储氢容器及输氢系统的制作方法

文档序号:24259883发布日期:2021-03-16 22:18阅读:107来源:国知局
储氢容器及输氢系统的制作方法

本申请涉及储氢装置技术领域,尤其是涉及一种储氢容器及输氢系统。



背景技术:

氢能的使用涉及三个关键环节:制取、储运和利用。目前的主要储氢方式有:高压气氢、低温液氢以及材料储氢,相对高压气氢及低温液氢储存方式,材料储氢的方式储放氢压力低、安全、便捷。在现有技术中,储氢罐中各处的储氢材料吸氢量不均匀,降低了储氢量以及储氢、放氢速率。



技术实现要素:

本申请的目的在于提供一种储氢容器及输氢系统,用于对氢能的储运,可使储氢材料吸氢量更加均匀,提升储氢量。

本申请提供了一种储氢容器,包括密封罐和进气管道;

所述密封罐内填充有储氢材料,所述进气管道贯穿所述密封罐;

所述进气管道包括相连通的连通部和散发部;所述连通部位于所述密封罐外,用于和输氢设备连通;所述散发部位于所述密封罐内,所述散发部弯曲成螺旋状,且所述散发部开设有多个间隔排布的输气孔。

在上述技术方案中,进一步地,所述密封罐呈圆筒状,所述散发部的螺旋中心线与所述密封罐的轴线共线;

所述散发部的螺旋直径与所述密封罐的内径的比值为1/3~2/3。

在上述技术方案中,进一步地,所述密封罐的顶部开设有安装口,所述进气管道贯穿所述安装口;

所述散发部从所述密封罐的顶部延伸至所述密封罐的底部。

在上述技术方案中,进一步地,多个所述输气孔沿所述散发部的长度延伸方向间隔排布,且多个所述输气孔沿所述散发部的管道周向间隔排布。

在上述技术方案中,进一步地,至少在所述散发部开设有所述输气孔的位置处的外表面包覆有过滤网。

在上述技术方案中,进一步地,还包括多个加热器;

多个所述加热器从所述密封罐的底部延伸至所述密封罐的顶部;其中一个所述加热器位于所述密封罐的中心,其余所述加热器均布于所述散发部和所述密封罐的侧壁之间的第一预设圆周上,且所述密封罐的轴线穿过所述第一预设圆周的圆心。

在上述技术方案中,进一步地,还包括多个温度传感器;

多个所述温度传感器间隔排布于第二预设圆周上,所述第二预设圆周位于所述第一预设圆周与所述密封罐的侧壁之间,所述密封罐的轴线穿过所述第二预设圆周的圆心;

至少一个所述加热器映射于所述第二预设圆周的位置处设置有所述温度传感器,相邻两个所述加热器之间设置有所述温度传感器。

在上述技术方案中,进一步地,所述密封罐包括形成有填充口的罐体和安装于所述填充口的第一密封盖,所述第一密封盖与所述罐体可拆卸连接,以使所述储氢材料能够从所述填充口进入所述罐体内;

所述连通部的输气口处设置有第二密封盖,所述第二密封盖与所述连通部可拆卸连接。

在上述技术方案中,进一步地,还包括支座;所述支座包括与所述密封罐相连接的多个间隔分布的支腿,以对所述密封罐支撑。

本申请还提供了一种输氢系统,包括上述方案所述的储氢容器。

与现有技术相比,本申请的有益效果为:

本申请提供的储氢容器,通过在密封罐内设置螺旋状的进气管道,且在进气管道上开设多个输气孔,增大了氢气的流通面积,以使密封罐内各处的储氢材料吸氢量更加均匀,从而提升了储氢材料的总体吸氢量。

本申请还提供了输氢系统,包括上述方案所述的储氢容器。基于上述分析可知,输氢系统同样具有上述有益效果,在此不再赘述。

附图说明

为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请提供的储氢容器的局部剖视结构示意图;

