用于无级变速器的打滑检测系统和方法

文档序号:5740368阅读:172来源:国知局
专利名称:用于无级变速器的打滑检测系统和方法
技术领域
本发明涉及一种用于无级变速器的打滑检测系统和方法,该无级变速器能够连续地改变CVT(无级变速器)的传动比,该传动比是输入转速与输出转速之间的比值。

背景技术
作为能够连续地改变传动比的无级变速器,皮带式无级变速器和摩擦环式(牵引式)无级变速器在本领域都是公知的。皮带式无级变速器适于传递转矩并利用皮带改变传动比,摩擦环式无级变速器适于传递转矩并利用动力滚轮(power roller)改变传动比。在皮带式无级变速器中,皮带绕在主动皮带轮和被动皮带轮上,它们能够分别改变槽宽,并且利用皮带轮与皮带的接触面之间的摩擦力来传递转矩。利用这种结构,通过改变主动皮带轮的槽宽而改变绕在皮带轮上的皮带的有效半径,以此来改变CVT的传动比。
另一方面,在摩擦环式无级变速器中,驱动滚轮夹在输入盘与输出盘之间,利用驱动滚轮与每个盘之间的牵引油的剪切力来传递转矩。利用这种结构,通过倾斜或偏斜旋转中的驱动滚轮从而改变在驱动滚轮与每个盘之间传递转矩的位置的半径,以此来改变CVT的传动比。在上述类型的无级变速器中,转矩传递部分都是平面形式的,也就是说,转矩是通过彼此相对的部件的表面来传递的,从而能够连续地改变传动比。
作为通过表面传递转矩的传动机构,已知有摩擦离合器、摩擦制动器等等。这样的摩擦离合器或摩擦制动器的构造使得整个摩擦面区域都彼此接触或分离,且在设计摩擦面时考虑到磨损的影响。另一方面,无级变速器的结构通过皮带或驱动滚轮传递转矩,在连续改变转矩传递部分时,皮带或驱动滚轮与每个皮带轮或摩擦盘的转矩传递面的一部分相接触。在这样的无级变速器中,转矩传递面的设计基本上不允许磨损,因此,转矩传递面的局部磨损就可导致糟糕的转矩传递或对无级变速器造成破坏。
此外,CVT的主要组件或部件的强度是有一定限制的,例如皮带、摩擦盘和牵引油。因此,相应部件之间的接触压力不能无限制地增长以防止无级变速器打滑。而且,当接触压力增大到一定程度时,传动效率和无级变速器的耐用性就可能不良地降低。
因此,在无级变速器中,需要将用于夹紧皮带或驱动滚轮的夹紧力(或为了夹紧皮带或驱动滚轮而施加的载荷)设定在最小值,处于能够保证在皮带和相应的皮带轮之间或在驱动滚轮与相应的摩擦盘之间不发生过度打滑(所谓宏观滑动)。然而,通常情况下,加在无级变速器上的转矩连续地变化。特别是在使用无级变速器的车辆突然加速或制动时,或者是在其进入复杂的运转状态时,例如驱动轮临时停转或打滑时,突然的并且瞬时很大的转矩将作用到无级变速器上。
如果将夹紧力设为较大的值,以便为这样的临时大转矩做好准备,则当车辆正常行驶或在稳定状态下行驶时,传动效率和燃油效率会变低。因此,最好能够进行控制,以便在检测到上述大转矩而引起的打滑时增大夹紧力或减小施加到CVT上的转矩。
同时,在日本专利公开号No.62-2059中,提出了一种用于在无级变速器中检测由打滑引起的状况的系统。在该文件中公开的系统用于确定无级变速器中的故障或问题。在此系统中,使用传感器测量主皮带轮和副皮带轮的转速以计算出传动比。如果这样测得的传动比或传动比变化率显示出在正常情况下不会得到的极端值,则该系统判断出现了故障。
在上述文件公开的系统中使用的传感器相同于或相当于通常用于无级变速器传动比控制的传感器。因此,利用这种构造的上述系统,能够检测到无级变速器中的故障或问题而无需为此目的而新设其他的传感器。从而,在上述文件中公开的系统设计用于确定无级变速器中的故障,但实际上并不具有任何处理皮带过度打滑的功能。
也就是说,上述文件公开的系统的构造用于在因皮带过度打滑而导致传动比或传动比变化率为异常值时第一次检测出无级变速器的故障。因此,该系统不能用于避免皮带过度打滑的目的。或者说,在上述文件中公开的系统不能够高效、快速、精确地检测出皮带的所谓宏观滑动(即相当大的打滑)的开始,也不能检测出导致宏观滑动的状态。因此,上述的传统系统不能够用作执行控制以处理无级变速器中皮带暂时打滑的打滑检测系统。


发明内容
因此,本发明的一个目的是提供一种系统,在无级变速器中能够即时并准确地检测皮带等打滑,或者检测出打滑的开始或可能导致打滑的状态,并且无需专用的传感器。
为达到上述目的,根据本发明提供一种用于无级变速器的打滑检测系统,该无级变速器具有输入部件、输出部件以及用于在输入部件与输出部件之间传递转矩的转矩传递部件,该无级变速器能够连续地改变输入部件的输入转速与输出部件的输出转速之间的传动比。该打滑检测系统包括(a)相关系数计算装置,用于根据输入转速的多个测量值和输出转速的多个测量值来计算关于输入转速与输出转速的相关系数,以及(b)打滑判断装置,用于根据相关系数计算装置计算出的相关系数来判断无级变速器中的转矩传递部件打滑。
