空气调节器的制作方法

文档序号:5447181阅读:191来源:国知局
专利名称:空气调节器的制作方法
技术领域
本发明涉及室內空调器、整装式空调器等,特别涉及用于室內机的直流型风扇。
近年来,对室內空调器的节能要求日渐增多。为了实现室內空调器的节能化,必须增大对于相同电力输入的能力(室內热交换器的热交换量),而要增大该能力,则需增大室內机的流量。为此,必须增大室內风扇的风量。增大该室內风扇风量的办法有提高室內风扇的转数,或者加大该室內风扇即直流型风扇的外径。由于室內机动作时的紊流音(分布在宽带域频率带的音)与风扇转数的7至8次方成正比,所以用前者的办法时,如果使风量增加30%,则噪音也增加9dB。另外,由于紊流音与风扇外径的4至5次方成正比,所以,用后者的办法时,噪音增加停留在5dB,能不增加噪音(紊流音)地增加风量,故倾向于采用后者的办法。
但是,室內空调器的进深尺寸是受到限制的,加大直流风扇的外径时,直流风扇与凸鼻间的间隙变小而产生显著的异常音(特异音),另外,由于室內热交换器与直流风扇间的距离变近,尾流通过风扇的叶片而产生声音。
降低这种叶片音的现有技术,例如有日本专利公报特开平6-129387号(文献1)和特开平6-173886号(文献2)。在文献1及文献2中,为了防止直流风扇(横流风扇)的叶片音,把叶片的周向安装间距做成不等间隔,使各叶片的周方向相位不同,以减低峰值音,从而降低整个机器的噪音。
在日本专利公报实开昭57-148089号(文献3)中,把整个叶片轮的中央部做成细的、把两端做成粗的弧形。为了错开噪音的相位得到整体的静音效果,配置了扭曲(螺旋型)的叶片。特开昭60-209693号(文献4)的目的不是降低叶片音,但与文献3有相似的形状,在文献4中,为了减轻横流风扇轴的挠曲,把风扇两端部的外径做得比中央部的外径大。
在直流风扇中,减小叶生轮与分隔吸入流路和吹出流路的凸鼻之间的间隙,就能增加风量。但是,当叶片轮与凸鼻之间的间隙变小时,则如前所述,会产生称为叶片音的异常音。该异常音的频率等于风扇叶片数和转数之积,并具有高次频率的噪音强度,与频率分散的紊流音(空气流碰到流路壁面时产生的音)相比,其峰值高并具有尖峰的频谱,听起来很刺耳。上述文献1和文献2记载的技术,是将叶片在周方向随机配置,施行相位调制,分散叶片音的频率使其不易被听到,这种单纯地将叶片配置成不等间距,当一片叶片通过凸鼻时,由于叶片前端同时通过,所以不容易防止叶片音的异常音。因此,为了增加风量而减小凸鼻与叶片的间隙时,又增加了异常音。另外,当热交换器和叶片靠近时,由于热交换器的管的尾流流入(通过热交换器过来的空气流的速度分布在管的下游小,空气流在该速度分布状态下到达风扇的叶片时就产生异常音),叶片音变得显著,同时噪音强度也增高,所以不能实现低噪音和增加风量。
文献3中记载了叶片在轴方向旋转或扭曲,其防止产生叶片音的效果较好。但是,由于越到端部外径越大,风扇端部的风扇內压降低,从热交换器流进来的空气流的大部分在端部流动,而风扇中央部的空气流量减少,其结果总风量不增加。另外,由于端部的风量增加,随之紊流音也增加。文献4记载的技术中,对叶片没有施以扭曲。存在着风量低和有噪音(紊流音、异常音等)的问题。
本发明的目的是提供一种能抑制异常音的产生并增加风量的空气调节器。另一目的是提供一种能抑制异常音的产生并增加风量的直流风扇。
为了实现上述目的,本发明的空气调节器备有作为室內机送风扇的直流风扇,其特征在于,将直流风扇分割成由圆板隔开的若干个段,至少一个段中的叶片外径在该段的圆板间有变化的部分,上述至少一个段和相邻段在邻接部的叶片外径不同。
