密闭型往复式压缩机的制作方法

文档序号:5492296阅读:200来源:国知局
专利名称:密闭型往复式压缩机的制作方法
技术领域
本发明涉及密闭型往复式压缩机,尤其是涉及具有低压级侧压缩单元和高压级侧压缩单元的不同的阀装置的密闭型往复式压缩机。
背景技术
作为在具有蒸发压力不同的、因而与该蒸发压力1对1对应的蒸发温度不同的2个蒸发器的冰箱等的冷冻装置的制冷循环(refrigeration cycle)中使用的压缩机,已知有在密闭容器内具有低压级侧压缩单元和高压级侧压缩单元2个压缩单元的双级压缩式的密闭型往复式压缩机(例如,参照专利文献1日本专利特开2003-83247号公报 ,图4)。在这样的以往的压缩型往复式压缩机中,由吸气孔和开闭该吸气孔的吸气阀及排气孔和开闭该排气孔的排气阀等构成的阀装置,低压级侧压缩单元用的阀装置和高压级侧压缩单元用的阀装置,其孔径和阀的板厚等构成都相同。
但是,在上述制冷循环中使用的双级压缩式的压缩机中,吸入压力和排出压力的压力条件、制冷剂流量等因低压级侧压缩单元和高压级侧压缩单元而异,因而无法充分提高作为压缩机的性能。

发明内容
本发明是为了解决上述问题而作成的,其目的在于,提供一种具有低压级侧压缩单元及高压级侧压缩单元的高效率的密闭型往复式压缩机。
为了到达上述目的,本发明的一个形态的密闭型往复式压缩机,在连接有低压制冷剂吸气管、中压制冷剂吸气管及排气管的密闭容器内,收放有由电动机部驱动的低压级侧压缩单元及高压级侧压缩单元,将低压制冷剂从所述低压侧制冷剂吸气管吸入至低压级侧压缩单元内并进行压缩排出,且对从所述低压级侧压缩单元排出的制冷剂及从中压制冷剂吸气管吸入的制冷剂进行吸入压缩,并从所述排气管排出,其特征在于,使所述低压级侧压缩单元和高压级侧压缩单元的阀装置的流道阻力不同。
根据本发明的密闭型往复式压缩机,能提供具有低压级侧压缩单元及高压级侧压缩单元的高效率的密闭型往复式压缩机。


图1是表示将本发明的密闭型往复式压缩机装入制冷循环中的状态的横向剖视图。
图2是表示本发明的密闭型往复式压缩机的横向剖视图。
图3a、图3b、图3c是本发明的密闭型往复式压缩机中使用的阀装置的分解图,图3a是排气阀和阀座板的俯视图,图3b是其侧视图,图3c是吸气阀的俯视图。
图4是表示本发明的密闭型往复式压缩机中使用的阀装置的阀座板的局部放大图。
图5是表示本发明的密闭型往复式压缩机的排气孔比与效率系数的试验结果的相关图。
图6是表示以往的通常的密闭型往复式压缩机的排气孔的大小与效率系数的相关图。
具体实施例方式
以下,参照附图对本发明的密闭型往复式压缩机的一实施形态进行说明。
图1是本发明的密闭型往复式压缩机的横向剖视图,表示装入制冷循环中的状态。图2是其纵向剖视图。
如图1及图2所示,本发明的密闭型往复式压缩机1,具有与低压制冷剂吸气管2a、中压制冷剂吸气管2b及排气管2c连接的密闭容器2;收放在该密闭容器2内的电动机部3;由该电动机部3驱动的低压级侧压缩单元4及高压级侧压缩单元5。
与上述密闭容器2连接的排气管2c,与具有蒸发压力(温度)不同的2个蒸发器的例如冰箱等的制冷装置的冷凝器21连接,中压制冷剂吸气管2b与冷藏室用蒸发器22连接,低压制冷剂吸气管2a与蒸发压力比冷藏室用蒸发器22低的冷冻室用蒸发器23连接。