可以将无级变速器中的打滑看作是一种状态或一种情况,其中,输入侧转速与输出侧转速之间的关系偏离了与要达到的传动比(即,输出侧转速对输入侧转速的比例)相对应的预定关系。上述打滑检测系统计算代表输入转速与输出转速之间的关系的相关系数,并因而能够即时地并精确地判断出CVT的打滑状态,或者是导致过度打滑的状态,或者是过度打滑的开始。
在本发明的一个优选实施例中,当相关系数计算装置算出的相关系数小于预定参考值时,打滑判断装置就判定无级变速器中的转矩传递部件打滑。可以根据安装有该无级变速器的车辆的工作状态设定该参考值。
通过将参考值设定为一个合适的值,打滑检测系统能够判断出很小程度的打滑,也能判断出较大的打滑,并进行合适的控制以处理该打滑情况。同时,打滑检测系统能够避免对打滑的过度敏感的判断,过度敏感的判断可能导致对打滑进行不必要的控制。
在本发明的另一实施例中,当安装有无级变速器的车辆的工作状态满足至少一个预定条件时,相关系数计算装置计算相关系数。在这种设置下,即使车辆的行驶状态以复杂的方式发生变化,也仅在车辆处于合适的形式状态时才进行相关系数的计算。因此,就能够精确地判断出无级变速器中的打滑状态。
在本发明的另一实施例中,相关系数计算装置根据安装有无级变速器的车辆的工作状态,设定用于计算相关系数的输入转速和输出转速中每一个的测量值的数目。
上述设置能够避免对无级变速器中的打滑进行错误的判断,或避免出现这样的情况即使车辆的行驶状态没有变化,仍然没有必要地反复计算相关系数。



通过以下参考附图对优选实施例进行的说明,本发明的上述的和/或其他的目的、特征和优点将变得易于理解,在附图中,相同的附图标号用作表示相同的部件,其中 图1为一流程图,用于解释根据本发明的一个实施例的打滑检测系统的控制器进行的控制的一个例子; 图2为示出相关系数随时间的变化的图线; 图3为一图线,示意性地示出与车辆的工作状态相一致的参考值的变化趋势或倾向; 图4为一图线,示意性地示出用于获得与车辆的工作状态相一致的相关系数的采样点的数目的变化趋势或倾向; 图5为一流程图,用于解释根据本发明的打滑检测系统进行的控制的一个例子; 图6为一图线,示出输入轴转速经过滤波处理而得到的带通值; 图7为一流程图,用于解释根据本发明的打滑检测系统进行的控制的另一个例子; 图8为示出累计带通值的变化的图线; 图9为一流程图,用于解释根据本发明的打滑检测系统进行的控制的另一个例子; 图10为示出CVT的实际传动比与目标传动比之间的差值的变化的图线; 图11为通过对图9的流程图进行部分修改而得到的另一流程图; 图12为一视图,示出差值总和的变化; 图13为通过对图11的流程图进行部分修改而得到的另一流程图;以及 图14为一视图,示意性地示出了带有采用根据本发明的打滑检测系统的无级变速器的车辆的驱动系统和控制系统。

具体实施例方式 以下将详细说明本发明的一些实施例。首先,将参考图14说明实施本发明的机动车的驱动系统和控制系统。图14示意性地示出了一驱动系统,包括皮带式无级变速器(CVT)1作为传动装置。CVT 1通过前进/后退驱动切换机构2连接到动力源3。
动力源3为驱动单元,用于产生动力以使车辆行驶,其具有内燃机、内燃机与电机的结合、电动机、等等。在此实施例中,动力源3为引擎形式。由于引擎3只能够向一个方向旋转,所以采用前进/后退驱动切换机构2,用于将输入的转矩照原样输出或以反方向输出。
在图14示出的实施例中,采用双齿轮式行星齿轮机构作为前进/后退驱动切换机构2。在此机构中,环形齿轮5与中心齿轮4同心设置,小齿轮6与中心齿轮4啮合,另一小齿轮7与小齿轮6和环形齿轮5啮合,小齿轮6和小齿轮7位于中心齿轮4与环形齿轮5之间。小齿轮6、7由支架8支撑,使得这些齿轮6、7能够自由地围绕着它们的中心轴和行星齿轮机构的中心轴转动。前进驱动离合器9用于将两个转动部件(即中心齿轮4和支架8)结合成一个单元。而且,后退驱动制动器10用于通过有选择地固定环形齿轮5,使来自前进/后退驱动切换机构2的转矩输出反向。
CVT 1的结构相同于或相当于已知带式无级变速器的结构。CVT 1具有彼此平行设置的主动皮带轮11和被动皮带轮12。皮带轮11和12中的每一个都主要由固定槽轮和活动槽轮组成,活动槽轮通过液压致动器13或14在其轴向上向前或向后运动。以此结构,皮带轮11、12中的每一个的槽宽都随着皮带轮的活动槽轮的移动在其轴向上改变,从而连续地改变绕在皮带轮11、12上的皮带15的卷绕直径(即每个皮带轮11、12的有效直径),籍此连续地改变CVT 1的传动比。主动皮带轮11连接到支架8,作为前进/后退驱动切换机构2的输出部件。
液压压力(管线压力或其修正后压力)通过液压泵和液压控制设备或系统(未示出)施加到用于被动皮带轮12的致动器14。对施加到液压致动器14的液压压力的大小加以控制,使其与通过CVT 1接收到的转矩的量大小相当。在这种情况下,皮带15在被动皮带轮12的槽轮之间被夹紧或被夹住,并因而具有合适的张力,确保在皮带轮11、12的每一个与皮带15之间都出现合适的夹紧力(或接触压力)。另一方面,有油压供给到主动皮带轮11的液压致动器13以将皮带轮11的槽宽(或节圆直径)设定为目标值,该油压取决于需要的传动比。
