激振器装置的制作方法

文档序号:5386615阅读:254来源:国知局
专利名称:激振器装置的制作方法
技术领域
本发明涉及一种激振器装置,用于将入土桩构件(driver pilemember)打入地面或将入土桩构件从地里拔出来,入土桩构件可以是电气照明灯杆、桩子、套管、板桩或类似构件。
图1示出例如在日本公开专利申请47-15946中已揭示的作为常用激振器设备的通常振动打桩机的前视图。在该图中,标号1代表通常打桩机的机身,标号2代表打入泥土支撑着位于其中部的打桩机机身1的入土桩构件(混凝土桩),标号3代表入土桩构件(如混凝土桩)所打入的地面。在这种情况中,为防止入土混凝土桩2倾倒以及为把它打入地面3,用轨道起重机把入土混凝土桩构件2吊住。
通常的振动打桩机机身1包括向两个相互相反的方向旋转的各偏心重块。通过偏心重块的旋转使振动打桩机上下振动。
以下,将说明具有上述结构的通常振动打桩机的工作。
如上所述,因为通常的振动打桩机的机身1由入土桩构件2所支撑,当构成振动打桩机机身1的各偏心重块旋转时,振动打桩机会在上下方向上振动。振动打桩机的这种振动传到入土桩构件2,于是,使它上下振动。
凭借入土桩构件2本身的自重和振动打桩机机身1的重量将入土桩构件2打入地里而不产生噪声。特别是,通过应用这样一个物理现象即由于振动打桩机机身1的上下振动,泥土的动态摩擦会变得很小,而将入土桩构件2有效地打入泥土。
由于通常的振动打桩机具有上述结构,所以偏心重块旋转时除产生垂直振动分量外还产生水平振动分量。水平振动分量是使振动打桩机沿水平方向振动的分量。垂直振动分量是使振动打桩机沿垂直方向振动的分量。这种水平振动分量会引起将入土桩构件2沿不期望有的方向打入地面3的问题。换句话说,由于振动打桩机产生的振动有水平振动分量,入土桩构件2可能会不是沿垂直方向打入泥土3。此外,水平振动分量会引起建筑物稠密的区域的地面振动以及引起噪声污染。这是一个问题。
本发明是用来解决由上述通常的振动打桩机装置引起的问题。
本发明的一个目的是提供这样一种激振器装置,它能够通过应用包含在此激振器装置中的磁致伸缩元件使它只有效地引起激振器装置振动的垂直振动分量而不产生对激振器装置的工作不利的水平振动分量而平稳地将入土桩构件打入地里或把入土桩构件从地里拔出来。
此外,为防止发生异常共振,本发明的激振器装置可将其本身的振动时间周期或宽度设定为任意所需要的数值。
本发明的另一个目的是提供一种具有多个磁致伸缩元件的激振器装置,它能够将每个磁致伸缩元件的工作时间周期或宽度设定为所需要的数值,从而可以控制每个磁致伸缩元件的振动幅度。以此,可以高精度地设定所需的将入土桩构件打入地里的方向。
本发明的再一个目的是提供一种在振动的基础上还能增加对混凝土桩之类的入土桩构件的打击能量的激振器装置。
本发明的再一个目的是提供一种包含具有负磁致伸缩常数的磁致伸缩元件的激振器装置,它能有效地进行将入土桩构件打入地里的工作。
本发明的再一个目的是提供一种包含具有正磁致伸缩常数的磁致伸缩元件的激振器装置,它能有效地进行将入土桩构件打入地里的工作。
本发明的再一个目的是提供一种包含多个磁致伸缩元件的激振器装置,它能通过加快磁致伸缩元件的伸长和缩短的速度有效地将入土桩构件打入地里或将入土桩构件从地里拔出来。
