一种深冷高压储氢供氢装置的制作方法

文档序号:17430130发布日期:2019-04-17 03:23阅读:921来源:国知局
一种深冷高压储氢供氢装置的制作方法

本发明涉及深冷高压氢的储运和利用技术,具体是一种深冷高压储氢供氢装置。



背景技术:

氢可广泛应用于燃料电池车辆、发电、储能等方面,目前,氢能应用的瓶颈在于氢的储存和运输,尤其是实现氢能的高效、安全、长期储存,传统的储氢方式主要有高压气态储存、低温液态储存和化合物储氢三种。高压气态储氢能量密度低;低温液态储氢成本高,无损存储时间有限,性价比低,多用于大型液氢工厂;化合物储氢因其吸放氢条件、存储能量密度等因素难以满足实际应用而难以推广。

为了优化通过物理手段储氢,科研工作者将高压气态储氢和低温液态储氢技术相结合,将传统车载液氢容器中工作压力较低的内层容器换成高压储氢中所用的复合材料气瓶,开发出低温高压复合储氢。以美国劳伦斯利弗莫尔实验室开发的第三代复合储氢容器为例,它的质量和体积储氢密度分别可达7.4wt%h2和0.45kgh2/l(加注液氢时),并且相较于传统的低温液态储氢的2至4天的无损储氢时间,在一般工况下它的休眠期提升到了6至8天。与传统物理储氢方式相比,低温高压复合储氢有效提升了质量和体积储氢密度,延长了无损储氢时间,但是综合考虑目前低温高压复合储氢的成本、能量密度和休眠期等,这项技术离大规模应用依旧有一定距离。



技术实现要素:

发明目的:为了克服现有技术中存在的不足,本发明提供一种深冷高压储氢供氢系统。

技术方案:为解决上述技术问题,本发明的一种深冷高压储氢供氢系统,包括深冷高压罐,深冷高压罐上设置有注氢管路,注氢管路连接液氢储罐;注氢管路上设置有控制液氢加注的低温阀单元,供给管路连接仲氢转化装置和氢气节流装置,氢气节流装置通过支路连接注氢管路,注氢管路通过支路并入支路。

进一步地,深冷高压罐上设置供氢管路,供氢管路通过供给管路连接外部换热器,外部换热器连接压力调节单元,压力调节单元连接内燃机/燃料电池。

进一步地,压力调节单元连接外回流管路,外回流管路通过内回流管路连接位于深冷高压罐内的内部换热器。

进一步地,供氢管路通过三通阀连接支路与供给管路,供氢管路上还设置截止阀和电磁阀。

进一步地,低温阀单元包括过滤阀、单向阀、调压阀、压力传感器和温度传感器,压力调节单元包括三通阀、调压阀、过滤阀、温度传感器和压力传感器。

有益效果:本发明具有以下有益效果:

当系统处于储氢状态和高压供氢状态时,利用仲氢向正氢转化过程和节流装置的吸热制冷效应降低深冷高压罐的温度,延长深冷高压氢的无损储存时间,减少泄放流失;当系统处于低压供氢状态时,利用回流的高温氢气对储罐内进行升压,为内燃机/燃料电池提供额定温度、额定压力下的氢源,维持深冷高压罐内压强,减小压力波动,提高深冷高压氢的利用率。整套深冷高压储氢供氢系统可有效提升氢的质量和体积储存密度,延长无损储氢时间,延长储氢罐的使用寿命,提升罐中储氢的利用率。

附图说明

图1为本发明的结构示意图;

图2为本发明的逻辑控制图。

具体实施方式

下面结合附图对本发明作进一步说明。

如图1所示,一种深冷高压储氢供氢系统,包括深冷高压罐1,深冷高压罐1上设置有注氢管路2,注氢管路2连接液氢储罐15;注氢管路2上设置有控制液氢加注的低温阀单元4,供给管路5连接仲氢转化装置11和氢气节流装置12,氢气节流装置12通过支路13连接注氢管路2,注氢管路5通过支路14并入支路13;深冷高压罐1上设置供氢管路3,供氢管路3通过供给管路5连接外部换热器6,外部换热器6连接压力调节单元7,压力调节单元7连接内燃机/燃料电池16,压力调节单元7连接外回流管路8,外回流管路8通过内回流管路10连接位于深冷高压罐1内的内部换热器9。供氢管路3通过三通阀连接支路14与供给管路5,供氢管路3上还设置截止阀和电磁阀以及过滤网,低温阀单元4包括过滤阀、单向阀、调压阀、压力传感器和温度传感器,压力调节单元7包括三通阀、调压阀、过滤阀、温度传感器和压力传感器。

