Pdc感测元件制造方法和工具的制作方法

文档序号:5345888阅读:186来源:国知局

专利名称::Pdc感测元件制造方法和工具的制作方法PDC感测元件制造方法和工具
技术领域
本发明总体上涉及聚晶金刚石复合片钻头,尤其涉及带有集成传感器的PDC钻头的方法和装置以及用于制造这种PDC钻头的方法。
背景技术
:旋转钻头通常用于在地层中钻出井孔或井眼。旋转钻头包括两种主要结构以及它们的组合。一种结构是牙轮钻头,其一般包括三个牙轮,所述牙轮安装在自钻头本体延伸的支撑腿上。每个牙轮构造成在支撑腿上转动或旋转。齿设置在每个牙轮的外表面上,以用于切削岩石和其他地层。旋转钻头的第二种主要结构是固定刀具式钻头(通常称作“刮刀”钻头),其通常包括固定到钻头本体的端面区域的多个切削元件。一般来讲,固定刀具式钻头的切削元件具有盘的形状或者基本是圆柱形的形状。可以将硬的、超耐磨料(比如相互粘结的聚晶金刚石颗粒)设置在每个切削元件的基本圆形的端表面上以提供切削表面。这些切削元件通常称作“聚晶金刚石复合片”(PDC)刀具。这些切削元件可以与钻头本体分开制造并固定在形成于钻头本体外表面中的凹窝内。可以使用诸如粘结剂或硬钎焊合金之类的粘结材料来将切削元件固定到钻头本体上。固定刀具式钻头可以放置在井孔中使得切削元件抵靠要被钻进的地层。当钻头转动时,切削元件接合并剪切掉下方地层的表面。在钻进操作期间,通常使用随钻测量(MWD)和随钻记录(LWD)传感器以做出钻进条件或地层和/或流体特性的测量结果并使用MWD/LWD测量结果控制钻进操作。这些工具可以位于底部钻具组合(BHA)中或者形成为与钻柱相容。在可能的情况下从靠近钻头顶端的地层获取信息是所需的。本发明涉及一种具有PDC切削元件的钻头,其包括集成电路,所述集成电路构造成测量钻进条件、井孔中流体的特性、地层的特性和/或地层中流体的特性。通过在钻头上设置传感器,基本消除了钻头穿透地层与MWD/LWD工具感测地层特性或钻进条件的时间之间的时滞。此外,通过在钻头上设置传感器,更可能及时检测到不安全的钻进条件以采取补救动作。此外,可以对原始地层进行测量而没有任何污染或者减小了来自于钻进流体的污染。例如,井孔壁上的泥饼妨碍和/或扭曲了岩石特性测量结果,比如电阻率、核和声测量结果。侵入地层中的钻进流体污染了原生流体并且给出了错误的结果。
发明内容本发明的一个实施方式是一种旋转钻头,其构造成在井孔中输送并钻进地层。该旋转钻头包括至少一个聚晶金刚石复合片(PDC)刀具,其包括(i)至少一个切削元件,(ii)至少一个换能器,其构造成提供表示(I)钻头的运行状况,(II)井孔中流体的特性和(III)周围地层的特性中的至少一个的信号。本发明的另一个实施方式是一种进行钻进操作的方法。该方法包括将旋转钻头输送到井孔中并钻进地层;使用连接到旋转钻头本体的聚晶金刚石复合片(PDC)刀具上的5至少一个传感器来提供表示(I)钻头的运行状况,(II)井孔中流体的特性和(III)地层的特性中的至少一个的信号。本发明的另一个实施方式是一种形成旋转钻头的方法。该方法包括制造至少一个聚晶金刚石复合片(PDC)刀具,该刀具包括(i)至少一个切削元件,(ii)至少一个换能器,其构造成提供表示(I)钻头的运行状况,(II)井孔中流体的特性和(III)地层的特性中的至少一个的信号,以及(iii)在所述至少一个换能器的与所述至少一个切削元件相对的侧面上的保护层;以及使用所述保护层来保护包括所述至少一个换能器的感测层免受磨损。