本发明的再一个目的是提供一种包含具有负磁致伸缩常数和正磁致伸缩常数的磁致伸缩元件的激振器装置,它能通过设定在磁致伸缩元件的线圈中流动的电流的上升时间周期或宽度和下降时间周期用于打桩或拔桩工作。
按照本发明的一较佳实施例,用于将入土桩构件打入地里或将入土桩构件从地里拔出来的激振器装置包括用于对所述入土桩构件施加上下振动的磁致伸缩装置;以及用于通过改变供到所述磁致伸缩装置的电流而控制所述磁致伸缩装置的伸长和缩短运动的驱动电路。相应地,通过对磁致伸缩装置重复供给具有恒定时间宽度或恒定时间周期的接通电流可产生伸展和收缩驱动力并将其通过一支座传递到入土桩构件,从而使入土桩构件沿上下方向微振动。
在本发胆的激振器装置中,驱动电路包括用于调整供到所述磁致伸缩装置的电流的接通周期的控制电路。因而,通过调整节供给磁致伸缩装置的电流的接通周期,可根据周围环境条件、工作区地质泥土的硬度或类似条件以及对入土桩构件的打击速度来以最合适的接通时间周期进行打桩作业。
此外,在本发明的激振器装置中,磁致伸缩装置包括多个由所述入土桩构件支撑的磁致伸缩元件,所述驱动电路对所述多个磁致伸缩元件提供时间宽度不同的接通电流,从而可使每个所述磁致伸缩元件独立地伸长和缩短。这样,通过用具有不同接通时间宽度的电流使多个磁致伸缩元件独立地伸长和缩短,可将入土桩构件的振动幅度调整为所需的幅度。因此可以将入土桩构件打入泥土方向选择为一个理想的角度。例如垂直方向,或对垂直方向有一个小的倾斜角。
此外,本发明的激振器装置还包括重块,所述重块固定在所述磁致伸缩装置上或每个磁致伸缩元件上。这样,当伸展和收缩振动驱动力传递到重块时,可将一大的振动载荷传递到将打入地里的入土桩构件。
在本发明的激振器装置中,磁致伸缩装置包含具有负磁致伸缩常数用作磁心的磁致伸缩材料和线圈,当从所述控制电路供到所述线圈的所述电流的量值增大时,所述磁致伸缩装置缩短,而当从所述控制电路供到所述线圈的电流被切断时所述磁致伸缩装置迅速伸长至所述磁致伸缩装置的原来长度。例如,这种负磁致伸缩材料是镍(Ni)。这样,就可通过利用在具有负磁致伸缩常数的磁致伸缩装置缩短后迅速伸长至磁致伸缩装置原来长度的力可将入土桩构件打入地里。
在本发明的激振器装置中,磁致伸缩装置包括具有正磁致伸缩常数用作磁心的磁致伸缩材料和线圈,当从所述控制电路供给所述线圈的电流量值增大时所述磁致伸缩装置伸长,而当从所述控制电路供给所述线圈的所述电流被切断时所述磁致伸缩装置迅速缩短到所述磁致伸缩装置原来的长度。例如,这种磁致伸缩材料是钴—铁(Co-Fe)。这样,就可通过利用在具有正磁致伸缩常数的磁致伸缩装置伸长后迅速缩回磁致伸缩装置原来长度的力将入土桩构件打入地里。
在本发明的激振器装置中,磁致伸缩装置包括磁致伸缩材料和线圈,所述驱动电路还包括由二极管和电阻串联而成的用于在供给线圈的所述电流切断时抑制所述线圈中的剩余电流的串联电路。于是,通过快速抑制线圈中的剩余电流及快速进行磁致伸缩装置的伸展和收缩工作,可增大用于打进和拔出入土桩构件的力。
在本发明的激振器装置中,对所述线圈供给上升时间周期和下降时间周期互不相同的各所述接通电流。从而,可通过任意设定所需的上升时间周期和下降时间周期恰当地选择打桩力和拔桩力。
此外,本发明的激振器装置还包括一支座,所述磁致伸缩装置固定在所述支座上,所述支座由所述入土桩构件支撑。
而且,在本发明的激振器装置中,磁致伸缩装置放置并固定在所述入土桩构件上。相应地,在这一情况中,由于这种激振器装置的结构简单,它的制造成本低并可用在窄小的工作区域。