为了实现上述目的,本发明的直流风扇的特征是,将直流风扇分割成由圆板隔开的若干个段,至少一个段中的叶片相对于风扇轴线倾斜,上述至少一个段和相邻段至今接部的叶片外径不同。
由若干个风扇段构成的直流风扇中,如果使其中一个风扇段的叶片外径变化,则一片片的叶片在风扇旋转方向上成为具有凹部朝前的叶片形状,所以叶片外周部即叶片后缘相对于旋转轴倾斜。因此,相对于凸鼻、热交换器的管子也倾斜,叶片后缘不再同时通过这些管子的尾流。因此,因叶片通守尾流而产生的音的频谱被分散,异常音被抑制。另外,由于叶片外径有大的部分和小的部分,在外径大的部分风速大,在外径小的部分风速小,所以,能积极地局部改变叶片轮吸入侧的风速分布,而作为叶片音产生原因的凸鼻及热交换器管的尾流的轴向分布也可局部地改变,从而可抑制叶片音。在叶片外径大的部分,风量比已往的增加,由于能更加减小凸鼻与叶片的间隙,所以能实现高风量化。


图1是表示本发明一实施例的正面纵断图。
图2是图1实施例的纵断面图。
图3是图1实施例的叶片轮的外观图。
图4是图1实施叶片轮的立体图。
图5是图1实施例的叶片轮的正面断面图。
图6是图1实施例的叶片轮的纵断面图。
图7是表示图1实施例的效果的图。(7a),7b),7c))。
图8是表示图1实施例的效果的图。(8a),8b))。
图9是本发明另一实施例的叶片轮主要部件的正面断面图和正同图。
图10是本发明另一实施例的叶片轮正面断面图和纵断面图。
图11是本发明另一实施例的正面断面图和正面图。
图12是本发明另一实施例的平面断面图和纵断面图。
图13是表示异常音产生原理及抑制作用的图。
图14是表示异常音产生原理及抑制作用的图。
图15是本发明另一实施例的平面断面图。
图16是表示图15实施例的效果的图。(16a),16b)。
图17是本发明另一实施例的正面图。
图18是本发明另一实施例的立体图。
下面,参照图1至图8、图13和图14说明本发明的一实施例。图1表示室內空调器的正面断面图。在装饰框28內部装有热交换器16、电机23、直流风扇即叶片轮10以及预滤器12等主要部件。图中左侧配置着电机23、抑制电机23振动的防振橡胶21,在其上部配置着使电机23等动作的电气部件24、循环部件25。以叶片6及圆板7为主要构成部件的叶片轮10在电机23的作用下旋转,该旋转是从剖切部看见的一侧周围从下往上地旋转,从设在装饰框28前面及上部的格栅13和上部格栅14通过预滤器12及空气滤清器15(图1中未示)吸入的空气由热交换器16进行热交换,再通过分离吸入流路和吹出流路的凸鼻11、叶片轮10,从设有纵风向板18、横风向板19的吹出口26吹出。为了使叶片6的外径在圆板7间变化,叶片轮10的叶片的外周部分即后缘相对于凸鼻11上面是倾斜的。纵风向板18配置在叶片轮10的外径小的部分。
图2是图1所示室內空调器的纵断面图。在叶片轮10的后部设有构成空气流路的罩17,在其后部通过制冷剂的配管20。通过由3级形成的热交换器16(除湿的情况下,上2级作为加热器,下1级作为冷却器)流入的空气的大部分,由于叶片轮10的旋转沿罩17从吹出口排风。
下面说明直流风扇送风的原理。当配置在圆板7间外周部分的叶片6向顺时针方向旋转时,按照流体工程学的翼理论,位于凸鼻11上流侧的叶片群6使叶片翼间的风速变化转向减速流(压力上升)。而被凸鼻11和罩17包围着的叶片群6使叶片翼间的气流一边增速(该部分的翼间气流被在旋转方向成为凹状朝前的叶片增速)一边压力上升而吹出。这时,直流风扇(叶片轮10)本身以轴为中心顺时针旋转,空气流以从轴中心偏向凸鼻11侧点为中心顺时针旋转。