另外,电动机部3由定子3a和转子3b构成,该转子3b固定在由框架(frame)3c支承的旋转轴6上。
而且,低压级侧压缩单元4,包括气缸(cylinder)4a;通过形成于旋转轴6的上部的曲柄轴(部)(crank shaft)6a的驱动在该气缸4a内进行往复运动的活塞(piston)4b;以及设置在气缸4a的端面的阀装置41,构成借助低压制冷剂吸气管2a从蒸发压力低的冷冻室用蒸发器23吸入的气态制冷剂(gaseousrefrigerant),通过低压级侧吸气管4d、低压级侧吸入消声器(muffler)4e、低压级侧吸入室4f、阀装置41吸入至气缸4a内,并由活塞4b压缩,通过阀装置41、低压级侧排出室4g、在密闭容器2内开口的低压级侧排气管4h,向密闭容器2内排出的结构。与低压级侧压缩单元4同样,高压级侧压缩单元5,包括气缸5a;通过旋转轴6的曲柄轴6a在该气缸5a内进行往复运动的活塞5b;以及设置在气缸5a的端面的阀装置51,构成借助在密闭容器2内开口的高压级侧吸气管5d吸入的气态制冷剂,通过高压级侧吸入室5f、阀装置51吸入至气缸5a内,并由活塞5b压缩,通过阀装置51、高压级侧排出室5g、高压级侧排出消声器5e、高压级侧排气管5h,向密闭容器2外的排气管2c排出的结构。在由该高压级侧压缩单元5进行的压缩行程中,高压级侧吸气管5d吸入的制冷剂,是在经低压级侧压缩单元4压缩并向密闭容器2内排出的制冷剂的基础上,从中压制冷剂吸气管2b吸入至密闭容器2内的中压制冷剂在密闭容器2内混合而成的。
另外,向排气管2c排出的高压制冷剂在冷凝器21处冷凝,分流至第1毛细管(capillary tube)22a和冷藏室用蒸发器22、第2毛细管23a和冷冻室用蒸发器23。
上述制冷剂例如是异丁烷(R600a)(isobutane-R600a),在冰箱的场合,低压级侧压缩单元4的吸入压力约为0.1MPa,低压级侧压缩单元4的排出压力、即高压级侧压缩单元5的吸入压力约为0.3MPa,高压级侧压缩单元5的排出压力约为0.9MPa。
如图3(a)~(c)所示,上述低压级侧压缩单元4的阀装置41及高压级侧压缩单元5的阀装置51为相同的结构和形状,只是其吸气孔及排气孔的直径不同。因此,对阀装置41及阀装置51标上符号同时进行说明。
阀装置41、51包括设有2个吸气孔41a1、51a1和2个排气孔41a2、51a2的阀座板41a、51a;安装在该阀座板41a、51a上且对排气孔41a2、51a2进行开闭的U字形的排气阀41b、51b;对该排气阀41b、51b的开度加以限制的约为U字形的排气阀按压件41c、51c;以及在与阀座板41a、51a的排气阀41b、51b的相反面设有对吸气孔41a1、51a1进行开闭的吸气阀41d、51d,吸气阀41d、51d具有与阀座板41a、51a大致相同的形状,通过切槽(slit)41d1、51d1形成吸气阀部41d2、51d2。图3(a)、(c)中,符号41d2、51d2表示吸入通道。
如图4所示,阀装置41的排气孔41a2的直径Dd1例如为4.5mm,相对于阀装置51的排气孔51a2的直径Dd2的3.1mm,Dd1/Dd2大致为1.5,该比值是根据后述的试验结果得到的,而且,阀装置41的吸气孔41a1的直径Ds1比阀装置51的吸气孔51a1的直径Ds2大。