在以下结合附图对本发明的详细描述中,本发明的这些和其它目的、特点、特征和优点将变得更加明显。
图1示出通常的激振器装置(振动打桩机)的简要结构图的正视图。
图2A是作为本发明之一个较佳实施例的激振器装置的结构的前视图。
图2B是图2A中所示的激振器装置和入土桩构件的俯视图。
图3是用于乃是图2所示的激振器装置之一个组成元件的磁致伸缩元件的驱动电路的结构图。
图4是示出用于图3所示的驱动电路的驱动脉冲信号的信号波的定时曲线,一个是在磁致伸缩元件的一个线圈中流动的电流,一个是磁致伸缩元件的伸缩波形信号。
图5是用于磁致伸缩元件并且是本发明的另一实施例的激振器装置的一个组成元件的驱动电路的结构图。
图6是示出用于图5所示的驱动电路的驱动脉冲信号的信号波形的定时曲线,一个是在磁致伸缩元件的一个线圈中流动的电流,一个是磁致伸缩元件的伸缩信号。
图7是本发明之另一实施例的激振器装置的结构的前视图。
现在参照


本发明的各较佳实施例。第一个实施例图2A是本发明的第一个实施例的激振器装置的结构的前视图。图2B是图2A所示的激振器装置的俯视图。
在图2A中,标号2代表诸如电气照明灯杆、桩、套管和板桩等将被打入地面3的入土桩构件。例如,入土桩构件由汽车式起重机支撑在或夹持在一钢索或一卡盘的端部。
标号4代表装在入土桩构件2的上部或中部用以防止它倾倒的支座。在支座4上围绕入土桩构件2装有成为本发明的一个特点、用作磁致伸缩装置的磁致伸缩元件5和6,如图2A中所示,磁致伸缩元件用螺栓或粘接剂固定在支座4上。
这些磁致伸缩元件5和6设置成使激振器装置和入土桩构件2的重心位于入土桩构件的中心点,其在图2B中用标号“+”表示。在使用这种激振器装置时这是一个很重要的特点,并且在本发明的激振器装置的下一个实施例中也是如此。此外,支座4的形状不限于一种特定的形式。它可依照具体应用、目的、工作环境等来选择。
重块7和8放置并固定或装在每个磁致伸缩元件5和6的上部。重块7和8能够把由磁致伸缩元件5和6产生的伸展和收缩驱动力变成沿上下方向的振动载荷并把变化了的振动载荷传到将被打入地里的入土桩构件2。
磁致伸缩元件5和6包括磁心5a和6a及线圈5b和6b。磁心5a和6a包括具有负磁致伸缩常数的诸如镍(Ni)或具有正磁致伸缩常数的诸如钴铁(Co-Fe)的磁致伸缩材料。
线圈5b和6b缠绕于磁致伸缩元件5和6的磁心5a和6a的周围。
当电流流过线圈5b和6b时,由诸如Co-Fe材料等正磁致伸缩材料制成的磁心5a和6a,进而磁致伸缩元件5和6就沿伸展方向弯曲并变形。
另一方面,当电流流过线圈5b和6b,由诸如Ni材料等负磁致伸缩材料制成的磁心5a和6a,进而磁致伸缩元件5和6就沿收缩方向缩短并变形。
图3是用于磁致伸缩元件5和6的驱动电路D1的结构图。在同一图中,标号11到14代表构成全波整流电路的二极管,这一整流电路连接于交流(A.C)电源,用来对交流电压进行整流。
此外,标号15代表连接于全波整流电路用于平整整流过的电流的平流电容器。
还有,标号16代表用作开关元件的绝缘栅双极型晶体管,其装接在给磁致伸缩元件5和6的线圈5b和6b提供一由平流电容器15平整的直流(D.C.)电压的电路中。
