用于提高e-911呼叫精确性的修改的传输方法

文档序号:5834291阅读:236来源:国知局

专利名称::用于提高e-911呼叫精确性的修改的传输方法
技术领域
:本发明涉及用于定位无线发射机,诸如那些用在模拟或数字蜂窝系统、个人通信系统(PCS)、增强专用移动广播(ESMR)以及其它类型无线通信系统中的发射机,的方法和装置。该领域也就是通常所说的无线定位,这已经应用于无线E9-1-1、车队管理、RF优化以及其它有价值的应用。
背景技术
:本发明的早期工作已在1994年7月5日的美国专利5,327,144“蜂窝电话定位系统”中有所描述,它披露了一种使用到达时间差(timedifferenceofarrival,TDOA)这种新技术来定位移动电话的系统。对144专利中系统的进一步改善在1997年3月4日的美国专利5,608,410“用于定位突发发射源的系统”中有所描述。这两个专利都由本发明的受让人所有,在这里引用作为参考。发明人继续对早先的发明原理进行大量改进,已开发出进一步提高无线定位系统精确性并大幅度降低系统成本的技术。最近几年,蜂窝行业增加了无线电话可使用的空中接口协议的数量,增加了无线或者移动电话运行的频段,并扩展了和移动电话相关的术语数量,把“个人通信业务”、“无线”等都包括进来。现在,空中接口协议包括AMPS、N-AMPS、TDMA、GSM、TACS、ESMR、GPRS、EDGE等。术语的改变和空中接口数量的增加并没有改变发明人发现和增强的基本原理和发明。但是,为了和当前该行业中采用的术语保持一致,发明人现在称下文中描述的系统为无线定位系统。发明人已对这里描述的无线定位系统技术进行了大量的试验以验证该技术的生存能力和价值。例如,在1995年和1996年的好几个月中在城市Philadephia和Baltimore进行了几次试验来验证系统在大城市环境中减轻多径效应的能力。接着,在1996年发明人在Houston构建了一个系统用来测试这种技术在该区域的有效性以及它和E9-1-1系统直接接口的能力。然后,在1997年,在NewJersey一个350平方英里的区域对该系统进行测试,该系统用来定位来自真正处于困境中的人的真实9-1-1呼叫。从那时起,系统测试扩展到覆盖2000多平方英里的125个基站。在所有的这些测试过程中,测试了这里讨论和描述的技术的有效性,并对他们作进一步的开发设计,经过验证该系统已经克服了其它用于定位无线电话方法的那些局限。实际上,在1998年12月,世界上任何地方都没有安装其它可定位现场9-1-1呼叫者的无线定位系统。这里给出的无线定位系统的革新已通过媒体对本系统能力的广泛宣传以及本系统所获的奖励得到了无线行业的承认。例如,1997年10月蜂窝电话协会将有名的WirelessApplyAward(无线应用奖)授予了本系统,并且本无线定位系统是ChristopherColumbusFellowshipFoundation和DiscoverMagazine1998年的4000项提名中排前四位的革新之一。无线通信行业已经认识到无线定位系统的价值和重要性。在1996年6月联邦通信委员会要求无线通信行业最迟到2001年10月都要配置定位系统来定位无线9-1-1呼叫者。无线E9-1-1呼叫者定位可节省响应时间、挽救生命、节省大量费用,因为它减少了紧急响应资源的使用。此外,大量的调查和研究表明各种无线应用,比如位置敏感计费、车队管理等等在将来的几年具有很大的商业价值。无线通信系统
背景技术
有很多不同类型的空中接口协议用于无线通信系统。不管是在美国还是在国际上,这些协议用在不同的频带。频带并不影响无线定位系统定位无线电话方面的效果。所有的空中接口协议使用两种类型的“信道”。第一种类型包括用于传输关于无线电话和发射机信息的控制信道,用于发起或者终止呼叫,或者用于传输突发数据。例如,有些类型的短消息业务在控制信道上传输数据。在不同的空中接口中,控制信道具有不同的术语,但在每种空中接口中对控制信道的使用是一样的。控制信道一般具有通信传输中关于无线电话或者发射机的识别信息。控制信道还包括不同的数据传输协议,并不仅限于话音——包括通用分组无线业务(GPRS)、GSM演化的增强数据速率(EDGE)以及增强GPRS(EGPRS)。第二种类型包括通常用于通过空中接口传输话音通信的话音信道。只在用控制信道建立呼叫后才使用这些信道。话音信道通常使用无线通信系统中专用的资源,而控制信道使用共享资源。这种不同使得把控制信道用于无线定位系统比使用话音信道具有更高的成本效率,尽管有些应用需要在话音信道上进行常见的定位。话音信道通常不具有通信传输中有关无线电话或者发射机的识别信息。空中接口协议中的这些差别如下所述AMPS-这是美国蜂窝通信中最初使用的空中接口协议。在AMPS中,分开的专用信道由控制信道(RCC)分配使用。根据TIA/EIA标准IS-553A,每个控制信道块必须从蜂窝信道333或者334开始,但是该块可具有不同的长度。在美国,根据约定,AMPS控制块是21信道宽,但是有时也使用26信道宽的块。反向话音信道(RVC)可占用任何未分配给控制信道的信道。控制信道采用FSK(频移键控)调制,而话音信道采用FM调制(调频)。N-AMPS-这种空中接口是AMPS空中接口协议的扩展,在EIA/TIA标准IS-88中定义。控制信道和AMPS的控制信道基本相同,但是话音信道和AMPS的不一样。它的话音信道占用不到10KHz的带宽,而AMPS占用30KHz的带宽,它的话音信道采用FM调制。TDMA-这种接口也叫做D-AMPS,在EIA/TIA标准IS-136中定义。这种空中接口标准的特征是既使用频分也使用时分。控制信道称作数字控制信道(DCCH),并在分配给DCCH的时隙中以脉冲串传输。和AMPS不同,尽管基于块的使用概率通常有一些频率分配比其它分配方法更有吸引力,DCCH还是可在频段中的任何地方分配。话音信道称作数字业务信道(DTC)。DCCH和DTC可占用相同的频率分配,但在给定频率分配中占用不同的时隙。DCCH和DTC采用相同的调制方法,即π/4DQPSK(差分四相相移键控)。在蜂窝频段中,载波可同时使用AMPS和TDMA协议,只要为每种协议分配的频率是分开的。载波还可把数字信道聚集在一起以支持更高速率的数据传输协议,比如GPRS和EDGE。CDMA-这种空中接口由EIA/TIA标准IS-95A定义。这种空中接口的特征是使用频分和码分。但是,因为相邻的小区基站可使用相同的频率设置,CDMA还具有很精细的功率控制。功率控制是为了处理对那些本领域一般技术人员熟知的远近效应问题,这个问题使得用于大多数方法的无线定位很难正常运行。控制信道称作接入信道,话音信道称作业务信道。接入和业务信道可共用相同的频带,但是由码来区分开。接入和业务信道使用相同的调制方法,即OQPSK。通过把码聚集在一起,CDMA可支持更高速率的数据传输协议。GSM-这种空中接口由国际标准全球移动移动通信系统定义。和TDMA类似,GSM也使用频分和时分。信道带宽是200KHz,比TDMA使用的30KHz要宽,控制信道称作独立专用控制信道(SDCCH),在为SDCCH分配的时隙中以脉冲串传输。SDCCH可分配在频段中的任何地方。话音信道称作业务信道(TCH)。SDCCH和TCH可占用相同的频率分配,但在给定频率分配中占用不同的时隙分配。SDCCH和TCH使用相同的调制方法,即GMSK。GSM还支持更高的数据传输协议,比如GPRS和EGPRS。在本文中,除非特别说明,对空中接口的任何一个的引用都自动指代所有的空中接口。此外,对控制信道或者话音信道的引用是指所有类型的控制信道或语音信道,而不管特定空中接口使用的术语是什么。最后,在世界上还使用其它类型的空中接口,在本文中描述的发明原理中并不排除任何空中接口。实际上,那些本领域的一般技术人员可认识到其它地方使用的其它接口类似于或派生于上述的空中接口。这里给出的本发明优选实施例和其它用于定位无线电话的技术相比有许多优点。例如,其它有些技术向电话增加GPS功能,这需要对电话作很大的改变。这里给出的优选实施例不需要这样的变动。