图2为本申请提供的储氢容器的横截面的结构示意图。

图中:101-密封罐;102-进气管道;103-连通部;104-散发部;105-加热器;106-第一预设圆周;107-温度传感器;108-第二预设圆周;109-填充口;110-罐体;111-第一密封盖;112-输气口;113-第二密封盖;114-支座;115-支腿。

具体实施方式

下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。

实施例一

参见图1和图2所示,本申请提供的储氢容器包括密封罐101和进气管道102。其中,密封罐101内填充有储氢材料,优选地,储氢材料为镁基固态储氢材料,镁基固态储氢的方式具有储氢、放氢所需压力低,操作安全便捷等优势。进气管道102贯穿密封罐101,以使输氢设备能够通过进气管道102将氢气输送至密封罐101内。

具体地,进气管道102包括相连通的连通部103和散发部104,进气管道102位于密封罐101外的部分为连通部103,用于和输氢设备连通;进气管道102位于密封罐101内的部分为散发部104,散发部104开设有多个间隔排布的输气孔,氢气能够从输气孔流出并流至储氢材料中,散发部104弯曲成螺旋状,延长了输气路径,增大了氢气的流通面积,扩大了进气管道102的输气范围,使得位于密封罐101内各个位置的储氢材料的吸氢量更加均匀。

本申请提供的储氢容器,通过在密封罐101内设置螺旋状的进气管道102,且在进气管道102上开设多个输气孔,增大了氢气的流通面积,以使密封罐101内各处的储氢材料吸氢量更加均匀,从而提升了储氢材料的总体吸氢量。

该实施例可选的方案中,密封罐101呈圆筒状,散发部104的螺旋中心线与密封罐101的轴线共线,也就是说,散发部104布置于密封罐101的中部,即散发部104与密封罐101的侧壁的距离是均等的,从而保证了密封罐101内各个位置的储氢材料的吸氢量更加均匀。

对于不同粗细的密封罐101来说,散发部104的螺旋直径也不同,具体地,散发部104的螺旋直径与密封罐101的内径的比值为1/3~2/3。参见图2所示,图中示出的d1为散发部104的螺旋直径,d2为密封罐101的内径,d1与d2的比值为1/3~2/3。需要说明的是,密封罐101可为粗细均等的圆筒状,也可为粗细渐变的圆筒状,散发部104的螺旋直径跟随密封罐101的内径变化而变化。

该实施例可选的方案中,密封罐101的顶部开设有安装口,进气管道102贯穿安装口;散发部104从密封罐101的顶部延伸至密封罐101的底部。

一般来说,从密封罐101的底部至顶部的方向,密封罐101的大部分空间被储氢材料填充堆积。在该实施例中,散发部104从密封罐101的顶部延伸至密封罐101的底部,在高度方向上覆盖了密封罐101内所有的储氢材料,进一步保证罐体110内的储氢材料的吸氢量更加均匀。

该实施例可选的方案中,多个输气孔沿散发部104的长度延伸方向间隔排布,且多个输气孔沿散发部104的管道周向间隔排布,以保证位于进气管道102的周围的储氢材料均能够吸取氢气。

该实施例可选的方案中,至少在散发部104开设有输气孔的位置处的外表面包覆有过滤网,用于防止镁基固态储氢材料从输气孔进入进气管道102后堵塞管道,影响气体的传输。优选地,过滤网设置为不锈钢材质,防止过滤网被腐蚀。

该实施例可选的方案中,储氢容器还包括多个加热器105,多个加热器105从密封罐101的底部延伸至密封罐101的顶部,以使加热器105的高度与储氢材料的高度适配,由于储氢材料之间有热传导的作用,储氢材料的高度可适当高于加热器105的高度。