被动皮带轮12通过一对齿轮16连接到差速齿轮单元17,用于将转矩通过差动齿轮单元17输出到驱动轮18。
提供各种传感器用于检测包括CVT 1和引擎3的车辆的工作情况(或行驶情况)。更具体的说,提供引擎转速传感器19,用于测量引擎3的转速并生成指示引擎转速的信号;输入转速传感器20,用于测量主动皮带轮11的转速并生成指示输入转速的信号;以及输出转速传感器21,用于测量被动皮带轮12的转速并生成指示输出转速的信号。此外,尽管未在图中示出,还提供油门位置传感器、节气门传感器、制动传感器、以及其他传感器。油门位置传感器用于测量油门踏板被压下的量并输出指示油门踏板位置的信号。节气门传感器用于测量节气阀的打开量并输出指示节气阀开口的信号。制动器传感器用于在压下制动踏板时输出信号。
而且,提供用于变速器的电子控制器(CVT-ECU)22,以便控制每个前进驱动离合器9和后退驱动制动器10的配合和脱离、皮带15受到的夹紧力、以及CVT 1的传动比。用于变速器的电子控制器22包括例如,微型计算机作为其主要组件,微型计算机用于根据输入的数据以及预先存储的数据进行计算,从而进行控制,诸如确立选定的工作模式,如前进驱动、后退驱动或空挡模式、设定需要的夹紧压力、以及设定CVT 1的传动比等等。
用于变速器的电子控制器22收到的输入数据(或信号)可包括,例如,从相应传感器(未示出)收到的指示CVT 1的输入轴转速Nin和输出轴转速No的信号。此外,用于变速器的电子控制器22从用于控制引擎3的电子控制器(E/G-ECU)23接收指示引擎转速Ne、引擎(E/G)负载、节气门开口、油门位置等等的信号,其中,油门位置信号代表油门踏板(未示出)被压下的量。
CVT 1能够连续地或无级地控制引擎转速,作为上述的输入转速。因此,当CVT 1安装在机动车上时,车辆的燃油效率得到了提高。例如,根据油门踏板位置等表示的需要的驱动量以及车辆速度来决定目标驱动力。之后,根据目标驱动力和车辆速度确定CVT 1获得目标驱动力所需的目标输出。之后,采用预定的映射表来确定以最优燃油效率获得目标输出的所需的引擎转速。最后,控制CVT 1的传动比,以便获得以上确定出的引擎转速。
为了利用燃油效率上得到的改进,将CVT 1的传动效率控制到需要的较高水平。更具体地说,将CVT 1的最大转矩或皮带夹紧压力控制在一个最小值,该最小值所在的范围中,CVT 1能够传递根据引擎转矩确定的目标转矩而不会使皮带15打滑。这种控制通常在稳定状态下进行,此时车辆速度和输出请求很少变化,或在几乎稳定的状态下进行,此时这些参数的一个或两个微小地变化。
同时,如果车辆突然制动或加速,或者如果车辆在掉落的物体或台阶上行驶,则加在包括CVT 1的驱动系统上的转矩会突然改变。在这种情况下,CVT 1的最大转矩可能变得相对不足,因而增大了皮带15打滑的可能性。因此,在这种情况下,该实施例的控制系统进行所谓的反应控制(reactive control),以便临时增大皮带夹紧力或临时减小引擎转矩。该实施例的控制系统用于进行以下控制,从而判断或判定出现了需要进行上述反应控制的情况(即,宏观滑动)。
图1为流程图,示出用于判断CVT 1的皮带15发生宏观滑动的控制过程的一个例子。在该控制过程中,使用了根据输入和输出转速得到的相关系数。如图1所示,首先,在步骤S1中确定车辆的行驶状态是否处于相关系数的计算范围之内。在此控制过程中使用的相关系数为根据输入轴转速(xi)和输出轴转速(yi)计算出的系数。当输出和输入转速中的每一个都具有非0值且传动比几乎保持恒定时,将车辆的行驶状态判定为处于相关系数的计算范围之内。也就是说,当车辆正在行驶、同时传动比几乎保持恒定(即,转速比,也就是传动比的倒数,几乎保持恒定)时,相关系数处于计算范围之内。
如果在步骤S1中作出了否定判断,则在步骤S2中将标志F重置为0且控制过程返回。另一方面,如果在步骤S1中作出了肯定判断,则在步骤S3中将标志F设为1并在步骤S4和S5中分别读取输入轴转速(xi)和输出轴转速(yi)。这些转速(xi、yi)分别通过图14所示的输入转速传感器20和输出转速传感器21测得。在步骤S6中,使用到目前为止读取的N组转速(xi、yi)得到相关系数S。
相关系数S由以下公式(1)表示 相关系数 在上述表达式(1)中,每个下标(1,2.....n)都代表一个采样点,在采样点处测量转速(xi或yi),且n代表当前时间。
采用相关系数S以以下方式判断皮带打滑(宏观滑动)的出现或可能性。在表达式(1)中,用输入转速和输出转速的幂的平方根将输入和输出部件(即CVT 1的输入和输出轴)的转速的幂标准化。根据表达式(1),当输入和输出转速的幂减小时,标准化的值减小。更具体地说,当皮带15没有发生打滑时,相关系数等于1。当皮带15发生打滑时,该值变得小于1。
