括一个流体通道和至少一个喷嘴,所述喷嘴与所述流体通道流体联通。
50.根据权利要求48的方法,其特征在于所述壳体的定位包括将壳体定位在一个开采悬臂上,所述开采悬臂与一截割刀具通过一个臂相互分开。
51.根据权利要求48的方法,其特征在于所述壳体适合于探测器的拆卸。
52.根据权利要求48的方法,其特征在于所述壳体还包括一个或多个开口,所述探测器可穿过所述的开口进行探测操作。
53.根据权利要求49的方法,还包括用所述喷嘴清洗开口上的岩屑。
54.根据权利要求48的方法,其特征在于所述探测操作包括确定所述目标地层距开采设备上的截割滚筒的距离;推进开采设备;重新确定所述目标地层与截割滚筒之间的距离;调整开采设备的截深,以防止切入所述目标地层周围的区域内。
55.一种开采装置,其包括一个与一悬臂相连接的截割滚筒,所述悬臂通过其上下移动而促进所述截割滚筒的移动;一个与一液压阀流体联通的控制阀,所述液压阀与所述悬臂相连接并适合于使所述悬臂产生移动;一个辐射探测器,该探测器设置有一个闪烁元件和一个光电倍增管,所述辐射探测器与所述液压阀相连接;用于控制所述液压阀的控制部件,所述控制部件适合于根据正被截割的材料发出的辐射量通过所述辐射探测器接收信号,其中当接收到的第一信号等于或高于第一预定水平时,所述控制部件至少部分关闭所述控制阀装置,而第一信号表示从正被截割的材料发出的辐射量。
56.根据权利要求55的开采装置,其特征在于所述控制阀包括一个设置有一第一控制阀的第一管路;一个设置有一第二控制阀的第二管路;一个设置有一第三控制阀的第三管路;其中每个所述的控制阀都与所述液压阀流体联通。
57.根据权利要求56的开采装置,其特征在于当所述控制部件接收到所述第一信号时,所述第一控制阀关闭,从而放慢所述悬臂的移动速度。
58.根据权利要求57的开采装置,其特征在于当所述控制部件接收到的一个第二信号等于或大于一个第二预定水平时,所述第二控制阀关闭,从而进一步放慢所述悬臂的移动速度,其中第二信号表示由正被截割的材料发出的辐射量。
59.根据权利要求58的开采装置,其特征在于当所述控制部件接收到的一个第三信号等于或大于一个第三预定水平时,所述第三控制阀关闭,从而进一步放慢所述悬臂的移动速度,其中第三信号表示由正被截割的材料发出的辐射量。
60.根据权利要求55的开采装置,其特征在于所述控制阀装置包括一个适合于改变流速的控制阀。
61.一种采煤装置,其包括一个与一悬臂相连接的截割滚筒,所述悬臂通过其上下移动而促进所述截割滚筒的移动;一个适合于控制所述悬臂的移动的控制部件;一个第一辐射探测器,该探测器设置有一个闪烁元件和一个光电倍增管,所述辐射探测器与所述控制部件相连接;一个与所述控制部件相连接的电位器,其特征在于当由所述第一辐射探测器接收到一个第一信号和从所述电位器接收到一个第二信号时,所述控制部件能够使所述悬臂从煤岩界面移过一个等于煤层厚度的距离,其中第一信号与由煤一岩界面发出的期望辐射量相对应,而第二信号表面正被截割的煤层的厚度。
62.根据权利要求61的采煤装置,还包括一个与所述控制部件相连接的第二辐射探测器。
63.根据权利要求61的采煤装置,还包括一个与所述悬臂流体联通的控制阀,所述控制阀装置包括一个液压阀,所述液压阀与所述悬臂相连接并适合于影响所述悬臂的移动。
64.根据权利要求63的采煤装置,其特征在于所述控制阀装置包括一个设置有一第一控制阀的第一管路;一个设置有一第二控制阀的第二管路;一个设置有一第三控制阀的第三管路;其中每个所述的控制阀都与所述液压阀流体联通。
65.根据权利要求63的采煤装置,其特征在于所述控制阀装置包括一个能够改变流速的控制阀。
全文摘要
本发明公开了一种铠装的探测器部件(30)、一种开采装置(10)及其使用方法。铠装的探测器(30)包括一个主体部件(32)和一个封盖部件(74)。铠装的探测器部件(30)容纳着用于开采操作中的敏感的监控设备(100)。一个实施例允许在主体部件上设置开口(50),以使γ射线能够进入主体部件(32),而且能够通过用于连续开采操作的γ射线监控设备(100)测量γ射线。γ射线监控设备的一部分被安装在一个一体的防爆外壳(120)内。该实施例包括一个流体通道(58)和多个用于降低点燃煤尘或瓦斯的可能性的喷口(60)及其它用于将开采碎屑从部件的开口内除去的喷口。
文档编号E21C35/00GK1433500SQ00818853
公开日2003年7月30日 申请日期2000年12月20日 优先权日1999年12月23日
发明者拉里·D·弗雷德里克, 德怀特·梅德利 申请人:地质向导矿业服务有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1