一般往复式压缩机,排气孔的大小与效率系数之间存在图6所示的相关性。即,排气孔部分的空间容积,在活塞位于上死点时残留有排出气体,该残留气体在活塞移向下死点期间重新膨胀。因重新膨胀的气体容积使吸入制冷剂量下降,效率下降。因此,使排气孔部分的空间容积尽可能小地设定排气孔的直径。但是,当排气孔的直径小(空间容积小)时,重新膨胀量减小,吸入制冷剂量的下降减小,而流道阻力增大,成为过压缩,气缸内压力上升过度,压缩功增加,效率下降。该排气孔的空间容积引起吸入制冷剂量的下降导致的效率下降和排气孔的流道阻力的影响程度因吸入压力和排出压力的关系及吸入制冷剂量而异。
为此,准备了图3(a)~(c)所示那样的、板厚相同、排气孔41a2的直径具有各种不同的值的多个阀座板41a试样进行了试验,发现压缩机的效率系数因低压级侧压缩单元4的排气孔41a2的直径Dd1与高压级侧压缩单元5的排气孔51a2的直径Dd2之比Dd1/Dd2而变化。这是因为,低压级侧压缩单元4的吸入压力与排出压力的压力差比高压级侧压缩单元5的小,因而流道阻力减小引起的压缩功的减小比残留气体的重新膨胀引起的损失大的缘故。而且,从上述试验结果发现,当Dd1/Dd2大于1时,效率系数提高,但一旦超过2,则效率系数反而下降。因此,以1<Dd1/Dd2≤2为宜,最好是1.2≤Dd1/Dd2≤1.8。
下面参照图1及图2对上述密闭型往复式压缩机的作用动作进行说明。
如图1及图2所示,当对电动机部3通电使旋转轴6旋转驱动时,曲柄轴6a一体偏心旋转。低压级侧压缩单元4的阀装置41及高压级侧压缩单元5的活塞4b、5b随着该偏心旋转沿同一方向进行往复运动。该低压级侧压缩单元4、高压级侧压缩单元5的气缸4a、5a配置在大致180°相对的位置,各活塞4b、5b在各个气缸4a、5a中构成互为相反的行程。
低压级侧压缩单元4中,蒸发压力低的气态制冷剂从冷冻室用蒸发器23通过低压制冷剂吸气管2a、低压级侧吸气管4d、低压级侧吸入消声器4e被吸入至低压级侧吸入室4f内。吸入低压级侧吸入室4f内的蒸发压力低的气态制冷剂流过阀装置41的吸气孔41a1被吸入至气缸4a内,通过活塞4b压缩成中压,通过排气阀装置41的排气孔41a2、低压级侧排出室4g、在密闭容器2内开口的低压级侧排气管4h,向密闭容器2内排出。而且,在密闭容器2内,从中压制冷剂吸气管2b吸入中压制冷剂,与由上述低压级侧压缩单元4压缩的制冷剂混合。
密闭容器2的中压制冷剂通过在密闭容器2内开口的高压级侧吸气管5d被吸入至高压级侧吸入室5f内。吸入至高压级侧吸入室5f内的中压气态制冷剂通过阀装置51的吸气孔51a1,被吸入气缸5a内,由活塞5b压缩成高压,通过阀装置51的排气孔51a2、高压级侧排出室5g、高压级侧吸入消声器5e向密闭容器2外的排气管2c排出。
在上述那样的低压级侧压缩单元4执行的从低压至中压的压缩行程、高压级侧压缩单元5执行的从中压至高压的压缩行程中,吸气孔41a1、51a1;排气孔41a2、51a2的大小因气体的流道阻力和气体的重新膨胀而对压缩效率产生影响,但低压级侧压缩单元4的排气孔41b的直径Dd1与高压级侧压缩单元5的排气孔41b的直径Dd2之比Dd1/Dd2形成为比1大,故可提高作为压缩机的效率系数。这是因为,低压级侧压缩单元4的吸入压力与排出压力的压力差比高压级侧压缩单元的小,因而流道阻力减小引起的压缩功的减小效果的比率大于残留气体的重新膨胀引起的损失的缘故。