因此,当皮带15不打滑但被主动和被动皮带轮11、12夹住时,由以下表达式(2)表示的关系为真 yi=γ·xi …(2) 此处,γ代表转速比(是传动比的倒数)。
当将表达式(2)代入表达式(1)时,相关系数S由表达式(3)表示,其值变为1。
相关系数 如上所述,适于计算的条件之一是转速比γ几乎为常数,以便将转速比γ提到括号外。因此,不应当以长时间间隔或长采样时间来测量输入轴和输出轴转速。
以下,将说明皮带15没有被主动和被动皮带轮11、12充分夹紧并打滑的情况。当皮带15打滑时,输入轴转速(xi)和输出轴转速(yi)之间的关系相对于当前设定的转速比γ变得不正确。此时,这些转速之间的关系由以下的表达式(4)所表示 yi=ki·γ·xi…(4) 此处,ki为大于0的实数,并且是代表转速波动或变化的系数。
在此情况下,将表达式(4)代入上述表达式(1),则相关系数S由以下表达式(5)表示 相关系数…(5) 当由皮带15打滑导致的转动波动使系数ki不是常数时,相关系数S变得小于1。即,表达式(5)变形为以下表达式(6)。
相关系数…(6) 当将表达式(6)的分子和分母展开时,将分别得到以下表达式(7)和(8) (k1·x12+k2·x22+…+kn·xn2)·(k1·x12+k2·x22+…+kn·xn2) =k1·x12·(k1·x12+k2·x22+…+kn·xn2) +k2·x22·(k1·x12+k2·x22+…+kn·xn2) +kn·xn2·(k1·x12+k2·x22+…+kn·xn2) =k12·x14+k22·x24+…+kn2·xn4+x12·(k1·k2·x22+…+k1·kn·xn2)+x22·(k2·k1·x12+…+k2·kn·xn2) . . . +xn2·(kn·k1·x12+…+kn·kn-1·xn-12) …(7) (x12+x22+…+xn2)+(k12·x12+k22·x22+…+kn2·xn2) =x12·(k12·x12+k22·x22+…+kn2·xn2) +x22·(k12·x12+k22·x22+…+kn2·xn2) . . . +xn2·(k12·x12+k22·x22+…+kn2·xn2) =k12·x14+k22·x24+…+kn2·xn4+x12·(k22·x22+…+kn2·xn2) +x22·(k12·x12+…+kn2·xn2) . . . +xn2·(k12·x12+…kn-12·xn-12) …(8) 如果采样时间n为3,则可将表达式(7)和(8)分别重写为以下表达式(9)和(10) k12·x14+kn2·x24+k32·x34+x12·(k1·kn·x22+k1·k3·x12)+x22·(k2·k1·x12+k2·k3·x12)+x12·(k3·k1·x12+k3·k2·x22) =k12·x14+k22·x24+k32·x14 +(2·k1·k2·x12·x22+2·k1·k3·x12·x12+2·k2·k3·x22·x32) …(9) k12·x14+k22·x24+k32·x34+x12·(k22·x22+k32·x12)+x22·(k12·x12+k32·x32)+x32·(k12·x12+k22·x22) =k12·x14+k22·x24+k32·x34 +(x12·x22·(k12+k22)+x12·x32·(k12+k32)+x22·x32·(k22+k32)) …(10) 当对表达式(9)和(10)中X12、X22等等的各个系数进行比较时,发现由以下表达式(11)所表示的关系为真 kj2+km2≥2·kj·km…(11) 此处,j和m为诸如1和2的下标。
表达式(11)可重写为以下表达式(12) (kj-km)2≥0…(12) 在此处,由于Ki和Km是实数,所以表达式(12)中的关系始终为真,并因此表达式(11)中的关系也为真。而且,当采样数目n大于3时,表达式(11)和(12)中的关系都为真。当输入/输出转速开始变化时,上述分母的值变得大于分子的值。结果,相关系数S变得小于1。相应地,能够根据相关系数S判断出皮带15发生打滑。
在图1的步骤S6中,通过计算确定相关系数S。在步骤S7中,判断相关系数S是否等于或小于预先确定的第一参考值S1。第一参考值S1小于1并作为与发生宏观滑动的状态或可能导致宏观滑动的打滑状态相对应的值预先确定。
如果相关系数S等于或小于第一参考值S1并因而在步骤S7中作出肯定判断,则在步骤S8中判定宏观滑动发生或可能发生(作出宏观滑动判断)。在下一步骤S9中,根据步骤S8中作出的判断执行响应控制。总之,进行响应控制以避免或抑制宏观滑动。该响应控制例如,增大加到皮带15上的夹紧力,或者减小引擎转矩。此外,例如,如果使用离合器将转矩传递到CVT 1,则离合器转矩容量在响应控制的作用下减小。根据宏观滑动的程度,即,根据相关系数S设定响应控制的程度。