发明内容无线定位系统位置估计的精确性部分地依靠无线发射机的功率和从无线发射机的传输时间长度。通常,更高功率的和更长传输距离的传输比之较小功率和较短距离的传输能被无线定位系统更精确地定位。为了使得通信系统中的干扰最小而系统的潜在容量最大,无线通信系统通常限制发射功率和无线发射机的传输距离。通过使得无线通信系统在提高对特定类型呼叫(比如无线9-1-1呼叫)定位精确性的同时最小化发射功率和传输距离,这里给出的发明方法满足系统的两个相互冲突的要求。该方法包括下面的步骤无线发射机从基站接收正常的传输参数;无线发射机的用户通过拨出一系列的数字并按下“发送(SEND)”或者“确定(YES)”在无线发射机上发起呼叫;无线发射机内的处理器把拨出的数字序列和一个或多个储存在无线发射机中的触发事件比较;如果拨出的数字序列和触发事件不匹配,无线发射机就在呼叫中使用正常的传输参数;如果拨出的数字序列和触发事件匹配,无线发射机就在呼叫中使用修改的传输序列。本发明的其它特征和优点将在下面给出。附图简述图1和图1A示意了本发明的无线定位系统。图2示意了本发明的信号采集系统(SCS)10。图2A示意了信号采集系统使用的接收机模块10-2。图2B和图2C示意了连接接收机模块10-2到天线10-1的可选方法。图2C-1是无线定位系统在使用窄带接收机模块时使用的处理流程图。图2D示意了本发明信号采集系统中使用的DSP模块10-3。图2E是DSP模块10-3操作的流程图,图2E-1是DSP检测激活的信道使用的处理流程图。图2F示意了本发明的控制和通信模块10-5。图2G-2J描述了当前优选SCS标准的一些特征。图2G示意了根据本发明用来解释外部校准(calibration)方法的基线和错误值。图2H是内部校准方法的流程图。图2I是AMPS控制信道的传输功能的示例。图2J描述了梳状信号的示例。图2K和2L是本发明用于监控无线定位系统性能的两种方法的流程图。图3示意了本发明的TDOA定位处理器12。图3A描述了本发明的由TLP控制器维护的示例网络图的结构。图4和4A示意了本发明的应用处理器14的不同方面。图5是本发明的基于中心基站的定位处理方法的流程图。图6是本发明的基于基站的定位处理方法的流程图。图7是用于为每种需要定位的传输判断是使用基于中心基站的处理方法还是使用基于基站处理的方法的流程图。图8是用来选择用在定位处理中的协作天线和SCS10的动态处理的流程图。图9是用来解释使用预定判断标准集来选择SCS和天线候选列表的方法的图。图10A和10B是用于增加发射信号带宽以提高定位精确性的可选方法的流程图。图11A-11C是信号流图,图11D是流程图,他们用来解释用于结合多个在统计学意义上独立的位置估计来提供更精确的估计的一种发明方法。图12A和12B分别是用来解释带宽合成方法的框图和图。优选实施例无线定位系统的运行被动地叠加在无线通信系统(比如蜂窝、PCS或者ESMR系统。)上,尽管原理并不仅仅局限于这些类型的通信系统。无线通信系统通常不适合定位无线设备,因为无线发射机的设计和基站并不具备获得精确位置所必需的功能。在这种应用中精确位置的精确度为100到400英尺RMS(均方根)。这和现有基站具有的局限在基站半径内的位置精确性不同。通常,设计和规划基站时并没有考虑在他们之间协作来确定无线发射机的位置。此外,把诸如蜂窝和PCS电话之类的无线发射机设计成成本较低,因此通常不具备内置的定位能力。将无线定位系统附加到无线通信系统中的成本不高,对基站的改变很小,对标准的无线发射机根本不作什么改变。由于不包含发射机,所以无线定位系统是被动的,它不会对无线通信系统产生任何干扰。无线定位系统仅在基站和其它接收位置使用它自己的专用接收机。无线通信系统(WirelessLocationSystem)概述如图1所示,无线定位系统有四种主要子系统信号采集系统(SCS)10、TDOA定位处理器(TLP)12、应用处理器(AP)14和网络操作控制台(NOC)16。每个SCS负责接收无线发射机在控制信道和话音信道上传输的RF信号。通常,每个SCS都适于安装在无线载波的小区站点(cellsite)上,因此和基站并行运行。每个TLP12负责管理SCS10的网络,提供一个可用在定位计算中的数字信号处理(DSP)资源集中池。SCS10和TLP12一起运行以确定无线发射机的位置,我们将在下面详细讨论这方面的内容。数字信号处理是处理无线信号优选的方法,因为DSP相对花费较低,提供稳定的性能,并易于再编程来处理多种不同的任务。SCS10和TLP12都包含大量的DSP资源,这些系统中的软件可动态地运行从而根据处理时间、通信时间、排队时间和花费的折衷确定在哪里执行特定地处理功能。每个TLP12都位于中心主要是为了减少执行无线定位系统的整个成本,尽管这里讨论的技术并不局限于这里披露的优选结构。亦即DSP资源可在无线定位系统中重新安排而不改变其基本原理和功能。AP14负责管理无线定位系统中的所有资源,包括所有的SCS10和TLP12。每个AP14还包含专门的含有用于无线定位系统的“触发器”的数据库。为了节约资源,可对无线定位系统编程使它只定位特定的预定类型的发射。当出现预定类型的发射时,就触发无线定位系统开始定位处理。否则,可对无线定位系统编程使它忽略这种发射。每个AP14还包含应用接口,这允许一些种类的应用可靠地访问无线定位系统。例如,这些应用可实时或非实时地访问位置记录,创建或者删除特定类型的触发器,或者使无线定位系统采取其它措施。每个AP14还具备特定的允许AP14把许多位置记录组合在一起来生成对诸如业务监控或者RF优化之类的应用有用的扩展的报告或者分析的后处理功能。NOC16是一种网络管理系统,它使无线定位系统的操作人员易于访问无线定位系统的编程参数。例如,在一些城市,无线定位系统可能包含成千上万个SCS10。NOC是管理大型无线定位系统的最有效方式,它使用图形化的用户界面能力。如果无线定位系统中的特定的功能没有正常运行,NOC还接收实时的报警。操作人员可根据这些实时报警迅速采取正确的措施,避免定位业务的降级。无线定位系统的试验结果表明该系统维护精确位置的能力和操作人员保持系统在预定参数中运行的能力直接相关。美国专利5,327,144和5,608,410以及本文的读者可注意到这些系统间的相似之处。实际上,这里披露的系统主要基于前面那些专利中描述的系统,同时也是对它们的重大改进。例如,SCS10就是5,608,410中描述的天线定位系统的扩展和增强。现在SCS10在单个小区站点上可以支持更多的天线,并且还可支持使用下面描述的扩展天线。这使得SCS10可操作现在常用的扇形小区站点。SCS10也可从一个小区站点的多个天线向TLP12传输数据而不总是在传输前组合来自多个天线的数据。此外,SCS10还可支持多种空中接口协议,从而即使无线载波不断地改变系统的配置SCS10也可继续行使功能。TLP12和5,608,410中披露的中心站点系统(CentralSiteSystem)类似,但也被扩展和增强。例如,TLP12已被变成可扩展的,从而每个TLP12所需的DSP资源的数量可进行适当扩展以满足无线定位系统客户所需的每秒的位置数。为了支持扩展不同无线定位系统容量,向TLP12增加了一个网络配置(networkingscheme)从而多个TLP12可跨无线通信系统网络边界相互协作共享RF数据。此外,还向TLP12提供了一些用来确定SCS10的控制装置,更重要的是每个SCS10上的天线,TLP12为了处理特定的位置从这些天线那里接收数据。以前,天线站点系统(AntennaSiteSystem)自动向中心站点系统转发数据,不管中心站点系统是否请求。此外,SCS10和TLP12组合在一起具有从接收到的传输中去除多径效应的其它装置。将中心站点系统的数据库子系统已被扩展并发展成AP14。AP14可支持比以前在5,608,410中披露的更多种类的应用,包括对来自多个无线发射机的大量位置记录进行后处理的能力。例如,这些经后处理的数据可通过无线载波产生非常有效的图,从而提高和优化通信系统的RF设计。这可通过例如绘制某区域中所有呼叫者的位置以及在一些基站上接收到的信号强度来获得。然后载波就可确定每个基站是否真正覆盖载波所需要的实际覆盖区域。AP14也可异步存储位置记录,亦即从位置记录中去掉MIN和/或其它识别信息,从而位置记录可用于RF优化或者业务监控而不影响个人用户的隐私。