这是由于凸鼻11上流侧的压力低,有风向板18的吹出侧的一部分空气流通过叶片6与凸鼻11之间的间隙从吹出侧池漏到凸鼻11上流侧,被凸鼻11上流侧的叶片群6吸入,该部分产生循环即产生旋涡的缘故。在凸鼻11的上、下游的泄漏量即未有效吹出的量与凸鼻11上、下游的压力差及叶片6与凸鼻的间隙成正比,当叶片6与凸鼻11的间隙大时,该泄漏量有时占室內空调器全部风量的20%。因此,减小该间隙也是增大风量的一个要素。
这时,从叶片6与凸鼻11的间隙高速泄漏的气流与叶片轮10同样方向地旋转并流入热交换器的翅片內,而在其上部,从热交换器出来的低速气流向着叶片轮的轴中心方向流入。因此,叶片6旋转并在通过这部分时通过强风速分布的畸变流口(一般称这样的气流为滑流、或速度畸变流、或尾流)中。这样,当叶片通地尾流中时,在叶片诱发扬力变化。一片叶片旋转一次能诱发一次强的扬力变化,由于在叶片轮的圆板7外周配置着若干片的叶片(例如Z片),所以,当叶片轮旋转一次时,能在叶片轮上诱发Z次扬力变化,当转数为N次时(RPS),在叶片轮上以N·Z频率诱发扬力变化。根据卡尔理论,当叶片诱发扬力变化时会发出声音。这是叶片音产生的机械原理,叶片音具有周期性,是很尖很刺耳的异常音。
该音的音压强度这样求出把在(1)式中的一片叶片上诱发的扬力变化(诺伊曼公式)代入卡尔的音压公式(2),再代入(3)式的音压强度公式求出。
(式1)L(ω)=∫0b0{2·π·p·U·wp·c·b·sinφ·(cotφ(f(Ff(ω)+αFα(ω)))+S(ω))}db]]>…(1)(式2)P=14πa03·xix2∫∂L∂tds···(2)]]>(式3)SPL=20·log(pp0)···(3)]]>式中,L(w)、P、U为变化扬力(频率w的函数)、密度、代表平均速度(在翼间风速,在主音源位于风扇吹出侧的直流风扇中,U与风量成正比);Wp是在凸鼻11附近循环的旋涡的旋转速度与在其上通过热交换器的空气的速度差(通常,凸鼻11与叶片的间隙越小,Wp越大);C、b分别是叶片的翼弦长和作为产生叶片音原因的叶片在同时通过尾流(通常通过凸鼻部分)时的叶片的轴方向长度,作为风扇要素的最大长度是圆板7间的叶片轴方向长度;φ是与Wp在翼弦方向形成的角度;f分别是叶片相对于翼弦长的最大高度(通常表示翼的翘曲状况),α是流入空气与叶片的射入角;Ff(W)、Fα(w)分别是叶片曲、有射入角时产生的扬力变化项;S(w)是根据Wp成分而产生的变化扬力项。a0、X、Xi、S分别表示音速、从风扇至音观测点的距离、风扇和观测点的方向余弦、若干风扇要素全体的长度;P0表示作为噪音强度基准的音压强度。
从式(1)、式(2)及式(3)中可知,扬力变化的时间微分就成为叶片音。在(1)式的左边,能减小扬力变化的因素是U、Wp、C、b,U与风量成正比,所以在相同外径时不变。另外,当凸鼻与叶片间的间隙变小时,Wp变大,所以,欲要实现高风量化,使该Wp变大是今后的方向,此项不可减小。因此,最能有效地降低叶片音的因素只有改变c或b。而且,b是叶片通过凸鼻附近、叶片音产生最小的长度,c是该最小长度部分的叶片的翼弦长,所以,必须使该长度变化,以使得该长度在轴方向不在同时形成(使得在w项中形成相位差项)。
图3表示用于减低该项的叶片轮10的外观。叶片轮10主要由轮毂2、端面圆板4、叶片6、圆板7、端面板8和轴9构成。
圆板间的叶片安装位置是变化的,如后所述,这是由于叶片6的形状在圆板间变化的缘故。从外观上看,叶片的外径从有轮毂2的端面圆板4起朝着下一个圆板其外径减小,在该下一个圆板处外径又增大,如此反复地直到有轴9的圆板。