标号17代表串联于电阻24的二极管。二极管17和电阻24构成一串联电路。构成串联电路的二极管17和电阻24并联于线圈5b和6b。二极管17和电阻24能够在绝缘栅双极型晶体管16根据控制电路19的控制处于关断状态时消除线圈5b和6b中的剩余电流。
标号18代表连接于A.C电源的稳压电源,标号19代表在以稳压电源18作为电源时用于转换绝缘栅双极型晶体管16的开/关状态的控制电路。
于是,第一个实施例的激振器装置包括磁致伸缩元件5和6、支座4、驱动电路D1以及重块6和7。
下面,将对以上描述的第一个实施例的激振器装置的工作进行说明。
首先,当A.C电源电压供到全波整流电路11-14和稳压电源18时,控制电路19接收稳压电源的电压,产生驱动脉冲IP并将驱动脉冲IP输送到绝缘栅双极型晶体管16。特别是,当绝缘栅双极型晶体管16的栅极接收到从驱动电路19传输来的驱动脉冲时,NPN型的绝缘栅双极型晶体管16转换开/关状态(转换操作)。在需要的绝缘栅双极型晶体管16开通状态的一个时间周期中,如图4(b)所示,一电流在磁致伸缩元件5和6的线圈5b和6b中流动。从而,每个其中流过如图4(b)所示的波形的电流的磁心5和6接收到一个很大的向上和向下的电磁力而象图4(c)所示的波形那样变形。
特别是,磁致伸缩元件5和6的伸缩量与磁致伸缩元件5和6的大小或电流强度成正比。在把上述具有负磁致伸缩常数的Ni材料用作磁致伸缩元件5和6时,在绝缘栅双极型晶体管16处于开通状态期间,线圈5b和6b中电流Ic的量值增大,即具有负磁致伸缩常数的磁致伸缩元件5和6沿收缩方向收缩。
另一方面,在由图4(b)中所示的时间t3代表的时刻,即绝缘栅双极型晶体管16从开通状态变到关断状态的时刻,每个线圈5b和6b中的电流Ic的量值因有电阻24而变为零。换句话说,每个磁心5a和6a中的具有负磁致伸缩常数且当绝缘栅双极型晶体管16从开通状态变到关断状态时缩短的磁致伸缩材料的长度迅速伸长至其常态原始长度。依靠具有负磁致伸缩常数的磁致伸缩材料的机械强度可使磁致伸缩材料的回复力变得很大。特别是,通过依靠具有负磁致伸缩常数的磁致伸缩材料的收缩周期性产生回复力,可将桩、混凝土桩等入土桩构件2有效地打入泥土。
接着,在把具有正磁致伸缩系数的诸如钴铁(Co-Fe)材料等磁致伸缩材料用作磁心构件5a和6a时,因为这种磁致伸缩材料在电磁场中伸长,所以依靠增大通过绝缘栅双极型晶体管16在线圈5b和6b中流动的电流Ic的量值,可使其伸长,随后把绝缘栅双极型晶体管16从开通状态瞬时地切换到关断状态可使磁致伸缩材料的长度快速缩回到其原来的长度。因此,可以将这种方法有效地用于将桩、混凝土桩等入土桩构件从泥土里拔出来。此外,是由图4所示的在线圈5b和6b中流动的电流Io的强度、如图4(b)所示的电流Ic的上升时间或宽度T1和下降时间或宽度T2一起决定着磁致伸缩材料的伸缩量。
上升时间或宽度T1为T1=LIo/Eo,其中L是每个线圈5b和6b的电感,Eo是电容器15两端之间的电压。
另一方面,因为下降时间T2是当绝缘栅双极型晶体管16切换到关断状态时用于把线圈5b和6b中流动的电流Ic的量值变为零所需的时间,所以下降时间或宽度T2为T2=L/R,其中R是电阻24的阻值。
相应地,可以通过控制电阻24的阻值R和电压的量值E来选择条件T1≥T2或T1≤T2。特别是,在用具有负磁致伸缩常数的磁致伸缩材料作为磁心构件5a和6a时,选择条件T1≤T2,可实现磁致伸缩材料的平稳收缩工作和快速伸长工作。