为了对本发明有详细的理解,参照本发明的如下的结合附图的详细描述图I是具体体现本发明教导的钻地旋转钻头的局部截面侧视图,其包括钻头本体,钻头本体包括颗粒基材复合材料;图2是根据本发明的钻头的聚晶金刚石复合片部分的正视图3示出了包括传感器阵列的衬垫的一个示例;图4示出了包括传感器和PDC切削元件的刀具的一个示例;图5(a)-5(f)示出了用于构造传感器的各种结构;图6图示了PDC刀具表面上的天线;图7(a)-(e)图示了PDC刀具不同层的制造顺序;图8(a)-8(b)示出了实施图7(a)_7(e)的分层形成所需的主要操作;图9示出了图3的包括传感器的衬垫的基本结构;图10(a)-(b)示出了图3的组件的制造步骤;图11(a)-(b)示出了图5(f)的组件的制造步骤;以及图12图示了在两个不同切削元件上使用换能器以用于地层声学特性的测量。具体实施方式图I中示出了具体体现本发明教导的一种钻地旋转钻头10。该钻头10包括钻头本体12,钻头本体12包括颗粒基材复合材料15,该复合材料15包括分散在整个低熔点粘结材料中的硬质点或区域。这些硬质点或区域是“硬的”意思是指它们相对于周围粘结材料硬。在一些实施方式中,钻头本体12可以主要由颗粒基材复合材料15组成,在下面将对其进一步详细描述。所述钻头本体12可以紧固到金属钻头接头部分20,后者可以由钢形成并且可以包括用于将钻头10连接到钻柱(未示出)的美国石油协会(API)螺纹销12。该钻头本体12可以例如通过使用一个或多个保持构件46结合硬钎焊和/或熔接直接紧固到钻头接头部分20,正如下面要更详细讨论的。如图I中所示,钻头本体12可以包括由排屑槽32彼此分开的翼或刀片30。内部流体通路42可以在钻头本体12的面18与纵向孔40之间延伸,其穿过钢质钻头接头部分20延伸并且至少部分穿过钻头本体12。在一些实施方式中,喷嘴插入件(未示出)可以在钻头本体12的面18处设置于流体通路42内。所述钻头10可以在其面18上包括多个切削元件。通过非限制性的示例,在每个刀片30上可以设置多个聚晶金刚石复合片(PDC)刀具34,如图I中所示。PDC刀具34可以沿着刀片30设置在形成于钻头本体12的面18中的凹窝36内,并且可以由支撑件38从后面支撑,所述支撑件38可以与钻头本体12—体地形成。在钻进操作期间,钻头10可以定位在井眼的底部并且在将钻进流体通过纵向孔40和内部流体通路42泵送到钻头本体12的所述面18时转动。当PDC刀具34剪切并接合下面的地层时,地层切屑和碎石与钻进流体混合并悬浮在钻进流体内,其经过排屑槽32和井眼与钻柱之间的环形空间到达地层表面。现转向图2,示出了示例性PDC刀具34的截面。这包括PDC切削元件213。这也可以称作金刚石台面(diamaondtable)的一部分。设置诸如Si3N4/Al203之类的薄的材料层215,以用于钝化刀具34的其他元件/将刀具34的其他元件粘结到切削元件213。对钝化层215的上表面可以使用化学机械抛光(CMP)。切削元件可以设有基底211。层217包括用于与传感器连接的电路的金属迹线和图案。在电路层上方是一层或多层219,其可以包括压电元件和p-n-p晶体管。这些元件可以作为用于进行测量的Wheatston桥而布设。顶层221是共形的保护(钝化)层。共形层221使得可以使用保护层来均匀地覆盖217和/或219。该层221可以由类金刚石(DLC)材料制成。上面示出的感测材料是压电材料。压电材料的使用使得可以测量钻进操作期间刀具34上的应变。这不应解释为一种限定,可以将多种传感器结合到该层219中。例如,可以使用电衬垫(electrialpads)阵列来测量邻接地层的电势或者来调查高频(HF)衰减。替代性地,可以使用超声换能器阵列来进行声成像、声速判断、声衰减判断和剪切波传播。可以使用用于其他物理特性的传感器。这些包括加速计、回转仪和倾角计。微型机电系统(MEMS)或纳米机电系统(NEMS)类型的传感器和相关的信号调节电路可以直接建立在roc内部或表面上。这些是适合于切削元件和钻柱的物理条件的传感器的示例。