图4表示圆板之间的一段叶片轮的立体图。在叶片轮10的端面圆板4上有轮毂2、轴孔1和螺丝孔3。从有轮毂2的端面圆板4朝着圆板7其叶片向宽度逐渐变小。如图所示,一片片的叶片不是平板状的,而是在整个长度方向上其宽度方向是圆弧形的,叶片本身在长度方向不扭曲。
这种风扇是这样制造的把风扇材料注入向纵深变细的若干个模子內,为了使另一段叶片轮粘接在圆板的背面,用形成凹部那样的有若干凸部的模子挤压,脱模后就形成了同一构造的若干叶片成一体的一块圆板,制造若干个这样的圆板,粘接或熔接所需个数的上述圆板便制成了叶片轮10。同一形状的产品可以批量生产,当风扇形状为不扭曲时,在脱模时不必一边扭转一边脱模,所以不会增加造价,能提供异常音少而风量大的风扇。另外,在端面圆板4与轴9之间设有防振构造(图未示)。
本实施例中,是用塑料制造叶片轮,用钢板或铝板制造该叶片轮时,叶片在长度方向作成叶片轮的全长。
图6表示沿图5所示叶片轮10的轴方向切断后的纵断面图。上下的叶片6是叶片的正投影,叶片的靠叶片轮內面侧是整齐的直线状,外周侧有简单的变化。在端面圆板4与轮毂2之间有防振橡胶5。从一方圆板7到另一方圆板7之间,叶片6的外径渐渐增加。
下面参照图6至图8,图13至图14详细说明具有上述构造的叶片轮10能抑制异常音并增加风量的作用。
图6(a)表示一段叶片轮10的断面图,在圆板7之间安装着叶片。在叶片外径D2小的a-a断面〔图6(b)〕和叶片外径D2大的b-b断面〔图6(c)〕中,叶片的翼弦长C是不同的。由于有这样的形状,与至今被认为降低异常音为最好的扭曲形叶片相比,其效果更佳。
叶片6的外周部或后缘部,从a-a断面朝着b-b断面方向,其位置相对于旋转方向是错开的,换言之,叶片的长边相对于风扇轴线是倾斜的,所以当风扇旋转时,b-b断面一侧的叶片部分先通过凸鼻附近,a-a断面一侧的叶片后通过(这并不是由于叶片扭曲,而是由于b-b断面的叶片的翼弦长度长,向圆板的圆周方向延伸的缘故)。这时,如图13所示,至凸鼻附近旋转着的叶片6顺次横切两股气流,一股是从上述凸鼻11与叶片的间隙中漏出并被叶片吸入的气流,另一股是通过热交换器来的较迟的气流。把存在着该风速差的部分称为存在速度畸变的部分。如果平行于风扇轴线的叶片横切了该存在速度畸变的部分,则由于叶片前端部同时地横切该速度分布不均的处所,所以如前所述,产生由叶片片数和旋转数之积表示的频率的音以及其高次高谐波。
但是,根据本实施例的叶片形状,在轴方向叶片6具有时间差地通过该速度畸变部分,(1)式中的产生叶片音的最小长度b变小,并且,该产生叶片音的最小长度b一个一个延迟地通过,在w项中因时间延迟而产生相位差,在扬力变化中产生相位调制,不易产生具有高频率的叶片音。该作用在不等间距的叶片构造中得不到,但在扭曲叶片中同样能得到。
根据本实施例,由于叶片外径沿轴向变化,外径大的部分风量就大,风速快,反之,外径小的部分风速慢。因此,如图13所示,在风扇轴方向也能作出积极的速度分布,风进入叶片的时间产生变化,即,积极地造成相位差,所以,与上述同样地,降低叶片音的效果显著。这一效果是上述扭曲叶片所得不到的。
产生叶片音的另一原因是从热交换器的管子出来的尾流。图14表示热交换器下游的风速分布。随着风扇的旋转产生的从热交换器来的吸入空气流不具有均匀的速度分布,由翅片29和管子30构成的热交换器16的下游、特别是在管子的下游产生风速慢的尾流。如果风扇的叶片平行于轴线方向,则叶片的长边前端部同时地横切速度分布变化的部分,其结果产生异常音。在扭曲叶片中,虽然不同时地通过速度分布变化的部分,但不能抑制一定程度以上的异常音的发生。