相反,在T1≤T2的情况下,可以增大用这种激振器装置拔出入土桩构件的拔出力。
由磁致伸缩元件5和6瞬间产生的力通过支座4传递到入土桩构件,再加上重块7和8的自重,可把入土桩构件2平稳而缓慢地打入地面3。
这样,通过设计具有高准确度的每个磁致伸缩元件5和6的激振器装置,可制成只沿垂直方向,即向上和向下,或上下方向产生微振动的磁致伸缩元件。此外,由于重块7和8的振动动作也只沿与磁致伸缩元件相同的垂直方向,即使支座4上每个磁致伸缩元件5和6及重块7和8的位置稍稍偏离要求的位置,这种激振器装置的水平振动也将是很小,因而本发明的这种激振器装置可对入土桩构件2施加垂直方向的力。
在磁致伸缩元件5和6伸展工作和收缩工作期间,当磁致伸缩元件5和6之间,或磁致伸缩元件5和6、重块7和8以及支座4之间发生异常的共振现象时,就会出现不能按照绝缘栅双极型晶体管16的开关定时(上述的上升时间周期或宽度,和下降时间周期或宽度)得到预期的振动型式的情况,或者出现由磁致伸缩元件5和6所产生的振动力迅速而异常地增大或减小的情况。此外,可以根据泥土的状况选择所需的垂直方向振动频率,以便有效地将桩构件打入泥土。在这种情况中,改变磁致伸缩元件5和6的伸展和收缩驱动定时(上述开/关时间周期或宽度,或者上升时间周期或宽度和下降时间周期或宽度),即改变绝缘栅双极型晶体管16的开/关时的周期,以改变上述异常共振点的相位将能避免上述不利现象。
例如,通过用控制电路19进行外部控制,将磁致伸缩元件的伸长和收缩切换频率设定在大约二十赫到几百赫范围内,是符合实用需要的。此外,每种磁致伸缩材料具有由弹性系数、相位和重量分布决定的固有共振频率。所以,通过以这一固有共振频率来使磁致伸缩材料伸长和收缩,可以最有效地进行打桩或拔桩。第二个实施例图5是用于本发明之第二个实施例的激振器装置的驱动电路D2的结构图。第二个实施例的激振器装置也包含支座4、如图5所示的驱动电路D2、磁致伸缩元件5和6、以及重块7和8。
在第二个实施例的激振器装置中,具有不同接通时间宽度(图6所示的定时宽度T3和T4)的接通电流分别供到磁致伸缩元件5和6的线圈5b和6b。特别是,如图5所示,标号11到14代表形成全波整流电路的二极管,其连接于交流(A.C.)电源以对交流电压进行整流。标号15代表连接于全波整流电路11-14,用于平整整流过的电流的平流电容器。标号18代表连接于A.C.电源的稳压电源,标号字母5b和6b指每个磁致伸缩元件5和6的线圈。这些结构元件11-14、15、18以及5b和6b与图3所示的第一个实施例的驱动电路D1对应元件在功能和工作上都是相同的。驱动电路D2响应外部控制信号产生两种脉冲宽度互不相同的开关控制信号IP1和IP2。
标号20和21分别代表装接在用于对线圈5b和6b提供一已由平流电容器15平整过的直流电流的电路中的绝缘栅双极型晶体管。标号22是与电阻25串联的二极管。二极管22和电阻25形成一个串联电路。标号23是与电阻26串联的二极管。二极管23和电阻26也形成一个串联电路。每个包含二极管和电阻的串联电路都分别并联于每个线圈5b和6b并且都能在绝缘栅双极型晶体管20和21关断时消除线圈5b和6b中的剩余电流。
在本发明之第二个实施例的驱动电路D2中,如图6所示,控制电路29接收以稳压电源18来的电压而产生具有预定接通时间周期的驱动脉冲,这些驱动脉冲在时间长度上互不相同,例如图6中的(a)和(b)所示的脉冲宽度为T3的IP1和脉冲宽度为T4的IP2的两种驱动脉冲,并被提供给每个绝缘栅双极型晶体管20和21。