可以结合的化学传感器包括用于元素分析的传感器碳纳米管(CNT)、基于选择性门控场效应晶体管(FET)或pH、H2S和其他离子的离子敏感场效应晶体管(ISFET)的原理检测各种微量元素存在的互补金属氧化物半导体(CMOS)传感器;用于碳氢化合物分析的传感器;CNT、影响化学电极电势的基于DLC的传感器;以及用于碳/氧分析的传感器。这些是用于井孔中流体分析的传感器的示例。可以设置用于岩石声成像的声学传感器。为了本发明的目的,所有这些类型的传感器可以称作“换能器”。该术语的宽泛的词典意思是“由一个系统的能量致动、并向第二系统提供相同或任何其他的形式的能量的装置”。这包括响应于比如辐射的测量结果而提供电信号的传感器以及使用电能产生机械运动的装置。在图3中示出的本发明的一个实施方式中,示出了设有感测元件305阵列的传感器衬垫303。所述感测元件可以包括压力传感器、温度传感器、应力传感器和/或应变传感器。使用该传感器阵列,可以测量PDC元件301的面上的防护参数的变化。示出了连接到感测阵列的电引线307。所述衬垫303可以粘结到PDC元件301上,正如由箭头309所标示出的。在图4中示出的本发明的一个实施方式中,示出了在刀具34上的传感器419。传感器可以是化学场效应晶体管(FET)。所述PDC元件413设有凹槽以允许流体和颗粒流到达传感器419。在本发明的另一个实施方式中,传感器419可以包括构造成测量所述凹槽中流体和颗粒声速的声学换能器。该声学传感器可以由薄膜构成或者可以由压电元件制成。感测层可以形成在金刚石台面顶部上或者金刚石台面下方或者基底表面上,(与金刚石台面的界面或与钻头基底的界面)。在本发明的另一个实施方式中,传感器419可以包括上面参照图3讨论的那种传感器阵列。参见图5a,其中示出了具有刀具34的钻头本体12。所示出的传感器501设置在钻头本体12中的腔体503中。设置连通(入流)通道505用于使流体和/颗粒流到达传感器503。所述腔体还设有出口通道507。所述传感器501类似于图2中示出的传感器,但是缺少了切削元件213,但包括电路层215和传感器层217。该传感器可以包括化学分析传感器、惯性传感器;电势传感器;磁通传感器和/或声学传感器。该传感器构造成对输送到腔室的流体的特性和/或流体中的固体材料进行测量。图5(b)示出了图2中讨论的传感器217的布置。在图5(C)中,传感器217在切削元件213中。图5(d)示出了传感器217在基底中,图5(e)示出了一个传感器在基材30中,一个传感器在基底211中。图5f示出了纳米管传感器501嵌入在基材中的布置。这些纳米管可以用于测量压力和/或温度。图6示出了刀具34上的天线601。电磁(EM)收发器603位于钻头本体12的基材中。该收发器用于询问天线601并取回与图2中的传感器219所做测量有关的数据。该收发器设有电屏蔽电缆,以能够实现与钻头接头部分中的装置或者连接到钻头的异径接头进行通信。参见图7(a)-(e),讨论了用于组装图2中示出的刀具34的操作顺序。如图7(a)中所示,PDC元件213安装在用于形成金刚石台面的处理晶片701上。添加填充材料703以使图7Ca)中示出的组件的上表面呈平面。正如图7b中示出的图7a的细节,可以将包括Si3N4的“钝化层”705沉积在切削元件213和填充物703的顶部上。该薄层的目的是提高切削元件213与上面的层(参照图7a所讨论的)之间的粘结力。正如由术语“钝化”所教导的,该层还防止了PDC切削元件213对上面的层造成的破坏。可能需要化学机械抛光(CMP)来形成钝化层。应该指出的是Si3N4的使用是示例性的目的并不解释为一种限定。在该阶段可能需要化学气相沉积(CVD)、物理/等离子气相沉积(PVD)、低压化学气相沉积(LPCVD)、原子层沉积(ALD)和溶胶-凝胶旋涂装备。接下来参见图7c,沉积用于触点和电子电路的金属迹线和图案709。可以使用溅射涂覆、蒸发、ALD、电镀和蚀刻(等离子和湿法)装备。