根据本实施例的叶片形状,由于全部的流入空气流都沿轴方向变化,所以能有效地分散与上述同样音的频谱,从而能抑制叶片音的产生。
关于风量,如前所述,直流风扇的外径增大则风量就增大。如前所述,增加风量的办法有提高风扇转数和增大外径。与提高风扇转数的方法相比,增大外径能抑制由紊流音造成的噪音。本实施例中,如果把外径小的部分做成与已往的外径相同,则在该部分可确保与已往相同的风量,由于在风扇段内外径大的部分风量增加,所以整体的风量能增加。
由于叶片做成能抑制异常音产生的形状,凸鼻11和叶片轮7能靠近配置,能加大叶片轮的直径,从而能抑制异常音并增加风量。
由于把图1所示的纵风向板18配置在从叶片轮吹出风速小的部分,所以可降低从风向板产生的音,还可降低因风速引起的风向板压力损失。
图7表示将上述叶片轮10组装到室內空调器上的实验结果。实验条件是叶片轮外径是一定的,不等间距(也称为随机间距)的现有叶片轮(外径90mm)与本实施例叶片轮10的外径之比为1.03(小的外径是90mm,大的外径是93mm);转数是一定的,把相对于这时风量的静压特性和噪音特性假设在已往叶片轮的工作点是100%进行比较。另外,噪音频谱都是风量比为100%的情形,叶片外径与凸鼻间的间隙,已往的叶片轮是9mm,本实施例中是5mm。对照异常音产生的机械原理,对于本实施例的实验条件是严格的。
外径比为1.03的情况下,与随机间距风扇相比,噪音特性(不仅仅是异常音,还包括紊流音)相同,而风量,静压提高,适合于高风量化。另外,关于噪音频谱,已往的叶片轮中叶片音的1次、2次的尖峰成分非常突出,而本实施例中,叶片音的尖峰频谱没有了,而成为平缓状的。因此,有很好的降低异常音的效果。
图8是表示两叶片轮中,改变叶片与凸鼻间的间隙,在风量为一定时的噪音强度及叶片音强度的比较图。已往的叶片,在上述间隙为8mm以下时,其噪音强度、叶片音强度都增高,当间隙为10mm以下时,虽然叶片音强度低,但从该间隙泄漏的气流量增多,而引起噪音强度增高。而本实施例的叶片,当叶片最大外径部分与凸鼻的间隙在4.5mm时,叶片音不显著,噪音强度也低,在间隙大的情况下与已往的叶片具有同样的倾向。从该结果可知,本实施例的室內空调器中,叶片音产生少且实现高风量化的最适合的间隙为4.5-6.4mm。
图3中,叶片6看起来相对于旋转轴是扭曲,或者旋转的,但如前所述,这是由于叶片的翼弦长是改变的。
图3中,风扇由7个风扇段构成,但不限于7个,可以是任意个,对于相同长度的叶片轮来说,风扇段个数增加则叶片6外径的倾斜变陡。另外,叶片6也可以是不等间距地配置。
根据本实施例,除了具有能抑制上述异常音并实现高风量化的效果外,由于在风扇段间使外径变化,所以构造简单,与扭曲叶片相比制作容易,能达到高风量从而不增加造价,由于叶片是直线形,直流风扇的风量。压力特性的预测、噪音预测都较易进行。能缩短开发空调器的设计时间。与曲线状叶片相比,能提高叶片段整体的强度。
图9表示本发明的另一实施例。在上述第1实施例中,1个风扇段(从圆板到圆板之间的段)內的叶片外径变化是从一方圆板到另一方圆板呈简单的直线变化。而图9(a)中,在风扇段內有一部分与已往叶片轮同样地,可以是不变化的部分,但是,在风扇段內,特别是与凸鼻的间隙小的、叶片外径大的部分,要使外径变化。这样一来,外径的变化即叶片后缘的倾斜比上述实施例大,更加能防止叶片音的产生。图9(b)表示在每个风扇段中,外径的变化相对于旋转轴呈凹状,这也能得到同样的效果。在本实施例中是呈凹状,但凸状也能得到同样的效果。