于是,绝缘栅双极型晶体管20和21通过接收这些驱动脉冲IP1和IP2而执行接通工作。当绝缘栅双极型晶体管20和21处于开通状态时,在预定的时间宽度T3和T4内,磁致伸缩元件5和6的线圈5b和6b中分别有如图6中的(b)和(e)所示的电流IC1和IC2流过。相应地,每个由磁致伸缩材料5和6制成的磁心5a和6a接收波形互不相同的IC1和IC2,并且沿上下方向伸长和收缩从而以如图6(c)和6(f)所示的波形振动。
此外,每个振幅不同的振动传递到放置或固定在每个磁心5a和6a上的每个重块7和8,重块7和8也像磁心5a和6a一样振动。借此,一个很大的振动载荷通过支座传递到入土桩构件2,使入土桩构件2逐渐被打入地面3。
在本发明之第二个实施例的激振器装置中,如图5和6所示,可以通过选择每个磁致伸缩元件5和6的振幅来改变和调节将入土桩构件2打入地面3的打入角。从而,可将入土桩构件2垂直地打入地面3。此外,如果需要或必要,也可产生水平方向的振动,以使入土桩构件以一预定角度倾斜。第三个实施例图7是本发明明之第三个实施例的激振器装置的结构图。
在第三个实施例中,不需要如图2A中所示的支座4。包括磁心30a和线圈30b的磁致伸缩元件30及重块31是放置或固定在这一第三个实施例的激振器装置中的入土桩构件2的顶部。
用于此实施例的激振器装置的驱动电路具有第二个实施例的在图3中所示的驱动电路D1的结构,但是这里不需要线圈5b和6b了。本实施例的驱动电路的工作与图3和4所示的驱动电路的工作相同。
图7所示的实施例的激振器装置可有效地应用于在打桩时没有足够的工作区域,或相邻的桩靠在一起的场合。此外,图7所示的激振器装置具有结构简单、制造成本低的优点。
本发明不限于图2-7所示的上述实施例,例如可以用PNP导电型的绝缘栅双极型晶体管替代NPN导电型的绝缘栅双极型晶体管。此外,PNP导电型绝缘栅双极型晶体管的功能和作用与NPN导电型绝缘栅双极型晶体管的相同。
总之,如上详细描述,由于本发明的激振器装置是由入土桩构件支撑并且包含用于产生沿入土桩构件的上下方向或垂直方向的振动并把此振动传给入土桩构件的磁致伸缩元件,还包括通过切换供到磁致伸缩元件的电流的流动时间周期来使磁致伸缩元件伸长或收缩的驱动电路,从而可消除对打桩工作不利的水平方向的振动分量,并且在只有效地产生垂直振动的过程中,可平稳地进行把入土桩构件打入地里或从地里拔出来的作业。
此外,在使用本发明的激振器装置时,由于其驱动电路包含用于调节供到磁致伸缩元件的电流的接通时间周期的控制电路,所以,可以通过改变电流的接通时间周期来防止磁致伸缩元件、重块、和支座之间产生异常的共振现象。
而且,本发明的激振器装置设有多个对入土桩构件施加作用的磁致伸缩元件,并且可通过独立地改变在每个磁致伸缩元件中流动的电流的接通时间周期来控制每个磁致伸缩元件的伸长和收缩振动动作,因此可将每个磁致伸缩元件产生的振动量值选择到一所需的量值。由于可改变加到入土桩构件的每一部分上的振动力,所以可将入土桩构件以一所需要的方向打入地里。
此外,使用本发明的激振器装置时,由于每个磁致伸缩元件上固定有重块,所以作用于混凝土桩等入土桩构件的打击能量可以在由磁致伸缩元件产生的振动的基础上大大增加。