相反,当相关系数S大于上述第一参考值S1且在步骤S7中作出否定判断时,则在步骤S10中判断相关系数S是否等于或大于第二参考值S2。第二参考值S2是一个大于第一参考值S1但小于1的值,并作为与发生较小宏观滑动的状态或可能导致这样的较小宏观滑动的状态相对应的值而预先确定。
当在步骤S10中作出否定判断时,即,当相关系数小于第二参考值S2时,就代表发生了或者很有可能发生较小的宏观滑动。因此,在这种情况下,控制过程转到步骤S8以作出宏观滑动判定。接着,在步骤S9中执行响应控制。
相反,当在步骤S10中作出肯定判断时,在步骤S11中作出非宏观滑动判定。在没有发生或不太可能发生宏观滑动时,或者在皮带15打滑但打滑程度处于容许范围之内时,作出非宏观滑动判定。在此情况下,需要根据步骤S11中作出的非宏观滑动判定在步骤S12中执行响应控制。该响应控制的一个例子是,用于减小加到皮带15上的夹紧力的控制过程。这种控制意图改善CVT 1的传动效率并将加到CVT 1的液压压力减至最小以减少在液压泵处的动力损失,从而确保改善燃油效率。
图2为一图线,示出从皮带15未发生宏观滑动的状态转换到皮带15发生宏观滑动的状态的过程中相关系数S的变化。当通过CVT 1传递转矩时,会不可避免地发生打滑,对比于“宏观滑动”,可将这种打滑称为“微观滑动”。因此,转矩通过CVT 1传递,且相关系数S变化极小。当由于某些原因使导致皮带15宏观滑动的车辆工作状态出现时,相关系数S开始减小到一定程度。当接着开始宏观滑动时,相关系数S开始迅速减小。例如,参考值S1和S2被分别设为图2中所示的值。
同时,根据输入轴和输出轴转速确定相关系数S。不仅皮带15的打滑会影响这些转速之间的关系,当油门操作量变化时导致的引擎转矩的变化、车辆的加速度/减速度等等,都会影响该关系。虽然相关系数S可以根据这些变化减小,但相关系数S的这种减小并不代表发生或可能发生宏观滑动。因此,在此情况下,需要避免作出宏观滑动判定。为了满足这一需要,每个参考值S1和S2都可根据车辆的工作状况而变化,例如,根据车辆的油门操作量变化率、车辆的加速度/减速度等等。
图3为一图线,示出参考值S1、S2的变化趋势的一个例子,如图3所示,当油门操作量的变化率ΔACC或加速度/减速度ΔV增大时,各个参考值S1、S2减小。因此,如果相关系数S由于宏观滑动以外的原因而减小,则不会错误地判定发生或可能发生宏观滑动,并且也不会响应于相关系数S的减小而错误地执行响应控制。从而,避免了对宏观滑动的误判断,也避免或抑制了不必要的响应控制。而且,防止了判定发生打滑或可能打滑过程中的延迟。
而且,使用代表输入和输出转速的多个检测值计算相关系数S。优选地,根据车辆的工作状态决定测得值的组数(以下称为组数)。图4为一图线,示意性示出确定组数N的过程中的趋势或倾向的一个例子。如图4所示,当车辆速度V、加速度/减速度ΔV、油门操作量变化率ΔACC、传动比γ等增大时,组数N减少。例如,当油门操作量变化率较大时,传动比的相应变化程度或变化幅度应该较大。在此情况下,减少组数以避免根据传动比差异较大的转速计算相关系数S,从而避免了对宏观滑动的误判定以及判断皮带15发生或可能打滑时的延迟。
如上所述,本实施例的打滑检测系统利用传感器21、22测量输入和输出转速,根据输入输出转速得到的相关系数判断宏观滑动,传感器21、22通常用于确定CVT 1的传动比。以此设置,能够以足够高的准确度即时判断出皮带15打滑,而无需使用其他的传感器专门用于此功能。而且,由于打滑检测系统能够根据宏观滑动的判定而执行必要的响应控制,所以能够防止或抑制由皮带15过度打滑导致的对于CVT1的破坏。
同时,CVT 1的输入轴转速Nin随各种因素而变化,例如传动比控制、皮带15的打滑、或者输入转矩的周期性变化。因此,通过在总体变化量中确定由皮带15打滑导致的输入转速的变化量,能够根据确定出的值(变化量)判定皮带15发生或可能发生宏观滑动。以下将说明这种控制过程的一个例子。
图5为一流程图,示出该控制过程的一个例子。在此控制过程中,首先在步骤S21中读取由输入转速传感器20测得的输入轴转速Nin。之后,在输入轴转速Nin中取得由皮带15打滑导致的振动分量Nin-vib。在此,例如,通过进行带通滤波处理或者根据实际输入轴转速Nin相对于输入轴转速的指令值的偏离量,能够获取振动分量Nin-vib。指令值是为了得到需要的传动比而确定的。在带通滤波处理中,还去掉了测量噪声。
图6为一图线,示出对输入轴转速Nin进行带通滤波(20-30Hz)时,带通值随时间变化的一个例子。当如图6所示,宏观滑动没有发生时,带通值保持在相对小的范围。另一方面,当宏观滑动发生时,带通值迅速增大。为此,预先确定一参考值Nin-vib1,作为判断宏观滑动发生的指标或标准,而且,在步骤S23中判断步骤S22中得到的振动分量Nin-vib是否等于或大于参考值Nin-vib1。同时,参考值Nin-vib1不是恒定的,而是可以根据车辆的工作状态而改变,以便防止作出错误判断并避免判定发生宏观滑动时的延迟。