图9(c)中表示在风扇段內外径的变化包括从增加到减少两种状态。这样,在风扇段內叶片的倾斜度更大,即使热交换器、凸鼻更靠近风扇,也能使音的频谱分散,从而抑制叶片音的产生,实现高风量化。
图10表示本发明的另一实施例。图10(a)表示叶片轮10的轴向断面,图10(b),图10(c)表示图10(a)的a-a、b-b断面。在一个风扇段內使叶片6的翼弦长(c)在若干处变化,也就是使叶片的外径及内径在若干处变化。这种构造虽然不适合批量生产,但是根据卡尔理论(卡尔理论认为,叶片音等流体音的发生,是已知翼面上的力的变化即扬力变化的时间微分即产生音),在轴向上叶片的负荷变化即扬力相对时间的变化比上述实施例改变大,因为可以积极地改变轴方向上的风扇上流侧风速分布,所以能防止叶片音的产生。
图11表示本发明的另一实施例。图11(a)表示翼弦长变化是在1个风扇段中央附近相对于轴呈凸状,图11(b)表示呈凹状,图11(c)表示在叶片外径部分容许有脱模坡度的平行度,在叶片外径部分设有平行的部分。其效果与上述实施例同样,能降低异常音。
图12表示本发明的另一实施例。在直流风扇中需要设置用于分隔吸入流路和吹出流路并提高压力的凸鼻11,在上述实施例中,凸鼻是不变化的直线状,而本实施例中,在叶片外径小的部分,减小与凸鼻11间的间隙。
使用上述各种本发明的叶片轮时,通常,凸鼻11与叶片6的间隙在叶片外径小的部分大,在外径大的部分小。如前所述,直流风扇的主音源是叶片外径大的部分,所以声音在叶片6外径大的部分产生。在叶片外径小的部分,即使减小与凸鼻11的间隙,声音几乎不增加而风量增加,基于这一点,把在叶片6外径小的部分的凸鼻11做成朝风扇轴方向凸的形状。即使凸鼻与叶片外径之间的间隙在任何位置都约保持为一定地设定凸鼻的形状。本实施例中,在同样噪音时风量约能增加30%。
本实施例中,是在叶片外径小的部分减小与凸鼻的间隙。实现高风量化。为了实现更加高的高风量化,也可以增高在叶片外径小的部分的凸鼻高度,即,相对于叶片后缘做成倒倾斜,更加减小间隙。这样,当叶片后缘通过凸鼻附近时,能形成更大的相位差,从而抑制叶片音的产生并能实现更高的高风量化。
如上所述,把凸鼻做成沿叶片外缘变化的形状,在控制泄漏方面具有很好的效果。但是,在产品组装时,风扇的轴方向位置偏移的情况下,叶片与凸鼻的间隙会急剧变小,而产生刺耳的叶片音。下面说明的实施例可解决该问题,即使在产品组装时风扇的轴方向位置有偏移,也能防止叶片音的产生,能静音地实现高风量化。
即,在直流风扇的至少一个风扇段內,在构成凸鼻外缘的线或面上,有使间隙变化的变曲点,在叶片外径变小的部分,使凸鼻向流路侧凸出,在组装空调器时,即使风扇偏移轴方向,间隙也不会急剧地变小,叶片音不会很刺耳,能以静音实现高风量化。
另外,把凸鼻外缘做成与叶片外缘的倾斜相反的倾斜状,可以使流入叶片的热交换器管的尾流形状在风扇轴方向上形成变化,这样也能防止叶片音的产生。
如果将上述两者组合起来使用,则能防止由风扇与凸鼻的干扰而产生的叶片音,也能防止热交换器管的尾流与叶片的干扰而产生的叶片音。
图15表示叶片外缘和凸鼻在旋转轴方向的变化状况。表示3个风扇段的轴方向变化状况及与其相邻的凸鼻的形状。叶片轮10的叶片6从左至右叶片外径简单地增大。凸鼻11的与叶片外缘相邻部分的形状是这样的在叶片外径小的部分向流路侧凸出,以减小凸鼻11与地片6外缘间的间隙。另外,凸鼻形状与上述实施例中的不同,它不是在风扇段间沿叶片6外缘形状变化,而是在叶片6外径小的部分向流路侧凸出,在风扇旋转轴方向上具有变曲点地变化。