如图1A所示,当前无线定位系统的一种优选实现包括许多SCS区,每个SCS区都包括多个SCS10。例如,“SCS区1”包括SCS10A和10B(最好还有其它的,图中未显示),他们位于每个小区站点并和那些小区站点的基站共享天线。丢弃(drop)和插入单元11A和11B用来把分散的T1/E1线组合成完整T1/E1线,完整T1/E1线又连到数字访问和控制系统(DACS)13A。DACS13A和另外一个DACS13B以下面详细描述的方式用于SCS10A、10B等之间以及多个TLP12A、12B等之间的通信。如图所示,通常通过以太网(骨干网)和第二个冗余以太网来配置和连接TLP。多个AP14A和14B、多个NOC16A和16B,以及终端服务器15也连接到以太网。路由器19A和19B用来把一个无线定位系统和其它一个或多个无线定位系统连接起来。信号采集系统10通常,小区站点具有下面之一的天线配置(i)用一个或两个接收天线的全向站点,或者(ii)使用1、2或3个扇区每个扇区有1个或者2个接收天线的扇形站点。随着美国以及世界小区站点数量的增加,扇形的小区站点已成为占主导地位的配置。但是,微小区和微微小区的数量也在增长,它们可以是全方向的。因此,将SCS10设计成对这些类型的基站都是可配置的,并提供了在小区站点上使用任意数量天线的机制。SCS10的基本体系结构元素仍和5,608,410中描述的天线站点系统一样,但作了几处改进,提高了SCS10的灵活性,减少了系统商业部署的成本。这里将介绍目前的优选实施例。SCS10的概观如图2所示,它包括数字接收机模块10-2A到10-2C;DSP模块10-3A到10-3C;一个串行总线10-4,一个控制和通信模块10-5;一个GPS模块10-6;以及一个时钟分发模块10-7。SCS10具有下面的外部连接功率、分散的T1/E1通信、与天线的RF连接以及用于定时生成(或时钟分发)模块10-7的GPS天线连接。SCS10的体系结构和包装允许它和小区站点(这是最常用的安装位置)物理地布置在一起,位于其它类型的发射塔中(比如FM、AM、双向紧急通信、电视等等),也可位于其它建筑结构上(比如屋顶、竖井等等)。定时生成无线定位系统依靠网络中所有SCS10上的精确定时。在以前的描述中已经提到过几种不同的定时生成系统,但是最近的优选实施例是基于增强GPS接收器10-6。增强的GPS接收器和大多数传统的GPS接收器不同,因为接收器包含去除一些GPS信号定时不稳定性的算法,并保证网络中包含的任何两个SCS10之间都可接收大约10纳秒秒的定时脉冲。这些增强的GPS接收器现在已投入商用,它进一步减少了以前的无线定位系统实现中发现的和时间参考相关的错误。尽管该增强GPS接收器可生成很精确的时间参考,接收器的输出仍可能有不可接受的相位噪声。因此,接收器的输出被输入到低相位噪声晶体振荡驱动相位锁定环路,它可产生10MHz和每秒一个脉冲(PPS)的参考信号,而相位噪声少于0.01度RMS,并且在另一SCS10上的任何其它脉冲的10纳秒内、该脉冲在无线定位系统网络中任何SCS10上输出。增强GPS接收器、晶体振荡器以及锁相环路的组合是现在最常用的生成低相位噪声的稳定的时间和频率参考信号的方法。把SCS10设计成设备放在同一基站支持多个频段多种载波。实现方式可以是一个SCS机架的内部使用多个接收机,或者使用多个底盘,每个底盘都有单独的接收机。如果多个SCS底盘放在同一小区站点上,这些SCS10可共享一个定时生成/时钟分发电路10-7,从而降低整个系统的成本。来自定时生成电路的10MHz和一PPS的输出信号在内部放大并缓存到SCS10,然后通过外部连接器使用。因此第二个SCS可使用该缓冲的输出和外部连接器从第一个SCS接收它的定时。这些信号也可由在该小区站点分配的基站设备使用。这可能对基站有用,例如对提高无线通信系统的频率重用模式有用。接收机模块10-2(宽带实施例)当一个无线发射机进行发射时,无线定位系统必须在位于多个地理分散的小区站点上的多个SCS10上接收到发射信号。因此,每个SCS10都可接收在任何可发起传输的RF信道上进行的传输。此外,因为SCS10可支持多种空中接口协议,SCS10还可支持多种类型的RF信道。这和当前大多数基站接收机不同,他们通常只接收一种类型的信道,通常在每个小区站点上只能在选定的RF信道上接收。例如,典型的TDMA基站接收机只支持30KHz宽的信道,且每个接收机被设计成只在一个频率不常改变(即具有相对固定的频率方案)的信道上接收信号。因此,很少有TDMA基站接收机可在任何给定的频率接收传输。另外一个例子,即使有些GSM基站接收机能跳频,多个基站上的接收机通常也不能为了执行定位处理的目的同时转到同一频率。事实上,GSM基站上的接收机的跳频被程序控制以避免使用由其它发射机使用的RF信道从而使得干扰最小。SCS接收机模块10-2优选是一个可接收空中接口的整个频段和所有RF信道的双宽带数字接收机。对于美国的蜂窝系统,这个接收机模块要么是15MHz宽要么是25MHz宽,从而可接收某一个载波的所有信道或者两种载波的所有信道。这个接收机具有很多前面专利5,608,410中披露的接收机的特征,而图2A是当前优选实施例的框图。每个接收机模块包括一个RF调协器部分10-2-1,一个数据接口和控制部分10-2-2以及一个模数转换部分10-2-3。RF调谐器部分10-2-1包括两个完全独立的数字接收机(包括调谐器#1和调谐器#2),它们把来自外部连接器的模拟RF输入转换成数字数据流。和大多数基站接收机不同,SCS接收机模块不执行分集组合或者交换。相反,定位处理可使用来自每个独立接收机的数字信号。发明人确信由定位处理,尤其是多径效应缓和处理,来独立处理来自每个天线的信号,而不是在接收机模块上执行组合是有利的。接收机模块10-2执行下面的功能或者连接到执行下面的功能的元素,这些功能是自动增益控制(既支持近的强信号也支持远的弱信号),消除来自感兴趣的RF带宽之外的可能干扰信号的带通滤波,与RF信号混合以创建可采样IF信号所需的频率合成,混频,以及用于采样RF信号并输出具有适当带宽和位分辨率的数字数据流的模数转换(ADC)。频率合成把合成的频率锁定到来自定时分发/定时生成模块10-7(图2)的10MHz参考信号。用在接收机模块中的所有电路维持定时参考信号的低相位噪声特征。接收机模块优选至少有80dB的一个虚设自由动态范围。接收机模块10-2还包括生成测试频率和校准信号的电路,以及在安装或故障排除期间由技术人员进行测量的测试端口。下面详细介绍了不同的校准过程。内部生成的测试频率和测试端口为工程师和技术人员提供了快速测试接收机模块和诊断任何可疑问题的简单方法。这在制造过程也很有用。这里描述的无线定位系统的一个优点是在小区站点上不需要新天线。无线定位系统能使用安装在大多数小区站点上的现有天线,包括全向和扇区天线。相对于现有技术中描述的其它方法,这个特征节约了大量的无线定位系统安装和维护费用。SCS数字接收机10-2可采用两种方法连接到现有天线,分别如图2B和2C所示。在图2B中,SCS接收机10-2连接到现有小区站点多路耦合器或者RF分裂器上。在这种方式中,SCS10使用小区站点现有的低噪声预放大器、带通滤波器以及多路耦合器或者RF分裂器。这种类型的连接通常把SCS10限制成支持单一载波的带宽。例如,A侧的蜂窝载波通常使用带通滤波器来阻塞来自B侧客户载波的信号,反之亦然。在图2C中,小区站点上的现有RF路径被中断,增加了新的预放大器、带通滤波器和RF分裂器作为无线定位系统的一部分。新的带通滤波器允许多个相邻的频带通过,比如A侧和B侧的蜂窝载波,从而使得无线定位系统能定位使用两个蜂窝系统但使用一个小区站点的天线的无线发射机。在这种配置中,无线定位系统使用每个小区站点上的匹配的RF组件,从而相频响应(phaseversusfrequencyresponse)是一样的。这和现有的RF组件不同,不同小区站点上现有的组件可能来自不同制造商或者使用不同的模型号。匹配RF组件的响应特征减少了定位处理可能的错误来源,尽管无线定位系统可以补偿这些错误来源。最后,无线定位系统上安装的新的预放大器具有很低的噪声,这增加了小区站点上SCS10的灵敏度。SCS数字接收机10-2的整个噪声以低噪声放大器的噪声为主。