如图2所示,当系统处于只储氢不供氢状态时,供氢管路3中的截止阀打开,氢经过过滤阀和单向阀被引导流入供给管路5中,管路中的这些阀门为低温高压氢专用阀门,最低温度20k,最大压力25mpa。此时供给管路5中通向外部换热器6的阀门关闭,通向仲氢转化装置11的阀门开启。仲氢转化装置11中将颗粒状磁性催化剂布置在具有多孔结构的单管转化器中,增加泄放氢气与催化剂的接触机会,提高转化效率和制冷量;氢气节流装置12利用焦耳-汤姆森效应原理,通过节流过程实现制冷。前提是进入节流阀的液氢蒸发气低于转化温度204k,因而要调控仲氢制冷后的出口温度,考虑到系统运行时,氢的温度是远低于204k的,因此这项条件是满足的。流过仲氢转化装置11和氢气节流装置12的氢完成冷却后,通过支路13与支路14中未经处理的氢混合升压,经过注氢管路2中单向阀和过滤阀后流入深冷高压罐1。系统这部分的运行可以有效抑制仲氢向正氢转化,保持储氢系统温度和压强稳定,减少罐内氢的气化流失,有效延长氢的无损储存时间。

当该系统处于供氢状态,并且储氢量较高,罐内压力远高于输送液氢的最低压力值p1时这个状态占据了供氢状态的绝大部分时间,仲氢向正氢的转化导致罐内温度升高、液氢汽化流失依然会引起罐内氢能的损失。供氢管路3和供给管路5流通,通过安装在深冷高压罐1内的压力传感器判断罐内压力远大于p1时,供给管路5中通向外部换热器6和仲氢转化装置11的阀门都开启,流过的氢由两条支路分流。一部分氢经过上述仲氢转化装置11、氢气节流装置12、支路13和支路14,携带制冷量完成对深冷高压罐1内的冷却,抑制罐内仲氢向正氢的转化。大部分氢由供给管路5导入安装在深冷高压罐外部的换热器6中实现升温,使氢达到内燃机/燃料电池16所需的额定温度,之后液氢进入压力调节单元7中,获得所需额定压强后作为能量源进入内燃机/燃料电池16中,外回流管路8保持断开状态。

当维持了长时间的供氢状态后,深冷高压罐1中的氢不断被消耗,罐中压强会逐渐降低。通过设置在深冷高压罐1中的压力传感器测定罐内压力,当压力趋近于可输送氢的最低压力值p1时,通向仲氢转化装置11的支路阀门关闭。氢通过供氢管路3和供给管路5导入安装在深冷高压罐外部的换热器6中实现升温,使氢达到内燃机/燃料电池16所需的额定温度。之后氢进入压力调节单元7中,在该单元中分流,大部分氢通过压力调节单元7的调压阀后获得所需额定压强后作为能量源流入内燃机/燃料电池16中。另一部分氢经过外回流管路8和内回流管路10,进入安装在深冷高压罐1内部的换热器9中,作为热媒释放所携热能,让深冷高压罐1中部分液氢汽化,达到弥补因氢消耗而导致的罐内压力降低、维持压力稳定的目的。外回流管路8的通断由罐内置压力传感器和压力调节单元7中的控制阀决定。当深冷高压罐1中压强值趋近于能够输送的最低压力值p1时,该控制阀门打开支路流通,使罐1内升压至略高于p1的p2p2-p1≤1mpa,之后阀门关闭外回流管路8断开。当罐内压强再次降低趋近p1时,阀门开启。阀门重复开闭的过程,会持续到储氢量消耗到某一临界。这一临界之后,通过压力调节单元7中控制阀的开闭无法使罐内压力维持在p1和p2之间。该控制阀不再关闭,外回流管路8保持流通状态,罐内压力曲线经历过一个n型升降,这将使尽可能多的氢被输送出去,提高罐中储氢的利用率。

当系统处于储氢状态和高压供氢状态时,本发明利用仲氢向正氢转化过程和节流装置的吸热制冷效应降低深冷高压罐的温度,延长深冷高压氢的无损储存时间,减少泄放流失;当系统处于低压供氢状态时,利用回流的高温氢气对储罐内进行升压,为内燃机/燃料电池提供额定温度、额定压力下的氢源,维持深冷高压罐内压强,减小压力波动,提高深冷高压氢的利用率。整套深冷高压储氢供氢系统可有效提升氢的质量和体积储存密度,延长无损储氢时间,延长储氢罐的使用寿命,提升罐中储氢的利用率。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1