此外,由是用具有负磁致伸缩常数的磁致伸缩元件作为本发明的激振器装置的磁心,当电流增大时磁致伸缩元件产生收缩,而当电流被切断时磁致伸缩元件迅速伸长至其原来长度,所以可用效地进行对入土桩构件的打入工作。
此外,由于是用具有正磁致伸缩常数的磁致伸缩元件作为本发明的激振器装置的磁心,当电流增大时磁致伸缩元件伸长,而当电流被切断时磁致伸缩元件迅速缩短至其原来长度,所以可有效地进行对入土桩构件的打入工作。
此外,在本发明的激振器装置中,对磁致伸缩元件的每一线圈并联有由串联的二极管和电阻构成的电路,其在每个线圈的电流被切断时能消除线圈中的剩余电流,因此可以增加磁致伸缩元件伸长和收缩的速度以及也可以增大对入土桩构件的打入力和拔出力。
此外,在本发明的激振器装置中,由于可以使在构成磁致伸缩元件的线圈中流动的电流的上升时间和下降时间中的任一个为较长,且可将上升时间和下降时间设定为所需要的时间长度,所以具有负磁致伸缩常数和正磁致伸缩常数的磁致伸缩材料都可用作能够将入土桩构件打入地里和从地里拔出来的磁致伸缩元件。
虽然已详细描述和说明了本发明,但是应当清楚地理解,其仅仅是为了说明和举例,而不是对本发明加以限定,本发明的精神和范围只由所附权利要求的内容来限定。
对本技术领域中的技术人员来说,很明显,在不偏离由所附权利要求限定的范围的情况下可对本发明的步骤和部件的细节和布置进行改变。
权利要求
1.一种用于将入土桩构件打入地里或将入土桩构件从地里拨出来的激振器装置,其特征在于包括用于对所述入土桩构件施加沿上下方向的振动的磁致伸缩装置;以及用于通过改变供到所述磁致伸缩装置的电流来控制所述磁致伸缩装置的伸展或收缩的驱动电路。
2.如权利要求1所述的激振器装置,其特征在于,所述驱动电路包括用于调节供到所述磁致伸缩装置的电流的接通周期的控制电路。
3.如权利要求1所述的激振器装置,其特征在于,所述磁致伸缩装置包括多个由所述入土桩构件支撑的磁致伸缩元件,所述驱动电路对所述多个磁致伸缩元件提供时间宽度互不相同的接通电流,从而使所述多个磁致伸缩元件中的每一个独立地伸长和缩短。
4.如权利要求1所述的激振器装置,其特征在于,它还包括一重块,所述重块固定在所述磁致伸缩装置上。
5.如权利要求3所述的激振器装置,其特征在于,它还包括多个重块,所述多个重块中的每一个分别固定在所述多个磁致伸缩元件中的每一个上。
6.如权利要求1所述的激振器装置,其特征在于,所述磁致伸缩装置包括具有负磁致伸缩常数的用作磁心的磁致伸缩材料和线圈,当从所述控制电路供给所述线圈的所述电流的量值增大时所述磁致伸缩装置缩短,而当从所述控制电路供给所述线圈的所述电流被切断时所述磁致伸缩装置迅速伸长至所述磁致伸缩装置的原来长度。
7.如权利要求4所述的激振器装置,其特征在于,所述磁致伸缩装置包括具有负磁致伸缩常数的用作磁心的磁致伸缩材料和线圈,当从所述控制电路供给所述线圈的所述电流的量值增大时,所述磁致伸缩装置收缩,而当从所述控制电路供给所述线圈的电流被切断时所述磁致伸缩装置迅速伸长至所述磁致伸缩装置的原来长度。
8.如权利要求1所述的激振器装置,其特征在于,所述磁致伸缩装置包括具有正磁致伸缩常数的用作磁心的磁致伸缩材料和线圈,当从所述控制电路供给所述线圈的所述电流的量值增大时,所述磁致伸缩装置伸长,而当从所述控制电路供给所述线圈的电流被切断时,所述磁致伸缩装置迅速缩短至所述磁致伸缩装置的原来长度。