参见图2所示,其中一个加热器105位于密封罐101的中心,其余加热器105均布于散发部104和密封罐101的侧壁之间的第一预设圆周106上,且密封罐101的轴线穿过第一预设圆周106的圆心。加热器105如此排布,强化了传热效果,使热量分布更均匀,提高了吸、放氢的速率;同时,在单根或部分加热器105出现故障时,其余加热器105也能持续加热,不影响装置整体运行。可选地,加热器105具体为电加热器,并与密封罐101可拆卸连接,在发生故障时,可实现灵活便捷地更换电加热棒。

该实施例可选的方案中,储氢容器还包括多个温度传感器107;多个温度传感器107间隔排布于第二预设圆周108上,第二预设圆周108位于第一预设圆周106与密封罐101的侧壁之间,密封罐101的轴线穿过第二预设圆周108的圆心;至少一个加热器105映射于第二预设圆周108的位置处设置有温度传感器107,相邻两个加热器105之间设置有温度传感器107。

在该实施例中,在靠近密封罐101的侧壁一定距离的第二预设圆周108上,设置有多个温度传感器107,以便监控内部镁基固态储氢材料及电加热器不同位置的温度。其中,加热器105映射于第二预设圆周108的位置处的温度传感器107与加热器105的距离最近,相对来说其检测的温度为最高值,图2中示出了两处;位于相邻两个加热器105之间的温度传感器107有多个,其中位于最中间的温度传感器107与相邻两个加热器105等距,其与相邻两个加热器105的距离最远,检测的温度为最低值;为保证检测更加精准,在相邻两个加热器105之间还设置了用于检测中间温度的温度传感器107,在相邻两个加热器105之间,其更靠近其中一个加热器105,而远离另一个加热器105。

具体地,温度传感器107可为热电偶等元器件。

实施例二

该实施例二中的储氢容器是在上述实施例基础上的改进,上述实施例中公开的技术内容不重复描述,上述实施例中公开的内容也属于该实施例二公开的内容。

该实施例可选的方案中,密封罐101包括形成有填充口109的罐体110和安装于填充口109的第一密封盖111,第一密封盖111与罐体110可拆卸连接,具体地,第一密封盖111与罐体110可为法兰连接方式,填装材料时可打开第一密封盖111,以使储氢材料能够从填充口109进入罐体110内。

连通部103的输气口112处设置有第二密封盖113,第二密封盖113与连通部103可拆卸连接,具体地,第二密封盖113与连通部103可为法兰连接方式。打开氢气输气口112的法兰盖,连接系统供给管道,可对密封罐101进行抽真空,持续一定时间后,完成装置的抽真空操作;随后从输气口112通入氢气,使密封罐101内部充满氢气并保持一定压力。

该实施例可选的方案中,储氢容器还包括支座114;支座114包括与密封罐101相连接的多个间隔均布的支腿115,以对密封罐101稳定支撑。

以下介绍该装置使用时的具体工艺流程:

首先,打开储氢材料的填充口109处的法兰盖,将镁基固态储氢材料灌装进罐体110内部,盖上法兰盖,并使用螺栓密封;打开氢气是输气口112处的法兰盖,连接系统供给管道,对密封罐101进行抽真空,持续一定时间后,完成装置的抽真空操作;随后从输气口112通入氢气,使密封罐101内部充满氢气并保持一定压力。

然后,开启电加热器,对密封罐101内部镁基固态储氢材料进行加热,热电偶监控密封罐101内部的温度,当达到工况吸氢温度时停止加热,储氢材料开始吸氢,吸氢时,进气管道102一直处于供氢状态,直至吸氢完毕。吸氢过程为放热过程,产生的热量一部分用于维持装置后续吸氢所需要的热量,多余热量可通过罐体110传递至外界;通过监控进气管道102的压力或流量变化情况,可确定是否吸氢完毕;放氢为吸热过程,为保证放氢过程的顺利进行,在放氢过程中也需要保持电加热器开启,直到放氢过程结束。

实施例三

本申请实施例三提供了一种输氢系统,包括上述任一实施例的储氢容器,因而,具有上述任一实施例的储氢容器的全部有益技术效果,在此,不再赘述。

最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1