因为无线定位系统在定位处理中可使用弱信号,而基站通常不能处理弱信号,所以无线定位系统可从高质量低噪声放大器中显著地受益。为了提高无线定位系统精确确定无线传输的TDOA的能力,小区站点的RF组件的相频响应在安装时确定,并在其它特定时间更新,然后存储在无线定位系统中的一个表中。这很重要,因为,例如,有些制造商制造的带通滤波器和/或多路耦合器在带通边界具有很陡的非线性的相频响应。如果带通的边界和反向控制或者语音信道很近或者一样,如果无线定位系统不用存储的特征修正测量的话,那么无线定位系统就会对传输的信号相位特征作出错误的测量。如果载波安装了不只一个制造商的多路耦合器和/或带通滤波器,这将变得更加重要,因为每个站点的特征可能不同。除了测量相频响应之外,其它的环境因素可在ADC前改变RF路径。需要在SCS10中不定期地有时候是定期地校准这些因素。接收机模块10-2的可选窄带实施例除宽带接收机模块之外,或作为其替换,SCS10还支持接收机模块10-2的窄带实施例。与通过无线通信系统同时接收使用的所有RF信道宽带接收机模块相反,窄带接收机一次只能接收一个或者几个RF信道。例如,SCS10支持用在AMPS/TDMA系统中的覆盖两个相邻的30KHz信道的60KHz窄带接收机。这个接收机仍是宽带模块中描述的数字接收机,但是频率合成和混合电路用来根据命令动态调整接收机模块以适应各种RF信道。这种动态调节通常发生在百万分之一秒或者更短时间内,而且接收机可以在一个特定的RF信道上驻留足够长的时间来为定位处理接收和数字化RF数据。窄带接收机的目标是减少由于宽带接收机带来的无线定位系统的实现代价。当然,这有一些性能损失,但是多个接收机的能力可允许无线载波具有更多的成本/性能选择。添加到无线定位系统的附加发明功能和改善能支持这种新类型的窄带接收机。当使用宽带接收机时,在所有SCS10上连续收到所有的RF信道,在传输之后,无线定位系统可使用DSP10-3(图2)来从数字存储器中动态选择任何RF信道。使用窄带接收机,无线定位系统必须保证一个前提(priori),即同时把多个小区站点上的窄带接收机调整到相同的RF信道,从而所有的接收机可同时接收、数字化以及存储相同的无线传输。基于这个原因,窄带接收机通常只用于定位语音信道的传输,这可称为传输的前提。因为控制信道传输可在任何时间异步发生,所以窄带接收机可能不能调整到正确的接收传输的信道。当使用窄带接收机来定位AMPS语音信道的传输时,无线定位系统可暂时改变AMPS无线发射机的调制特征来帮助定位处理。这可能是必需的,因为除了称作SAT的低电平监控语音之外AMPS话音信道只是FM调制。正如本领域公知的,AMPSFM调制的Gramer-Rao更低界限比用于AMPS反向信道和话音信道上的“空白和突发(blankandburst)”传输的曼彻斯特编码FSK调制差很多。此外,如果没有调制输入信号(即没有人说话),AMPS无线发射机可大大降低发射的能量。为了通过提高调制特征而不依赖输入调制信号的存在和振幅来改善位置估计,无线定位系统可使得AMPS无线发射机在多个SCS10上的窄带接收机调整要发送“空白和突发”消息的RF信道时及时发射一条“空白和突发”消息。这将在后面详细介绍。当使用窄带接收机模块时无线定位系统执行下面的步骤(参见图2C-1的流程图)第一无线发射机是一个前提,负责特定RF信道上的传输;无线定位系统触发器对第一无线发射机的位置作出估计(触发发生在内部也可通过一个命令/响应接口发生在外部);无线定位系统确定第一无线发射机当前使用的小区站点、扇区、RF信道、时隙、长码掩码以及加密密钥(所有的信息元素不一定对所有的空中接口协议都需要);无线定位系统将恰当的第一个SCS10上的恰当的第一窄带接收机调整到指定小区站点和扇区上的RF信道和时隙,其中恰当通常意味着可用并被分配或者最接近;第一SCS10从第一个窄带接收机接收RF数据的一个时间段,通常从几微秒到几十微秒,并评估传输功率、SNR以及调制特征;如果传输功率或者SNR低于预定的门限值,则无线定位系统等待预定长度的时间,然后返回到上面的第三步(在那里无线定位系统确定小区站点、扇区等等);如果传输是一个AMPS话音信道传输并且调制低于门限,则无线定位系统命令无线通信系统向第一无线发射机发送一个命令使得第一个无线发射机上产生一个“空白和突发”;无线定位系统请求无线通信系统避免无线发射机在某个预定长度时间中切换到其它RF信道;无线定位系统从无线通信系统接收一个指明时间周期的响应,该时间周期是避免第一无线发射机切换的时间周期,并且如果接到命令,是无线通信系统将向第一无线发射机发送命令以产生“空白和突发”的时间周期;无线定位系统确定用在定位处理中的天线列表(天线选择过程在下面描述);无线定位系统确定最早的无线定位系统时间戳,在该时间戳连到选定天线的窄带接收机可同时开始从第一无线发射机当前使用的RF信道采集RF数据;根据来自无线通信系统响应中的最早的无线定位系统时间戳和时间段,无线定位系统命令连接到将用在定位处理中天线的窄带接收机调节第一无线发射机当前使用的小区站点、扇区和RF信道,并在预定驻留时间内接收RF数据(根据信号的带宽、SNR和综合需求);窄带接收机把接收到的RF数据写到双端口存储器;开始对接收到RF数据的定位处理,这在专利5,327,144和5,608,410以及下面的部分描述;无线定位系统再次确定第一无线发射机使用的小区站点、扇区、RF信道、时隙、长码掩码以及加密密钥;如果第一无线发射机当前使用的小区站点、扇区、RF信道、时隙、长码掩码以及加密密钥在查询之间(即在收集RF数据之前和之后)改变,则无线定位系统停止定位处理,因无线发射机在接收RF数据期间改变了传输状态而引起一个定位处理失败报警消息,并重新触发整个过程;对接收到的数据的定位处理根据下面描述的步骤结束。通常由无线定位系统通过无线定位系统和无线通信系统之间的命令/响应接口确定包括小区站点、扇区、RF信道、时隙、长码掩码以及加密密钥在内的信息元素。采用上面描述的这种方式使用接收机被称作随机调节,因为可根据系统的命令把接收机指引到任何RF信道。随机调节的一个优点是只为无线定位系统触发的那些无线发射机处理定位。随机调节的一个缺点是不同的同步因素,包括无线通信系统和无线定位系统之间的接口、在整个系统内调度所需接收机的时延,将限制整个定位处理的吞吐量。例如,在TDMA系统中,整个无线定位系统使用的随机调节通常将定位处理的吞吐量限制在大约每小区站点扇区每秒2.5个位置。因此,窄带接收机也可支持另外一种模式,即自动顺序调节,它可以更高的吞吐量执行定位处理。例如,在TDMA系统中,使用和上面描述的窄带接收机操作的驻留时间、建立时间相同的假设,顺序调节的吞吐量大约可达每小区站点扇区每秒41个位置,这就意味着在大约9秒钟内就可处理所有395个TDMARF信道。可通过利用两个相邻的可被同时接收的RF信道、在RF信道中定位处理所有的三个TDMA时隙以及消除无线通信系统的同步需要来获得该增加的速度。当无线定位系统将窄带接收机用于顺序调节,无线定位系统不知道无线发射机的身份,因为无线定位系统不等待触发器,也不在接收到该传输前向无线通信系统查询身份信息。在这种方法中,无线定位系统顺序通过每个小区站点、RF信道和时隙,执行定位处理,并报告一条识别时间戳、小区站点、RF信道、时隙和位置的位置记录。在位置记录报告之后,无线定位系统和无线通信系统匹配位置记录和无线通信系统的数据,指示此时使用的是哪一个无线发射机,每个无线发射机使用的是哪一个小区站点、RF信道和时隙。然后,无线定位系统保留感兴趣的无线发射机的位置记录,丢弃其它无线发射机的位置记录。数字信号处理器模块10-3SCS数字接收机模块10-2输出具有指定带宽和位分辨率的数字化RF数据流。例如,宽带接收机的15MHz实施例可输出包含每秒采样六千万次每次采样14位的数据流。这个RF数据流将包含无线通信系统使用的所有的RF信道。DSP模块10-3接收所述数字化的数据流,通过数字混合和过滤提取任意单个RF信道。DSP还能根据无线定位系统的命令降低位分辨率,这需要减少SCS10和TLP12间的带宽需求。无线定位系统可根据每个位置处理的需求来动态地选择转发数字化基带RF数据的位分辨率。DSP被用于这些功能以减少混合和过滤模拟成分中发生的系统错误。