如图7d中所示,压电材料和p-n-p半导体层709被沉积。当层707上的下方图案包括Wheatston桥时,压电材料的输出可以用作应变的表示。应该指出的是压电材料的使用只是出于示例性的目的,可以使用其他类型的传感器材料。为此所需的装备可能包括LPCVD、CVD、等离子体、ALD和RF溅射。共形保护钝化层711被添加。使用术语“共形(conformal)”的意思是在具有变化拓扑结构的层的上方形成一层的能力。这可以由类金刚石(DLC)材料制成。所需的处理装置可能包括CVD、烧结和RF溅射。处理晶片701和填充材料的移除露出了图2中示出的可以连接到图I中的翼30的roc刀具34。图8a示出了提供安装好的图7b的PDC单元所需的主要操作单元。这包括以步骤801中的PDC元件213和步骤803中的处理晶片701开始,以提供安装好的平面化的单元805。将安装好的PDC单元转移到PDC装载单元811并使其移至PDC晶片转移单元813。然后将这些单元转移到被标示为815,817和819的单元。815是金属处理室,其可以包括CVD、溅射和蒸发。薄膜沉积室819可以包括LPCVD、CVD和等离子增强CVD。DLC沉积室817可以包括CVD和ALD。接下来,讨论图3的阵列的制造。现参见图9,示出的碳化钨基部905具有传感器903和PDC台面。一种制造方法包括在碳化钨基部905正上方沉积感测层903,然后在碳化钨基部上形成金刚石台面。可以使用1500°C-1700。C的温度并且可以使用106psi左右的压力。这种组件可以通过在基底905上形成感测层903和布设迹线904来制造,如图10(a)中所示。接下来将金刚石台面901沉积在基底上。替代性地,金刚石台面901可以基于基底905预先形成并硬钎焊。接下来参照图11(a)-(b)讨论图5f中示出的组件的制造。将纳米管1103插入到基底905中。接下来将金刚石台面901沉积在基底905上。在图10-11的组件中结合温度传感器是相对简单的。要使用的可行的材料是高温热电偶材料。可以通过roc的侧面或通过PDC的底部提供连接。由石英晶体制成的压力传感器可以嵌入在基底中。可以使用压电材料。电阻率和电容测量可以通过将电极放置在碳化钨基底上通过金刚石台面预先形成。可以结合磁传感器,以用于故障的磁调查。本领域技术人员在学习本发明之后会意识到的是,磁材料在结合到传感器组件中之后必须重新磁化。在图11的结构中还可以使用化学传感器。具体地,使用小辐射材料源或者用小辐射源材料代替其中一个纳米管,可以将等离子体射线传感器或中子探测器用在另一个纳米管的位置中。理解本发明的本领域技术人员将会意识到的是,还可以使用压电换能器来产生声音震动。这种超声换能器可以用于保持PDC元件的面清洁并且增加钻进效率。这种换能器可以称作振荡器。此外,在地层中产生弹性波的能力可以提供很多有用的信息。在图12中示意性地图示出在两个不同PDC元件34上的声学传感器。它们当中的一个,例如1201可以用于在地层中产生剪切波。通过地层传播的剪切波由在距离源换能器1201已知距离处的换能器1203检测到。通过测量剪切波穿过地层的传播时间,可以估计地层剪切速度。这是对岩石类型的一个很好的诊断。剪切波在多个距离上的衰减的测量结果提供了对岩石类型的额外指示。在本发明的一个实施方式中,还对压缩波速度进行测量。压缩波速度与剪切波速度的比率(Vp/Vs比)有助于区分碳酸盐岩与碎屑岩。使用Vp/Vs比还可以检测气体的存在。在一个替代性实施方式中,切削元件的状态可以从切削元件上的表面波的传播速度确定。这是确定钻头运行状况的一个示例。使用电磁声学传感器(EMAT)可以产生剪切波。授权给Reiderman等人的美国专利号7697375具有与本发明相同的内容,其内容通过引用并入于此,其披露了适于产生SH和Lamb波的组合EMAT。