如果振动分量Nin-vib等于或大于参考值Nin-vib1,并因而在步骤S23中作出肯定的判断,则在步骤S24中作出宏观滑动判定,并在步骤S25中执行响应控制。步骤S24和步骤S25中的操作分别相同于或相当于在图1中步骤S8和步骤S9中的操作。
如果振动分量Nin-vib小于参考值Nin-vib1并因此在步骤S23中作出了否定判断,则如在图6中可理解的,这代表宏观滑动没有发生。在此情况下,在步骤S26中作出非宏观滑动判定。随后,在步骤S27中执行正常的控制。在此正常控制中,根据例如引擎转矩或油门踏板的下压量(即,油门操作量)来设定皮带夹紧力。
为了参考图5和6进行上述控制,本实施例的打滑检测系统只使用输入转速传感器20作为用于即时准确地判断皮带15宏观打滑的传感器,而无需其他的传感器用于此目的。而且,由于该打滑检测系统能够在检测到宏观滑动时执行需要的响应控制,所以能够避免在不这样做的情况下由皮带15的过度打滑而导致的对CVT 1可能造成的破坏。
尽管能够根据图5所示控制中的带通值判定发生宏观滑动,但根据本发明的另一个实施例的打滑检测系统的构造是根据在从前一时刻到当前时刻的时间段中皮带打滑导致的振动分量的累计值来判定宏观滑动的发生。以下,将说明这种控制的一个例子。
在此控制过程中,如图7所示,在步骤S31中读取输入轴转速Nin,在步骤S32中分别按照与图5的步骤S21和步骤S22相同的方式确定振动分量Nin-vib。随后,在步骤S33中判断是否有可能进行振动分量Nin-vib的累计。更具体的说,在步骤S33中判断是否已经得到了对振动分量执行时窗累计所需的i组数据。
如果在步骤S33中作出了否定判断,则控制过程返回,并等待获得所需的数据组数。相反,如果在步骤S33中作出了肯定判断,则执行步骤S34以计算在当前时刻(N时间点)与当前时刻之前确定的前一时刻(N-1时间点)之间的时间段内获得的振动分量的时窗累计值S-vib(N)。此处,可以根据车辆的工作状态改变要累计的数据组的数目或者数据累计的时间长度。
图8为一图线,示出由皮带15打滑导致的振动分量Nin-vib的时窗累计值的变化。当没有发生宏观滑动时,累计带通值S-vib(N)保持在相对小的范围内,如图8所示。另一方面,当发生宏观滑动时,累计带通值S-vib(N)迅速增大。为此,预先设定一参考值Sa,用作判断发生宏观滑动的标准或阈值,并且,在步骤S35中判断在步骤S34中得到的累计带通值S-vib(N)是否等于或大于参考值Sa。同时,参考值Sa不是恒定的,而是可以根据车辆的工作状态而变化,从而防止对宏观滑动作出错误的判断并避免判定宏观滑动发生时的延迟。
如果累计带通值S-vib(N)等于或大于参考值Sa且在步骤S35中作出肯定判断,则在步骤S36中作出宏观滑动判定并接着在步骤S37中进行响应控制。步骤S36和S37中的这些操作分别相同于或相当于图5中步骤S24和步骤S25中的操作或者是图1中步骤S8和S9中的操作。
另一方面,如果累计带通值S-vib(N)小于参考值Sa且在步骤S35中作出否定判断,则如图8所示,这表示没有发生宏观滑动。因此,在此情况下,在步骤S38中作出非宏观滑动判定。随后,在步骤S37中执行正常控制。步骤S38和步骤S39中的这些操作分别相同于或相当于图5中步骤S26和步骤S27中的操作。
为了参考图7和8进行上述控制,本实施例的打滑检测系统只使用输入转速传感器20作为用于即时准确地判断皮带15宏观打滑的传感器,而无需其他的传感器用于此目的。而且,由于该打滑检测系统能够在检测到宏观滑动时执行需要的响应控制,所以能够避免在不这样做的情况下由皮带15过度打滑而导致的对CVT1可能造成的破坏。
如上所述,皮带15打滑导致输入和输出转速发生变化。当转速如此改变时,作为输入轴转速与输出轴转速之间比值的实际传动比将偏离皮带15发生打滑之前形成的传动比(即目标传动比)。根据本发明的另一实施例,根据上述实际传动比与目标传动比之间的差值判定发生宏观滑动。
图9为一流程图,示出用于以上述方式判定宏观滑动的控制过程的一个例子。在此控制过程中,首先在步骤S41中判断传动比是否被改变,即,CVT 1是否处于换档动作中。目标传动比通常是根据例如输出需求(例如油门操作量)和车辆速度或引擎转速设定的。但是,当CVT 1处于换档动作中时,可以将目标传动比或与目标传动比相对应的目标输入转速设定为相对于最终设定值一阶滞后(first-order lag)的值。因此,变化的目标传动比不能用作判断皮带15发生或可能发生打滑的依据。所以,在步骤S41中,判断CVT 1是否处于换档动作中,并且如果在步骤S41中作出肯定的判断,则控制过程返回而不执行任何特别的控制。