DSP的使用在任何两个SCS10间处理中的精确匹配。DSP模块10-3的框图如图2D所示,DSP模块的操作如图2E的流程图所示。如图2D所示,DSP模块10-3包括下面的元素一对DSP元件10-3-1A和10-3-1B,统称为“第一”DSP;串行到并行转换器10-3-2;双端口存储元件10-3-3;第二DSP10-3-4;并行到串行转换器;FIFO缓冲器;用于检测的DSP10-3-5(包括RAM),用于解调的另外一个DSP10-3-6和用于归一化(normalzation)和控制的DSP10-3-7;以及地址生成器10-3-8。在目前优选的实施例中,DSP模块10-3接收宽带数字化数据流(图2E,步骤S1),并使用第一DSP(10-3-1A和10-3-1B)来提取信道块(步骤S2)。例如,被编程作为数字丢弃接收机运行的第一DSP可提取信道的四个块,其中每个块至少包括1.25MHz的带宽。这个带宽可包括AMPS或者TDMA的42个信道,GSM的6个信道或者CDMA的1个信道。DSP不需要这些块相邻,因为DSP可独立地数字化地调节到宽带数字化数据流带宽中的任何RF信道集合上。DSP也可在块中的所有信道或者任一信道上执行宽带或者窄带能量检测,并通过信道向TLP12报告功率级别(步骤S3)。例如,每隔10ms,DSP可为所有接收机的所有信道执行宽带能量检测并创建一个RF频谱图(参见步骤S9)。因为可能每隔10ms通过连接SCS10和TLP12的通信链路把这个频谱图从SCS10发送到TLP12,所以可能存在大量的数据开销。因此,DSP通过把数据压缩到有限的数量级别来降低数据开销。例如,84dB的动态范围通常需要14位。在DSP执行的压缩处理中,通过选择发送到TLP12的16个重要RF频谱级把数据减少到例如只有4位。级别数量的选择以及位数的选择,以及级别的表示,可自动由无线定位系统调整。执行这些调整来最大化发送到TLP12RF频谱消息的信息价值,并优化SCS10和T1P12间通信链路可用带宽的使用。在转化后,RF信道的每个块(每个至少1.25MHz)通过串行到并行转换器10-3-2传递,然后存在双端口数字存储器10-3-3中(步骤S4)。数字存储器是一个循环存储器,意味着DSP模块开始向第一个存储器地址写数据,然后按顺序继续直到到达最后一个存储器地址。当到达最后一个存储器地址时,DSP返回到第一个存储器地址,继续按顺序向存储器写数据。每个DSP模块包含的存储器通常足够为每个RF信道块存储几秒的数据以支持定位处理中的时延和排队时间。在DSP模块中,数字化和转化的RF数据写入的存储器地址就是整个无线定位系统中使用的的时间戳以及定位处理确定TDOA过程中的参考。为了保证在无线定位系统中每个SCS10的时间戳一致,地址生成器10-3-8从定时生成/时钟分发模块10-7(图2)接收每秒一次的脉冲信号。周期性地,无线定位系统所有SCS10上的地址生成器同时重置它们自己到一个已知的地址。这使得定位处理减少或者消除每个数字化数据元件时间戳记录中的累积定时错误。地址生成器10-3-8控制向双端口数字存储器10-3-3写入数据和从双端口数字存储器10-3-3读取数据。因为ADC连续抽样和数字化RF信号以及第一个DSP(10-3-1A和10-3-1B)连续执行数字丢弃接收机功能,所以连续发生写入。但是,在无线定位系统请求执行解调和定位处理数据时,以突发形式读取数据。无线定位系统甚至可在单个发射中递归地执行定位处理,因此需要多次访问同样的数据。为了满足无线定位系统的多种需求,地址生成器允许双端口数字存储器以比写数据更快的速率读数据。通常,读可比写快八倍。DSP模块10-3使用第二DSP10-3-4来从数字存储器10-3-3读取数据,然后执行第二个数字丢弃接收机功能来从RF信道块提取基带数据(步骤S5)。例如,第二DSP可从已数字化并存在存储器中的RF信道的任何块中提取任何单个30KHzAMPS或者TDMA信道。同样,第二DSP可提取任何单个GSM信道。第二DSP不需要提取CDMA信道,因为信道带宽占用存储RF数据的所有带宽。第一DSP10-3-1A、10-3-1B和第二DSP10-3-4的组合使得DSP模块可以选择、存储和恢复无线通信系统中的任何单个RF信道。DSP模块通常存储四个信道块。在AMPS/TDMA双模式系统中,一个DSP模块可连续同时监控最多42个模拟反向控制信道,最多84个数字控制信道,还可监控和定位任何话音信道的传输。一个SCS机架通常最多支持三个接收机模块10-2(图2),最多覆盖三个扇区每个扇区两个天线,最多9个DSP模块(每个接收机三个DSP模块,它允许整个15MHz带宽同时存储在数字存储器中)。因此,SCS10是一个完全模块化的系统,很容易对其扩展以满足任何类型小区站点的配置和负载。DSP模块10-3还执行其它功能,包括自动检测每个扇区的激活信道(步骤S6),解调(步骤S7),基于基站的定位处理(步骤S8)。无线定位系统维护无线通信系统中RF信道使用状况的激活图(步骤S9),这使得无线定位系统管理接收机和处理资源,并在特定的感兴趣的传输开始时迅速开始处理。激活图包括一个无线定位系统中维护的表,它为连接到SCS10的每个天线列出了分配给该SCS10的主要信道和用在那些信道的协议。主要信道是分配给已配置或者靠近的基站的RF控制信道,基站使用该信道和无线发射机通信。例如,在采用扇形小区站点的典型蜂窝系统中,有一个分配给每个扇区的RF控制信道频率。那些控制信道频率通常被分配为被配置的SCS10的主要信道。即使其它SCS10也分配有同样的主要信道,也可分配相同的SCS10来监控作为主要信道的其它相邻基站的RF控制信道。在这种方式中,无线定位系统实现系统解调的冗余,这保证了任何给定的无线传输具有极小的丢失概率。当使用了解调冗余功能时,无线定位系统将在超过一个SCS10上两次或者更多次地接收、检测和解调相同的无线传输。无线定位系统包括检测什么时候多个解调发生什么时候只触发一次定位处理的装置。这个功能节约无线定位系统的处理和通信资源,下面将对它作进一步描述。单个SCS10检测和解调发生在未配置SCS10的小区站点上的无线传输的能力允许无线定位系统的操作员更有效地部署无线定位系统网络。例如,可这样设计无线定位系统,即使得无线定位系统使用比无线通信系统基站少得多的SCS10。在无线定位系统中,使用两种方法在表中输入和维护主要信道直接编程和自动检测。直接编程包括使用无线定位系统用户接口中的一种,比如网络操作控制台16(图1),向表中输入主信道数据,或者通过从无线定位系统到无线通信系统的接口接收信道分配数据。或者,DSP模块10-3也可运行一个称作自动检测的后台进程,在DSP使用空闲或者安排的处理能力来检测各种可能的RF信道上的传输,然后试图用可能的协议解调那些传输。然后DSP模块就可确认直接编程的主要信道是正确的,也可快速检查基站上对信道的改变,并向无线定位系统的操作员发送报警。在自动检测中DSP模块执行下面的步骤(参见图2E-1)对于每个可能的用在SCS10覆盖区域的控制和/或话音信道,建立占用计数器(步骤S7-1);在检测时期开始,所有的占用计数器重置成0(步骤S7-2);每次特定RF信道上发生传输,且接收到的功率级别超过特定预设门限时,该信道的占用计数器加1(步骤S7-3);每次特定RF信道上发生传输,且接收到的功率级别超过第二特定预设门限时,DSP模块将试图用第一优选协议解调传输的某一部分(步骤S7-4);如果解调成功,该信道的第二占用计数器加1(步骤S7-5);如果解调不成功,DSP模块将试图用第二优选协议解调传输的一部分(步骤S7-6);如果解调成功,该信道的第三占用计数器加1(步骤S7-7);在检测周期最后,无线定位系统读取所有的占用计数器(步骤S7-8);并且无线定位系统自动根据占用计数器分配主要信道(步骤S7-9)。无线定位系统的操作员可查看占用计数器以及主要信道和调制协议的自动分配,并覆盖自动执行的设置。此外,如果无线载波可使用超过两种优选协议,则DSP模块10-3可随软件下载以检测其它协议。基于宽带接收机10-2、DSP模块10-3和可下载软件的SCS10的体系结构,允许无线定位系统在一个系统中支持多种解调协议。