比如象Reiderman的那些教导可以用在本发明中。由换能器做出的测量结果的获得和处理可以至少部分地由井下电子设备(未示出)控制。数据的控制和处理的本质是使用在合适的机器可读介质上的计算机程序,其能够使处理器执行所述控制和处理。所述机器可读介质可以包括R0M、EPR0M、EEPR0M、闪存和光盘。术语“处理器”旨在包括诸如现场可编程门阵列(FPGA)之类的装置。9权利要求1.一种构造成在井孔中输送并钻进地层的旋转钻头,该旋转钻头包括至少一个聚晶金刚石复合片(PDC)刀具,其包括(i)至少一个切削元件,以及(ii)至少一个换能器,其构造成提供表示如下对象中的至少一个的信号(I)钻头的运行状况,(II)井孔中流体的特性,以及(III)周围地层的特性。2.根据权利要求I所述的旋转钻头,其中,所述至少一个roc切削元件还包括在所述至少一个换能器的与所述至少一个切削元件相对的侧面上的保护层,该保护层构造成保护包括换能器的感测层不受磨损元件磨损。3.根据权利要求I所述的旋转钻头,其中,所述至少一个换能器还包括布置在衬垫上的换能器阵列。4.根据权利要求I所述的旋转钻头,其中,所述至少一个换能器选自由如下对象构成的组(i)应变传感器,(ii)加速计,(iii)倾角计,(iv)磁力计,(v)温度传感器,(vi)碳纳米管传感器,(vii)电势传感器,(viii)碳/氧分析传感器,(ix)声学传感器,(x)化学场效应传感器,(xi)离子敏感传感器,(xii)角速度传感器,(xiii)核传感器,(xiv)压力传感器,(xv)振荡器,以及(xvi)机电声学换能器。5.根据权利要求I所述的旋转钻头,其中,所述至少一个roc刀具还包括布置在所述至少一个切削元件与所述至少一个换能器之间的钝化层。6.根据权利要求5所述的旋转钻头,还包括布置在所述钝化层与所述至少一个换能器之间的电子电路。7.根据权利要求I所述的旋转钻头,其中,所述至少一个切削元件设有构造成允许流体流至所述至少一个换能器的通道。8.根据权利要求I所述的旋转钻头,其中,所述至少一个换能器布置在下述对象的至少一个中(i)设有流体流动通道的钻头本体中的腔体,(ii)所述至少一个切削元件中,(iii)所述至少一个切削元件的基底,以及(iv)钻头本体的基材中。9.根据权利要求I所述的旋转钻头,还包括钻头本体中的电磁(EM)收发器;以及在所述至少一个PDC刀具上的天线;其中,所述EM收发器构造成询问所述天线并接收与信号有关的数据。10.根据权利要求I所述的旋转钻头,其中,所述至少一个切削元件还包括具有第一换能器的第一切削元件和具有第二换能器的第二切削元件,所述第二换能器针对由第一换能器产生的信号作出响应。11.一种进行钻进操作的方法,该方法包括将旋转钻头送到井孔中并且钻进地层;以及使用连接到旋转钻头本体的聚晶金刚石复合片(PDC)刀具上的至少一个换能器来提供表示下述对象中的至少一个的信号(I)钻头的运行状况,(II)井孔中流体的特性;以及(III)地层的特性。12.根据权利要求11所述的方法,还包括使用在所述至少一个换能器的与所述至少一个切削元件相对的侧面上具有保护层的钻头,以及使用所述保护层来保护包括所述至少一个换能器的感测层不受外部磨损。13.根据权利要求11所述的方法,还包括使用选自由如下对象构成的组的换能器来用作所述至少一个换能器(i)应变传感器,(ii)加速计,(iii)倾角计,(iv)磁力计,(v)温度传感器,(vi)碳纳米管传感器,(vii)电势传感器,(viii)碳/氧分析传感器,(ix)声学传感器,(x)化学场效应传感器,(xi)离子敏感传感器,(χ)角速度传感器,(xiii)核传感器,以及(xiv)压力传感器。14.根据权利要求11所述的方法,还包括使用包括布置在所述至少一个切削元件与所述至少一个换能器之间的钝化层的PDC刀具来用作所述至少一个PDC刀具。