将凸鼻11做成上述的形状,可以防止因叶片6外径减小而造成与凸鼻11的间隙变大,从而防止该间隙变大部分的气流泄漏,实现高风量化,在空调器组装时,风扇的安装位置即使有些偏移,叶片6与凸鼻11的间隙也不会急剧变窄。因此,叶片音的产生不会在批量生产的产品中各不相同(能消除质量的差异)。另外,在实施例中,只设了一个变曲点,也可以设若干个。
图16表示充分防止了叶片音产和时的静音效果,下面说明凸鼻11相当于风扇段一半长度的情形。如图所示,风扇外径最小为90mm,最大为93mm,风扇段长度为60mm,凸鼻间隙在风扇最大外径处为4.7mm,在最小外径处为4.5mm,在风扇最大外径部分处的凸鼻平行于风扇旋转轴,从中途朝着风扇最小外径部间隙急剧变窄。
与已往的凸鼻形状不变化的情形相比,在相同风量下,约能降低1dB的噪音。这意味着在相同噪音下,约能实现0.3m3/min的高风量化。
图17是本发明的另一实施例。与上述实施例同样地,直流风扇的叶片轮10的外径从左至右增大,叶片6的外缘相对于旋转轴倾斜,而且凸鼻11的上部也朝着与叶片倾斜方向相反的方向倾斜。根据该构造,从热交换器6的管29出来的尾流受到凸鼻高度的影响,在风扇的旋转轴方向上其同相性被破坏,从而不易产生叶片音。
图18是本发明另一实施例的室內机,表示凸鼻与叶片轮靠近部分的立体图。在凸鼻11与叶片10相邻的部分(该相邻部分如图2所示)使凸鼻11间隙沿轴方向变化地设定凸鼻11的形状,另外,使得从热交换器的管20出来的尾流在轴方向上破坏同相性地设定凸鼻11的高度。根据本实施例,几乎能完全防止叶片音的产生。
根据上述各种实施例,能防止产生刺耳的叶片音,实现节省电力的高风量化。反之,如果不改变风量,则能实现更好的静音化。另外,如果不改变风量,由于减少异常音的产生,不改变直流风扇的外径就可以减小凸鼻与风扇的间隙,所以能实现室內空调器的小型化。另外,无需扭曲叶片轮便能防止叶片音的产生,可以实现低造价。另外,即使因直流风扇的高压化而使热交换器的压力损失增加,也能实现无水振动的低噪音空调器,能实现机器的小型化。此外,直流风扇可广泛使用于室内空调器、整装空调器,以及OHP、个人电脑等的空冷电子机器,所以能使这些机器具有小型化、高风量、低噪音的效果。
根据本发明,能防止产生刺耳的叶片音并能实现节省电力的高风量化。反之,如果不改变风量,则能实现更好的静音化。另外,如果不改变风量,由于减少异常音的产生,不改变直流风扇的外径就可以减小凸鼻与风扇之间的间隙,所以能实现室內空调器的小型化。
权利要求
1.一种空气调节器,备有作为室內机送风扇的直流风扇,其特征在于,将直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片在该段的圆板之间有外径变化的部分,上述至少一个段和相邻段的在邻接部的叶片外径不同。
2.如权利要求1所述的空气调节器,其特征在于,在与直流风扇的叶片外径变小的位置对应处,配设着纵风向板。
3.如权利要求1所述的空气调节器,其特征在于,上述空气调节器具有分隔吸入流路和吹出流路的凸鼻,使该凸鼻的前端形状变化。
4.如权利要求3所述的空气调节器,其特征在于,上述凸鼻的前端形状的变化与叶片形状相适应。
5.如权利要求3所述的空气调节器,其特征在于,上述凸鼻的前端形状的变化是,与叶片外径小的部分相对应的部分的倾斜度变大。
6.如权利要求3所述的空气调节器,其特征在于,上述凸鼻的前端形状的变化,是使该凸鼻的高度沿上述段內直流风扇的旋转轴方向变化。
7.如权利要求1所述的空气调节器,其特征在于,上述空气调节器具有分隔吸入流路和吹出流路的凸鼻,该凸鼻的形状与叶片形状相配合。