如果CVT 1不处于换档动作中且在步骤S41中作出否定的判断,则在步骤S42中计算实际传动比γ,作为通过实际测量获得的输入转速Nin与输出转速Nout之间的比值。随后,在步骤S43中计算目标传动比γtag,作为通过实际测量获得的目标输入转速Nint与目标输出转速Nout之间的比值。之后,在步骤S44中判断实际传动比γ与目标传动比γtag的差的绝对值是否大于预先确定的参考值Δγa。
图10是一图线,示出实际传动比γ与目标传动比γtag的差值发生变化的情况的一个例子。如上所述,由于在操作CVT 1时,各种因素引起输入转速发生变化,所以实际和目标传动比之间的传动比差不断地向着相对于图10所示零值的正方向或负方向轻微地变化。当没有发生宏观滑动时,该传动比差保持在小范围内。但是,当发生宏观滑动时,输入转速开始大幅度偏离目标值,导致传动比差增大。因此,通过判断传动比差是否小于或大于用于判断宏观滑动的阈值,就能够判定发生或可能发生宏观滑动。
更具体地说,在图9所示的例子中,在步骤S45中记录传动比差超过参考值Δγa的次数。接着,在步骤S46中判断上述满足步骤S44的条件(γ-γtag>Δγa)的次数是否在预定的时间段内达到了预定的次数。作出这种判断以防止诸如噪声的干扰导致的错误判断。
如果在步骤S46中作出肯定判断,则在步骤S47中判定皮带15发生或可能发生打滑或宏观滑动。在此情况下,打滑检测系统响应于检测到的宏观滑动进行控制,例如增大皮带夹紧力或减小引擎转矩,如上述控制的各个例子。相反,如果在步骤S46中作出否定判断,则控制过程返回。
另一方面,如果传动比差等于或小于参考值Δγa并在步骤S44中作出否定判断,则在步骤S48中判断此状态是否延续了预定的时间长度。如果在步骤S48中作出否定判断,则控制过程返回,等待时间流逝。另一方面,当在步骤S48中作出肯定判断时,则表示实际传动比γ没有大幅不同于目标传动比γtag,且此情况已经延续了预定的时长。在此情况下,在步骤S49中取消打滑判断。
为了参考图9进行上述控制,本实施例的打滑检测系统只使用输入转速传感器20作为用于即时准确地判断皮带15宏观打滑的传感器,而无需其他的传感器用于此目的。而且,由于该打滑检测系统能够在检测到宏观滑动时执行需要的响应控制,所以能够避免在不这样做的情况下由皮带15过度打滑而导致的对CVT 1可能造成的破坏。
在图9所示的控制过程中,记录传动比差超过参考值Δγa的次数,以便如上所述地判定发生或可能发生打滑。相反,在预定时间段中或在预定数目的采样点处累计的传动比差值的总和可用于判定发生或可能发生打滑。更具体地说,记录如上所述地累计的传动比差值的总和超过预定参考值sumγ的次数。如果该次数在预定的时长内达到预定的次数,则判定发生了打滑。
图11为一流程图,示出用于以此方式判定发生或可能发生宏观滑动的控制过程的一个例子。除了图9的步骤S44换成了图11的步骤S44A以外,在图11所示的流程图的各个步骤中的操作均相同于图9所示的流程图中的操作。同时,参考值sumγ不是恒定的,而是可以根据车辆的工作状态而变化,从而防止对宏观滑动作出错误的判断并避免判定宏观滑动发生时的延迟。
图12为一图线,示出传动比差值相对于图10所示的预定数目(例如10个)的采样点的变化。如图12所示,当没有发生宏观滑动时,传动比差的总和保持为较小的值。当发生宏观滑动时,该总和开始迅速增大。因此,当该总和超过预定的阈值时,就能够判定发生或可能发生宏观滑动。另外,还能够根据该总和超过参考值sumγ的次数来判定发生或可能发生宏观滑动,而不是仅仅将该总和与阈值相比较,这样就能够防止或避免由一些类型的干扰造成的错误判断。
为了参考图11进行上述的控制,本实施例的打滑检测系统只使用输入转速传感器20作为用于即时准确地判断皮带15宏观打滑的传感器,而无需其他的传感器用于此目的。而且,由于该打滑检测系统能够在检测到宏观滑动时执行需要的响应控制,所以能够避免在不这样做的情况下由皮带15过度打滑而导致的对CVT 1可能造成的破坏。
如图10和12示出传动比差的变化和传动比差总和的变化,如图10或12所示,一旦皮带15开始打滑(即,出现宏观滑动),这些值就会连续地不断增大,并保持在较大的值,直到,例如,CVT 1破碎并停止工作,或者皮带夹紧力极度增大,或者引擎转矩极度减小。因此,根据传动比差的总和保持大于参考值sumγ的时间长度,而不是记录该总和超过参考值sumγ的次数,就能够判定发生或可能发生宏观滑动。
图13为一流程图,示出用于以此方式判定发生或可能发生宏观滑动的控制过程的一个例子。除了图11的流程图中的步骤S45和S46被替换为图13的流程图中的步骤S45A以外,在图13所示的流程图的各个步骤中的操作都相同于在图11所示的流程图中的操作。在步骤S45A中,判断在预定的时间段内是否连续地满足了步骤S44A中确定的条件。
如图11的控制过程的例子那样,为了进行上述的控制,本实施例的打滑检测系统只使用输入转速传感器20作为用于即时准确地判断皮带15宏观打滑的传感器,而无需其他的传感器用于此目的。而且,由于该打滑检测系统能够在检测到宏观滑动时执行需要的响应控制,所以能够避免在不这样做的情况下由皮带15过度打滑而导致的对CVT 1可能造成的破坏。