15.根据权利要求14所述的方法,还包括向布置在所述保护层与所述至少一个换能器之间的电子电路传送信号。16.根据权利要求11所述的方法,还包括提供用于从井孔向所述至少一个换能器传送流体的通道。17.根据权利要求11所述的方法,还包括将所述至少一个换能器定位在从如下部位选择的部位(i)设有流体流动通道的钻头本体中的腔体,(ii)在所述至少一个切削元件中,(iii)所述至少一个切削元件的基底,(iv)钻头本体的基材。18.根据权利要求11所述的方法,还包括在钻头本体中提供电磁(EM)收发器;在所述至少一个PDC刀具上提供天线;以及使用所述EM收发器用于询问所述天线并接收与信号有关的数据。19.根据权利要求11所述的方法,还包括使用旋转钻头的第一切削元件上的换能器产生信号,并且使用旋转钻头的第二切削元件上的换能器接收表示地层特性的信号。20.一种形成旋转钻头的方法,该方法包括制造包括至少一个切削元件的至少一个聚晶金刚石复合片(roc)刀具;在切削元件上连接包括至少一个换能器的感测层;将所述至少一个PDC刀具连接到钻头本体。21.根据权利要求20所述的形成旋转钻头的方法,其中,连接感测层还包括沉积所述感测层。22.根据权利要求20所述的方法,其中,所述至少一个换能器构造成提供表示如下对象中的至少一个的信号(i)钻头的运行状况,(ii)井孔中流体的特性,以及(iii)地层的特性。23.根据权利要求20所述的方法,还包括沉积用于在钻进操作期间保护感测层免受磨损的保护层。24.根据权利要求20所述的方法,其中,制造至少一个聚晶金刚石复合片(PDC)刀具的步骤还包括将多个切削元件安装到处理晶片上;将填充材料添加到所述多个切削元件之间的间隙;在所述填充材料和所述多个切削元件的顶部上沉积钝化层;在所述钝化层的顶部上沉积电子电路;将换能器定位在所述电子电路上方并且将换能器的输出端连接到所述电子电路;在所述换能器上方形成保护层;移除处理晶片;以及移除填充材料。25.根据权利要求24所述的方法,其中,沉积钝化层还包括使用Si3N4。26.根据权利要求24所述的方法,其中,沉积钝化层还包括如下中的至少一个(i)化学气相沉积(CVD),(ii)低压化学气相沉积(LPCVD),(iii)原子层沉积(ALD),以及(iv)使用溶胶-凝胶。27.根据权利要求24所述的方法,其中,将电子电路沉积在钝化层的顶部上还包括如下中的至少一个(i)溅射涂覆,()蒸发,(iii)原子层沉积(ALD),(iii)电镀,(iv)等离子体蚀刻,以及(iv)湿法蚀刻。28.根据权利要求24所述的方法,其中,将换能器定位在电子电路上方还包括如下中的至少一个(i)化学气相沉积(CVD),(ii)低压CVD,(iii)等离子体蚀刻,(iv)原子层沉积,以及(V)射频(RF)溅射。29.根据权利要求24所述的方法,其中,在所述换能器上方形成保护层还包括像类金刚石(DLC)那样的硬质材料。30.根据权利要求24所述的方法,其中,在所述换能器上方形成保护层还包括使用共形材料。31.根据权利要求24所述的方法,其中,在所述换能器上方形成保护层还包括使用如下工艺中的至少一个(i)化学气相沉积,(ii)烧结,(iii)溅射,(iv)蒸发,以及(V)丝网印刷和固化。全文摘要旋转钻头的聚晶金刚石复合片(PDC)刀具设有用于测量井孔中流体特性和/或钻头运行状况的集成传感器和电路。阐述了PDC刀具和旋转钻头的制造方法。文档编号E21B49/00GK102933787SQ201180026350公开日2013年2月13日申请日期2011年4月26日优先权日2010年4月28日发明者S·库马尔,A·A·迪乔瓦尼,D·斯科特,H·约翰,O·蒙蒂罗申请人:贝克休斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1