9.如权利要求4所述的激振器装置,其特征在于,所述磁致伸缩装置包括具有正磁致伸缩常数的用作磁心的磁致伸缩材料和线圈,当从所述控制电路供给所述线圈的所述电流的量值增大时,所述磁致伸缩装置伸长,而当从所述控制电路提供给所述线圈的电流被切断时,所述磁致伸缩装置迅速缩短至所述磁致伸缩装置的原来长度。
10.如权利要求1所述的激振器装置,其特征在于,所述磁致伸缩装置包括磁致伸缩材料和线圈,所述驱动电路还包括由二极管和电阻串联而成的串联电路,用来在供给线圈的所述电流被切断时抑制所述线圈中的剩余电流。
11.如权利要求2所述的激振器装置,其特征在于,所述磁致伸缩装置包括磁致伸缩材料和线圈,所述驱动电路还包括由二极管和电阻串联而成的串联电路,用来在供给线圈的所述电流被切断时抑制所述线圈中的剩余电流。
12.如权利要求3所述的激振器装置,其特征在于,所述多个磁致伸缩元件中的每一个包括磁致伸缩材料和线圈,所述驱动电路还包括由二极管和电阻串联而成的串联电路,用来在所述供给线圈的所述电流被切断时抑制所述线圈中的剩余电流。
13.如权利要求3所述的激振器装置,其特征在于,所述多个磁致伸缩装置中的每一个包括磁致伸缩元件和线圈,对所述线圈供给各具有互不相同的上升时间周期和下降时间周期的多个接通电流。
14.如权利要求7所述的激振器装置,其特征在于,对所述线圈提供各具有互不相同的上升时间周期和下降时间周期的所述接通电流。
15.如权利要求12所述的激振器装置,其特征在于,对所述多个线圈中的每一个供给各具有互不相同的上升时间周期和下降时间周期的所述接通电流。
16.如权利要求6所述的激振器装置,其特征在于,所述具有负磁致伸缩常数的磁致伸缩材料是一种主要包含镍(Ni)的磁致伸缩材料。
17.如权利要求8所述的激振器装置,其特征在于,所述具有正磁致伸缩常数的磁致伸缩材料是一种主要包含钴—铁(Co-Fe)的磁致伸缩材料。
18.如权利要求1所述的激振器装置,其特征在于,它还包括一支座,所述磁致伸缩装置紧固在所述支座上,所述支座由所述入土桩构件支撑。
19.如权利要求4所述的激振器装置,其特征在于,它还包括一支座,所述磁致伸缩装置紧固在所述支座上,所述支座由所述入土桩构件支撑。
20.如权利要求5所述的激振器装置,其特征在于,它还包括一支座,所述多个磁致伸缩元件紧固在所述支座上,所述支座由所述入土桩构件支撑。
21.如权利要求4所述的激振器装置,其特征在于,所述磁致伸缩装置放置并固定在所述入土桩构件上。
全文摘要
一种激振器装置具有由入桩(2)支撑并对入土桩(2)施加上下方向振动的磁致伸缩元件(5,6)和用于通过改变供到磁致伸缩元件(5,6)的电流的供电时间周期来控制磁致伸缩元件(5,6)的伸长和缩短运动的驱动电路(D1)。通过控制驱动电路(D1)改变在磁致伸缩元件(5,6)中流动的电流的供电时间周期来控制元件(5,6)的伸长和缩短运动。从而可消除水平振动分量且只将垂直振动分量传到入土桩构件(2)。
文档编号E21B7/00GK1138124SQ9511967
公开日1996年12月18日 申请日期1995年11月7日 优先权日1995年6月10日
发明者江上憲位, 服部晋一, 谷口良辅, 坂本隆博, 島田隆史 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1