在一个系统中支持多种协议有很大的成本优势,因为一个小区站点上只需要一个SCS10。这和很多基站的需要多个收发机模块用于不同调制协议的体系结构不同。例如,在同一个SCS10中可同时支持AMPS、TDMA和CDMA,而目前没有基站可支持这种功能。检测和解调多种协议的能力还包括独立检测通过特定空中接口协议所传输消息中认证的使用。最近几年,作为一种减少无线通信系统中欺骗的发生的方法,无线发射机中认证域的使用变得流行起来。但是,并不是所有的无线发射机都实现了认证。当使用认证时,协议通常在传输的消息中插入一个额外域。通常这个域插在传输的消息中的无线发射机身份和所拨数字之间。当解调无线传输时,无线定位系统确定传输的消息中的域的数量,以及消息类型(即注册、来源、寻呼响应等等)。无线定位系统解调所有的域,如果出现额外的域,考虑传输的消息的类型,然后无线定位系统测试所有域的触发条件。例如,如果所拨号码在域的适当位置出现“911”,且该域位于固有位置没有认证或者位于固有位置有认证,则无线定位系统正常触发。在这个例子中,数字“911”需要以“911”的顺序或者“*911”的顺序出现,在它之前或之后没有其它数字。这个功能减少或消除了认证域中出现的数字“911”引起的误触发。因为当无线呼叫者拨出“911”时要迅速触发定位处理,所以对多种解调协议的支持对于无线定位系统的成功运行是很重要的。无线定位系统可用两种方法触发定位处理无线定位系统独立解调控制信道的传输,用任意数量的诸如拨叫号码之类的标准来触发定位处理,或者无线定位系统可从诸如载波的无线通信系统之类的外部源接收触发。发明人发现用SCS10独立解调所用的触发时间较少,这从无线用户按下无线发射机上的“发送(SEND)”或者“通话(TALK)”(或类似的)按钮开始测量。控制和通信模块10-5如图2F所示,控制和通信模块10-5包括数据缓冲器10-5-1,控制器10-5-2,存储器10-5-3,CPU10-5-4和T1/E1通信芯片10-5-5。该模块有很多在前面的专利5,608,410中描述的特征。本实施例对其作了一些改进。例如,即使控制和通信模块停止执行它的软件,现在的SCS10仍具有自动远程复位功能。这个功能可降低无线定位系统的运行成本,因为技术人员在小区站点不能正常运行时不需要亲自去现场复位SCS10。自动远程复位电路通过监控SCS10和TLP12之间通信接口上的特定比特序列来运行。这个比特序列不会出现在SCS10和TLP12之间的正常通信过程中。例如,这个序列可以是全1。复位电路独立于CPU运行,从而即使CPU把它自己设置成锁定或者其它非运行状态,该电路仍能对SCS10进行复位并使得CPU恢复到运行状态。现在,这个模块还可记录和报告各种用在监控或者诊断SCS10的性能的统计数字和变量。例如,SCS10可监控SCS10中任意DSP或者其它处理器的使用百分比以及SCS10和TLP12之间的通信接口。将这些值定期地报告给AP14和NOC16,用来确定什么时候系统需要额外的处理和通信资源。例如,可在NOC设置报警门限来告诉操作人员某种资源是否一直超出预设的门限。SCS10还可监控成功解调传输的次数和解调失败的次数。这可帮助操作人员确定设置的解调门限是否最佳。这个模块和其它模块都可向TLP12报告它自己的标识。如下所述,有很多SCS10连接到一个TLP12。典型地,SCS10和TLP12之间的通信和基站和MSC之间的通信共享。通常很难快速准确地确定哪一个SCS10分配给特定的电路。因此,SCS10有一个硬编码的标识,这在安装时就记录下来了。TLP12可读出和验证这个标识确定载波把哪一个SCS10分配给每种不同的通信电路。SCS到TLP的通信支持多种消息,包括命令和响应、软件下载、状态和心跳、参数下载、诊断、频谱数据、相位数据、主要信道解调,以及RF数据。设计通信协议使得协议开销最小从而优化无线定位系统的操作,该协议包括一个消息优先级方案。每种消息类型都被指定了一个优先级,SCS10和TLP12根据优先级对消息排队,从而在发送低优先级消息之前发送高优先级的消息。例如,解调消息通常具有高优先级,因为无线定位系统必须无时延地触发特定类型呼叫的定位处理(即E9-1-1)。尽管高优先级地消息排在低优先级的消息之前,该协议通常不抢占发送中的消息。亦即,正通过SCS10到TLP12通信接口进行的消息发送将完全完成,但是下一个要发送的消息将是时间戳最早优先级最高的消息了。为了使高优先级消息的时延最小化,诸如RF数据之类的长消息被分段发送。例如,完整的100毫秒的AMPS传输可能被分成10毫秒的段。采用这种方式,可将高优先级的消息排在RF数据段之间。校准和性能监控SCS10的体系结构建立在数字技术基础之上,包括数字接收机和数字信号处理器。一旦RF信号被数字化,就可在各种处理中精确控制定时、频率和相位差。更重要的是,可在用在无线定位系统中的不同接收机和不同SCS10间精确匹配任何定时、频率和相位差。但是,在ADC之前,RF信号通过许多RF组件,包括天线、电缆、低噪声放大器、滤波器、双工器、多路耦合器以及RF分流器。这些组件中的每一种都具备对无线定位很重要的特性,包括时延以及相频响应(phaseversusfrequencyresponse)。当成对的SCS10——比如图2G中的SCS10A和SCS10B——之间精确地匹配RF和模拟组件时,在定位处理中就自动消除了这些特性的影响。但是当这些组件的特性不匹配时,定位处理将可能包含由于不匹配导致的仪器误差。此外,这些RF组件可能会出现功率、定时、温度或者其它因素不稳定的情况,这也可能为位置的确定增加一些误差。因此,开发设计了几种新技术来校准无线定位系统中的RF组件并定期地监控无线定位系统的性能。在校准之后,无线定位系统把这些时延以及相频响应的值(也就是按照RF信道号)存储在无线定位系统的表中用来修正这些仪器误差。下面参照图2G-2J解释这些校准方法。外部校准方法参照图2G,沿着基线测量无线定位系统的定时稳定性,其中每个基线包括两个SCS,即10A和10B,在它们之间有一条想象的线(A-B)。在无线定位系统的TDOA/FDOA类型中,无线发射机的位置是通过测量每个SCS10记录的来自一个无线发射机的信号到达时间的时间差来计算的。因此,沿着基线由SCS10测量的时间差主要是由于无线发射机信号的传输时间不同,和SCS10的RF和模拟组件本身的变化几乎没什么关系,这很重要。为了满足无线定位系统的精度目标,需要把任何一对SCS10的定时稳定性维持在不到100纳秒RMS(均方根)。因此,在无线发射机的位置估计中无线定位系统组件的仪器误差应不到100英尺RMS。其中的一些误差是由于用来校准系统的信号的不明确引起的。可用著名的Cramer-Rao下限方程确定这种不明确性。考虑AMPS反向控制信道,这种误差大约40纳秒RMS。其它的误差预留量归给无线定位系统的组件,主要是SCS10中的RF和模拟组件。在外部校准方法中,无线定位系统使用信号特性和目标无线发射机的特性匹配的校准发射机网络。这些校准发射机可以是发射定期注册信号和/或寻呼响应信号的普通无线电话。最好定期地用具有到两个和基线相关的SCS10的相对清晰无阻碍的路径的校准发射机来精确校准每个可用的SCS到SCS基线。和处理来自目标无线发射机的信号一样处理校准信号。因为TDOA值是已知前提,计算中的任何误差都是由于无线定位系统中的系统误差。可从后面的目标发射机的定位计算中去掉这些系统误差。图2G描述了使定时误差最小化的外部校准方法。如图所示,在“A”点的第一SCS10A和在“B”点的第二SCS10A有一个相关联的基线A-B。在时刻T0由位于“C”点的校准发射机发射的一个校准信号理论上在时刻T0+TAC到达第一SCS10A。TAC是校准信号从校准发射机天线传输到数字接收机双端口数字存储器所需要的时间。同样,相同的校准信号理论上在时刻T0+TBC到达第二SCS10B。但是,通常校准信号不会恰好在这个正确的时刻到达各SCS10的数组存储器和数字信号处理组件。相反,校准信号从校准发射机传到SCS10的时间(TAC,TBC)中分别有e1和e2的误差,从而达到的时刻实际上是它使得T0+TAC+e1和T0+TBC+e2。这样的误差是由于信号通过空中传播即从校准发射机天线到SCS天线的时延引起的;但是,误差主要由于SCS前端组件中的时间变化特性。