另外,一般吸气阀在压缩行程时,阀部分因气缸内压与吸入室的压力的压差而被朝吸气孔推压,从而产生应力,当该应力增大时,会导致阀破损。因此,吸气孔被设定为可减小吸气阀中产生应力的大小。但是,当吸气孔较小时,流道阻力增大,吸入气体量下降,导致效率下降。阀承受的应力由下式表示。
σ=1.24(pa2)/t2这里,σ最大应力、p阀部分两侧的压差、a阀相接的吸气孔部分的半径、t阀的板厚。
密闭型往复式压缩机1中,因为低压级侧压缩单元的压力差比高压侧压缩单元的压力差小,因而通过将低压级侧压缩单元4的吸气孔41a1的孔径做得比高压级侧压缩单元5的吸气孔51a1的孔径大,在不用增大吸气阀41d承受的应力的情况下,可减小吸入流道阻力,提高密闭型往复式压缩机的效率系数。
如上述本实施形态的密闭型往复式压缩机那样,通过将吸气孔、排气孔的大小针对低压级侧压缩单元和高压级侧压缩单元做成适当的大小,可提高其效率。
上述实施形态中,以将低压级侧压缩单元的吸气孔、排气孔双方的大小做成比高压级侧压缩单元的吸气孔、排气孔大的例子进行了说明,但也可仅将其中之一做成比高压级侧压缩单元的吸气孔或排气孔大。另外,低压级压缩单元的吸气孔也可不采用增大其直径的做法,而是通过将吸气阀的板厚做成比高压级侧压缩单元的吸气阀的板厚薄,减小吸气阀的弹簧力,能以小的压力开闭吸气阀,减小吸入气体的流道阻力,提高吸入效率。
权利要求
1.一种密闭型往复式压缩机,在连接有低压制冷剂吸气管、中压制冷剂吸气管及排气管的密闭容器内,收放有由电动机部驱动的低压级侧压缩低压及高压级侧压缩单元,将低压制冷剂从所述低压侧制冷剂吸气管吸入低压级侧压缩单元内并进行压缩排出,且对从所述低压级侧压缩单元排出的制冷剂及从中压制冷剂吸气管吸入的制冷剂进行吸入压缩,并从所述排气管排出,其特征在于,使低压级侧压缩单元和高压级侧压缩单元的阀装置的流道阻力不同。
2.如权利要求1所述的密闭型往复式压缩机,其特征在于,所述低压级侧压缩单元的排气孔的孔径(Dd1)与所述高压级侧压缩单元的排气孔的孔径(Dd2)的关系由下式表示1<Dd1/Dd2≤2。
3.如权利要求1所述的密闭型往复式压缩机,其特征在于,所述低压级侧压缩单元的排气孔的孔径(Dd1)与所述高压级侧压缩单元的排气孔的孔径(Dd2)的关系由下式表示1.2≤Dd1/Dd2≤1.8。
4.如权利要求1所述的密闭型往复式压缩机,其特征在于,所述低压级侧压缩单元的吸气孔的孔径做成比所述高压级侧压缩单元的吸气孔大。
5.如权利要求1所述的密闭型往复式压缩机,其特征在于,将所述低压级侧压缩单元的吸气阀的弹簧力设定得比所述高压级侧压缩单元的吸气阀的弹簧力小。
全文摘要
本发明能提供一种具有低压级侧压缩单元及高压级侧压缩单元的高效率的密闭型往复式压缩机。本密闭型往复式压缩机是多级压缩式,使低压级侧压缩单元与高压级侧压缩单元的阀装置的流道阻力不同。
文档编号F04B39/10GK1648450SQ20051000675
公开日2005年8月3日 申请日期2005年1月31日 优先权日2004年1月29日
发明者吉田政敏, 坂田宽二 申请人:东芝开利株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1