8.一种空气调节器,备有作为室內机送风扇的直流风扇,其特征在于,将该直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片相对于风扇轴线是倾斜的,上述至少一个段和相邻段在邻接部的叶片外径不同。
9.如权利要求8所述的空气调节器,其特征在于,上述空气调节器具有分隔吸入流路和吹出流路的凸鼻,该凸鼻的形状与叶片形状相配合。
10.一种空气调节器,备有作为室内机送风扇的直流风扇,其特征在于,将该直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片相对于分隔吸入流路和吹出流路的凸鼻是倾斜的,上述至少一个段和相邻段至邻接部的叶片外径不同。
11.如权利要求10所述的空气调节器,其特征在于,上述凸鼻的形状与叶片形状相配合。
12.一种空气调节器,备有作为室內机送风扇的直流风扇,其特征在于,把直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片的翼弦长是变化的,上述至少一个段和相邻段在邻接部的叶片外径不同。
13.如权利要求12所述的空气调节器,其特征在于,在与直流风扇的叶片翼弦长变小的位置对应处,配设着纵风向板。
14.如权利要求12所述的空气调节器,其特征在于,上述空气调节器具有分隔吸入流路和吹出流路的凸鼻,该凸鼻的形状与叶片形状相配合。
15.一种空气调节器,备有作为室內机送风扇的直流风扇,其特征在于,直流风扇是将若干个风扇段连接而成的,所述风扇段备有在圆板处外径变化的叶片,在风扇段的邻接部,叶片外径不同。
16.如权利要求15所述的空气调节器,其特征在于,在与直流风扇的叶片外径变小的位置对应处,配设着纵风向板。
17.如权利要求15所述的空气调节器,其特征在于,上述空气调节器具有分隔吸入流路和吹出流路的凸鼻,该凸鼻的形状与叶片形状相配合。
18.一种直流风扇,其特征在于将直流风扇分割成由圆板隔开的若干段,至少一个段中具有叶片外径在该段的圆板间是变化的部分,上述至少一个段和相邻段在邻接部的叶片外径不同。
19.一种直流风扇,其特征在于将直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片相对于风扇轴线是倾斜的,上述至少一个段和相邻段在邻接部的叶片外径不同。
20.一种直流风扇,其特征在于把直流风扇分割成由圆板隔开的若干段,至少一个段中的叶片翼弦长是变化的,上述至少一个段和相邻段在邻接部的叶片外径不同。
21.一种直流风扇,其特征在于由若干个风扇段连接而成,该风扇段备有在圆板处外径变化的叶片,在风扇段的邻接部,叶片外径不同。
22.一种空气调节器,备有由直流风扇送风的室內机,其特征在于,上述直流风扇由若干个被圆板隔开的、具有同一形状的风扇段构成,这些风扇段的叶片外径在该段的圆板间呈简单的变化,在与直流风扇的叶片外径变小部分对应的位置,配设着若干个纵风向板。
全文摘要
本发明提供一种异常音少并能实现高风量化的空调器室内机用的直流风扇。配置在直流风扇叶片轮10的圆板7之间的叶片6的翼弦长是变化的。根据本发明,能防止叶片音的产生,实现高风量化。
文档编号F04D17/00GK1148155SQ9610927
公开日1997年4月23日 申请日期1996年8月2日 优先权日1995年8月2日
发明者高田芳广, 中村启夫, 松尾一也, 金子友通, 横山英范, 小曾户庄一, 森本素生, 安永泰久, 井本勉, 川边俊一, 舟越砂穗 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1