误差e1和e2不能从本质上确定,因为系统不知道校准信号发射的准确时刻(T0)。但是,系统可确定任意给定的一对SCS10的各SCS10上校准信号到达的时间差中的误差。我们把这个TDOA误差值定义为TDOA测量值和TDOA理论值之间的差τ0,其中τ0是理论时延值TAC和TBC之间的理论差。因为SCS10和校准发射机的位置、校准信号传播的速度是已知,所以每个SCS10对和每个校准发射机的理论TDOA值是已知的。测量的TDOA基线(TDOAA-B)可表示为TDOAA-B=τ0+ε表示,其中ε=e1-e2。采用同样的方式,从位于点“D”的第二各校准发射机来的校准信号有相关的误差e3和e4。从目标发射机TDOA测量值中减去的ε最终值是来自一个或多个校准发射机ε值的函数(例如,加权平均)。因此位于点“X”和点“Y”的一对SCS10的给定的TDOA测量值(TDOAmeasured)以及位于未知位置的目标无线发射机将如下修正TDOAX-Y=TDOAmeasured-εε=k1ε1+k2ε2...kNεN其中,k1、k2等是加权因子,ε1、ε2等是通过从每个校准发射机理论值减去测量的TDOA确定的误差。在这个例子中,误差ε1可以是和图中位于“C”点的校准发射机相关联的误差值。加权因数由无线定位系统的操作人员确定,并输入到每个基线的配置表中。操作人员将考虑每个校准发射机到“X”点和“Y”点的SCS10的距离,根据经验确定的从每个校准发射机到位于点“X”和点“Y”的SCS10的视线,以及每个SCS“X”和“Y”对可能位于每个校准发射机附近的无线发射机位置估计的作用。通常,校准发射机越靠近位于点“X”和点“Y”的SCS10,其权值就比较远的校准发射机高,具有到位于点“X”和点“Y”的SCS10更好视线的校准发射机的权值比具有较差视线的校准发射机高。每个误差项e1、e2等以及它们导致的误差项ε随着时间推移可能有很大变化,因为有些误差项是由于从校准发射机到每个SCS10的多径反射造成的。多径反射严重依赖路径的,因此每个测量每个路径都不同。本方法目标不是确定这些校准路径的多径反射,而是确定SCS10组件造成的误差所占的部分。因此,通常误差e1和e3有相同的成分,因为他们都和第一个SCS10A相关。同样e2和e4的值也有相同的成分,因为他们都和第二个SCS10B相关。众所周知,尽管多径组件可能变化很大,但组件的误差却变化很慢,通常成正弦变化。因此,在外部校准方法中,用一个加权的基于时间的滤波器过滤误差值ε,在保留SCS10造成的相对较慢变化误差部分的同时降低大幅度变化的多径成分的权值。这样的用在外部校准方法的一个滤波器的例子是Kalman滤波器。校准传输之间的时间段随SCS组件确定的误差偏移率而改变。对应偏移率的时间段应比校准时间间隔长很多。无线定位系统监控偏移率的时间段以不断地确定变化的速率,并且,如果需要,可定期调整校准时间间隔。通常,像本发明中使用的无线定位系统校准率在10到30分钟之间。这恰好对应于无线通信系统中注册速率的典型时间段。如果无线定位系统要确定校准时间间隔必须调整到比无线通信系统的注册速率更快的速率,则AP14(图1)通过以预定间隔寻呼发射机来自动促使校准发射机发射。可单独设定每个校准发射机的地址,因此和每个校准发射机相关联的校准时间间隔可以不同。因为用在外部校准方法中的校准发射机是标准电话,无线定位系统必须具有从其它用于不同目的的无线发射机中区分出那些电话的机制。无线定位系统维护校准发射机的标识列表,通常是在TLP12和AP14中。在蜂窝系统中,校准发射机的标识可以是移动识别号MIN。当校准发射机进行传输时,每个SCS10接收到这个发射并由恰当地SCS10解调。无线定位系统把发射标识和预先存储的所有校准发射机标识的任务列表相比较。如果无线定位系统确定该发射是个校准发射,则无线定位系统就开始外部校准处理。内部校准方法除了外部校准方法之外,本发明的一个目标是校准用在无线定位系统的SCS10中使用的宽带数字接收机的所有信道。外部校准方法通常只校准宽带数字接收机使用的多个信道中的一个信道。这是因为固定校准发射机通常扫描功率最高的控制信道,通常每次该信道都是同一个控制信道。但是,宽带数字接收机的传输特性以及其它相关组件并不总是保持不变,它们随着时间和温度而变化。因此,即使外部校准方法能成功地校准单个信道,也不能保证同时校准其它信道。内部校准方法,如图2H所示的流程图,特别适于校准以随时间、温度变化的转换函数(transferfunction)为特征的单独的第一接收机系统(即SCS10),其中转换函数定义了接收机系统怎样改变接收信号的振幅和相位,以及怎样用接收机系统部分地通过确定无线发射机发射的信号、要校准的接收机系统以及其它接收机系统接收到的信号的到达时间差来确定无线发射机的位置,并且其中位置估计的精度部分地取决于系统TDOA测量的精度。AMPSRCC转换函数的一个例子如图2I所示,在图中描述了转换函数的相怎样在跨越630KHz的21个控制信道中变化。参照图2H,内部校准方法包括如下步骤把接收机系统使用地天线临时地电子地从接收机系统断开(步骤S-20);向第一接收机系统插入一个内部生成的具有已知的稳定信号特征的宽带信号(步骤S-21);利用生成的宽带信号估计在整个第一接收机系统带宽中转换函数变化的方式(步骤S-22);以及利用估计结果减轻第一接收机系统进行的时间和频率测量结果上的第一转换函数的变化的影响。用于内部校准的稳定宽带信号一个例子是梳状信号,它包括多个单独的在已知间隔(比如5KHz)上振幅频率相等的元素。这种信号的一个实例如图2I所示。在内部校准过程中必须暂时断开天线连接以避免外部信号进入宽带接收机并保证接收机只接收稳定的宽带信号。天线只电子地断开几毫秒,使得丢掉来自无线发射机消息的可能性最小。此外,外部校准通常在外部校准后立即执行,从而使得在外部和内部校准之间的时间间隔中SCS10中的任何部分发生偏移的可能性最小。用两个电子控制的RF中继(图中未显示)来从宽带接收机断开天线。即使在“关闭”状态,RF中继也不能完全地把输入和输出分开,但它可提供最多可达70dB的隔离。可串联使用两个中继来提高隔离的总量,进一步保证在校准过程中没有信号从天线泄漏到宽带接收机。同样,当正在使用内部校准功能时,关闭内部校准信号,同时在接收机从无线发射机收集信号时也关闭两个RF中继以避免内部校准信号泄漏到宽带接收机。外部校准方法提供了单一信道的绝对校准,然后内部校准方法相互之间校准与已绝对校准的信道相关的信道。梳状信号特别适合作为稳定宽带信号,因为很容易就可用存储的信号的副本和一个数模转换器生成这种信号。使用宽带校准信号的外部校准下面描述的外部校准方法可随以转换函数随时间、频率变化为特征的SCS10接收机系统一起使用,接收机系统优选包括天线、滤波器、放大器、双工器、多路耦合器、分流器以及和SCS接收机系统相关联的电缆。这种方法包括从外部发射机发射稳定的已知宽带校准信号的步骤。然后用宽带校准信号来估计整个SCS接收机系统预定带宽中的转换函数。接着用估计的转换函数减轻在后面的TDOA/FDOA测量中转换函数变化的影响。外部传输优选具有很短的持续时间和很低的功率以避免干扰位于无线定位系统所在的无线通信系统。在该优选方法中,SCS接收机系统和外部发射机同步。可用GPS定时单元来执行这种同步。而且,接收机系统可编程使得只在发送校准信号时接收和处理整个带宽的校准信号。接收机系统在除了和外部校准传输同步的时刻之外不执行校准处理。此外,用无线系统链路在接收机系统和外部校准发射机之间交换命令和响应。外部发射机可只在SCS接收机系统的天线上使用定向天线引导宽带信号。这种定向天线可以是Yagi天线(即线性端射天线阵)。校准方法优选包括只在定向天线对准接收机系统天线以及多径反射的风险小的时候进行外部传输。基站偏移(StationBiases)校准本发明的另外一个方面和SCS接收机系统中修正基站偏移的校准方法有关。“基站偏移”是在无线发射机发射的RF信号到达天线的时刻和同样的信号到达宽带接收机的时刻之间的有限时延。本发明方法包括测量从天线到滤波器电缆长度以及确定和电缆长度相对应时延的步骤。此外,该方法还包括向滤波器、双工器、多路耦合器或者RF分流器插入已知信号,测量从每个设备的输入到宽带接收机的时延和相频响应。