尽管在图9、11和13所示的控制流程中,在CVT 1的换档动作的过程中不进行对皮带打滑(宏观滑动)的判断,但该打滑检测系统可以构造为即使在CVT 1处于换档动作中时也对皮带打滑进行判断。但是,在此情况下,目标输出转速被设定为较大值,且实际传动比与目标传动比之间的差变大,这会导致判断皮带打滑的准确性降低。因此,当在CVT 1的换档动作期间使用传动比差对皮带打滑进行判断时,优选地对目标输入转速作滤波处理,根据滤波后的目标输入转速确定目标传动比,并使用目标传动比来计算传动比差。以此方式,能够抑制或避免错误地判定发生或可能发生宏观滑动。
尽管本发明的上述实施例的打滑检测系统是适用于皮带式CVT的,但本发明也能够实施为用于摩擦环式(牵引式)无级变速器的打滑检测系统。而且,输入转速不限于输入轴的转速。更具体地说,输入转速可以定义为依靠从动力源接收的转矩而转动的任何无级变速器的部件的转速,或者是与该部件呈一个整体的任何部件的转速。同理,输出转速也不限于输出轴的输出转速。更具体地说,输出转速可以定义为依靠从输入侧部件传递来的转矩而旋转的任何无级变速器的部件的转速,或者是与该部件呈一个整体的任何部件的转速。不仅如此,根据本发明的打滑检测系统还可以构造为联合执行多个上述的打滑判断控制过程。
权利要求
1.一种用于无级变速器的打滑检测系统,该无级变速器能够连续地改变输入部件的输入转速与输出部件的输出转速之间的比例,该打滑检测系统的特征在于,包括
总和计算装置,用于计算在预定时间长度内由输入转速和输出转速的测量值算出的实际传动比与目标传动比之间的多个差值的总和;
打滑判断装置,用于根据总和计算装置计算出的差值总和来判断无级变速器中的打滑。
2.根据权利要求1的打滑检测系统,其特征在于,
该无级变速器包括输入部件、输出部件、以及用于在输入部件和输出部件之间传递转矩的转矩传递部件;以及
打滑判断装置对无级变速器中的转矩传递部件的打滑作出判断。
3.根据权利要求1的打滑检测系统,其特征在于,根据在预定时间长度内差值的总和超出预定参考值的次数,打滑判断装置判定无级变速器中打滑。
4.根据权利要求1的打滑检测系统,其特征在于,根据差值总和保持大于预定参考值的时间长度,打滑判断装置判定无级变速器中打滑。
5.根据权利要求1的打滑检测系统,其特征在于,根据作为对目标输入转速进行的滤波处理的结果而得到的值决定目标传动比,目标输入转速是根据安装有无级变速器的车辆的输出要求决定的。
6.根据权利要求1的打滑检测系统,其特征在于,还包括打滑判断取消装置,用于在根据安装有无级变速器的车辆的行驶状态的变化判断出无级变速器处于换档动作中时,阻止作出打滑判断。
7.一种检测无级变速器中的打滑的方法,该无级变速器能够连续地改变输入部件的输入转速与输出部件的输出转速之间的比例,该检测方法的特征在于,包括以下步骤
计算在预定时间长度内由输入转速和输出转速的测量值算出的实际传动比与目标传动比之间的多个差值的总和;
根据计算出的差值总和判断无级变速器中的打滑。
8.根据权利要求7的方法,其特征在于,
该无级变速器包括输入部件、输出部件、以及用于在输入部件和输出部件之间传递转矩的转矩传递部件;以及
判断步骤对无级变速器中的转矩传递部件的打滑作出判断。
9.根据权利要求7的方法,其特征在于,根据在预定时间长度内差值的总和超出预定参考值的次数,判定无级变速器中打滑。
10.根据权利要求7的方法,其特征在于,根据差值总和保持大于预定参考值的时间长度,判定无级变速器中打滑。
11.根据权利要求7的方法,其特征在于,根据作为对目标输入转速进行的滤波处理的结果而得到的值决定目标传动比,目标输入转速是根据安装有无级变速器的车辆的输出要求决定的。
12.根据权利要求7的方法,其特征在于,还包括以下步骤当根据安装有无级变速器的车辆的行驶状态的变化判断出无级变速器处于换档动作的过程中时,阻止作出打滑判断。
全文摘要
本发明涉及用于无级变速器的打滑检测系统和方法。具体地,提供了一种用于无级变速器的打滑检测系统,该无级变速器能够连续地改变输入部件的输入转速与输出部件的输出转速之间的比例,该打滑检测系统的特征在于,包括总和计算装置,用于计算在预定时间长度内由输入转速和输出转速的测量值算出的实际传动比与目标传动比之间的多个差值的总和;打滑判断装置,用于根据总和计算装置计算出的差值总和来判断无级变速器中的打滑。
文档编号F16H61/662GK101545536SQ20091013257
公开日2009年9月30日 申请日期2002年9月30日 优先权日2001年9月28日
发明者岩月邦裕, 星屋一美, 鸳海恭弘, 中肋康则, 大泽正敬, 西泽博幸, 山口裕之, 铃木秀之 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1