把时延和相位值组合在一起,用来修正后面的位置测量。当与前面描述的基于GPS的定时生成一起使用时,该方法优选包括对GPS电缆长度的修正。而且,外部生成的参考信号优选用来监控由于时间和天气引起的基站偏移的变化。最后,RF信道和用于无线定位系统中每个接收机系统的基站偏移常以表格的形式存储在无线定位系统中以用来修正后面的定位处理。性能监控无线定位系统使用和校准类似的方法来定期监控性能。这些方法如图2K和图2L中的流程图所示。无线定位系统使用两种性能监控方法固定电话和测量点驱动测试。固定电话步骤包括下面的步骤(参见图2K)标准无线发射机固定放置在无线定位系统覆盖区域中的不同位置(下面称它们为固定电话)(步骤S-30);测定放置固定电话的位置从而知道它们在预定距离——例如十英尺——之内的准确位置(步骤S-31);把测量的位置存储在AP14中的一个表中(步骤S-32);允许固定电话以无线通信系统为系统上所有无线发射机设置的速率和时间间隔在无线通信系统上注册(步骤S-33);在每个注册的固定电话传输中,无线定位系统用标准的定位处理确定固定电话的位置(利用校准发射机,无线定位系统可通过在表中存储标识确定一个来自固定电话的发射)(步骤S-34);无线定位系统计算定位处理确定的计算位置和通过测定的存储的位置之间的误差(步骤S-35);位置、误差以及其它测量的参数和时间戳一起存在AP14的数据库中(步骤S-36);AP14监控即时误差(instanterror)和其它测量的参数(它们一起称作扩展位置记录),还计算误差的各种统计数值以及其它测量参数(步骤S-37);以及如果任何一个误差或者其它值超出预设的门限值或者历史统计值,则AP14即时或者在对指定数量的位置估计进行统计过滤后向无线定位系统的操作人员发送一个报警(步骤S-38)。扩展位置记录包括对分析无线定位系统即时和历史性能有用的大量测量参数。这些参数包括无线发射机使用的RF信道,无线定位系统解调无线传输使用的天线端口,无线定位系统请求RF数据的天线端口,用于定位处理的时间间隔中发射功率的峰值、平均值和方差,选为定位处理的参考的SCS10和天线端口,来自每隔一个SCS10和用在定位处理中天线与参考SCS10和天线之间的交叉频谱相关性的相关性值,每个基线的时延值,多径效应缓解参数,在多径效应缓解计算后剩下的残留值。为了确定无线定位系统怎样运行,无线定位系统可监控这些测量参数中的任何一个。基线上相关性的即时值和相关性值历史范围之间的方差就是无线定位系统执行的这种类型的监控一个实例。特定天线上的接收功率的即时值和接收功率历史范围间的方差是另外一个例子。还可计算其它很多统计值,这个列表不可能完全包含所有的参数。可根据小区站点的密度、地形复杂度和无线通信系统在这个区域执行的历史难度来确定放置在无线定位系统覆盖区域中的固定电话的数量。通常比率大约是每六个小区站点一个固定电话,但是在有些区域可能需要一对一的比率。固定电话提供了一种对无线定位系统性能持续监控的方式,它还提供了对载波对频率规划所作的任何变化的监控。频率规划中的变化常常导致无线定位系统性能的变化,固定电话的性能监控为无线定位系统操作人员提供了一个即时指示。测定位置的驱动测试和固定电话监控很相似。固定电话通常只处于可连接电源的室内(即为了使电话保持有效必须连续给它供电)。为了得到定位性能更完整的测量,还要进行室外测试位置的驱动测试。参照图2L,利用固定电话,测量十英尺内的所有无线定位系统覆盖区域的指定测试点(步骤S-40)。每个测试点分配一个代码,其中代码包含“*”或者“#”后跟一串数字(步骤S-41)。例如,“*1001”到“*1099”可是用于测试点的99个代码的序列。这些代码应是连续的,这样当拨号时,对无线通信系统是无意义的(亦即除了中断消息之外,代码不会导致在MSC中产生特征或者其它转换)。AP14将每个测试点的代码和测量位置一起存储(步骤S-42)。在这些初始步骤之后,任何拨叫这些代码中的任意一个的无线发射机都将被标准定位处理触发和定位(步骤S-43和S-44)。无线定位系统自动计算定位处理确定的计算位置和存储的测定位置之间的误差,位置和误差值与时间戳一起存储在AP14的数据库中(步骤S-45和S-46)。AP14监控即时误差以及误差的各种历史统计值。如果误差值超出预定的门限或者历史统计值,则AP14即时地或者在对指定数量的位置估计进行统计过滤后向无线定位系统的操作人员发送一个报警信号(步骤S-47)。TDOA定位处理器(TLP)如图1、1A和3所示,TLP12是一个管理无线定位系统很多方面特别是SCS10的中央数字信号处理系统,并提供对定位处理的控制。因为定位处理是DSP密集的,TLP12的一个主要优点是可在由无线定位系统中SCS10的任何传输发起的定位处理间共享DSP资源。亦即,通过把资源放在中央,减少了SCS10上DSP的额外成本。如图3所示,有三个TLP12主要组件DSP模块12-1,T1/E1通信模块12-2和控制器模块12-3。T1/E1通信模块12-2为SCS10提供通信接口(T1和E1是全世界都可使用的标准通信速率)。每个SCS10用一个或者多个DS0(通常是56Kbps或者64Kbps)和TLP12通信。每个SCS10通常用小区站点上的一个丢弃和插入单元或者信道排(channelbank)连接到分散T1或者E1电路。通常,该电路是和与MSC通信的基站共享的。在中央站上,把分配给基站的DS0和分配给SCS10的DS0分开。这通常在TLP12外部用数字接入和控制系统(DACS)13A完成,DACS不仅分开DS0而且还把来自多个SCS10的DS0变成全T1或者E1电路。然后这些电路从DACS13A连接到DACS13B,再连接到TLP12上的T1/E1通信模块。每个T1/E1通信模块包含足够的数字存储器来缓存和模块通信的发给和来自SCS10的数据包。单个TLP机架可支持一个或者多个T1/E1通信模块。DSP模块12-1提供用于定位处理的共享资源。单个模块通常包含两个到八个数字信号处理器,每个处理器均可用于定位处理。支持两种类型的定位处理基于中心的和基于站的,我们将在下面对其进行详细介绍。TLP控制器12-3管理DSP模块12-1来获得最佳的吞吐量。每个DSP模块包括足够的数字存储器来存储定位处理必须的所有数据。直到开始定位处理必须的所有数据都从涉及的每个SCS10移到DSP模块的数字存储器之后,DSP才开始处理。只在那时才给DSP指定定位特定无线发射机的专门任务。使用这个技术,作为昂贵资源的DSP不必等待。单个TLP机架可支持一个或者多个DSP模块。控制器模块12-3提供对无线定位系统中所有定位处理的实时管理。AP14是无线定位系统中最高级别的管理实体,但是它的数据库体系结构达不到在传输发生时作出实时判定的速度。控制器模块12-3接收来自SCS10的消息,包括状态、不同天线不同信道的频谱能量,解调的消息以及诊断。这使得控制器可不断判断发生在无线定位系统中的事件,并发送命令采取特定的措施。当控制器模块从SCS10接收到解调的消息时,控制器模块确定特定无线传输是否需要定位处理。控制器模块12-3还确定哪些SCS10和天线用在定位处理中,包括是使用基于中心的还是使用基于站的定位处理。控制器模块命令SCS10返回必需的数据,并命令通信模块和DSP模块顺序执行它们在定位处理中必需的角色。我们将在下面详细描述这些步骤。控制器模块12-3维护一个称作重要信号表(SignalofInterestTable,SOIT)的表。这个表包含可用来触发特定无线传输上定位处理的所有标准。例如,这些标准包括移动识别码、移动台ID、电子序列号、拨出数字、系统ID、RF信道号、基站号或者扇区号、发射类型以及其它类型的数据元素。有些触发事件可具有较高或者较低的和它们相关联的的优先级用来确定处理顺序。总在较低的优先级的定位触发之前处理较高的优先级定位触发。但是,在分配一个较高优先级的任务之前先完成已开始的定位处理的较低优先级触发。在AP14上维护无线定位系统的主要任务列表,任务列表的拷贝自动下载到无线定位系统中的每个TLP12中的重要信号表中。当TLP12复位或者首次启动时,将重要信号表下载到TLP12。在这两个事件之后,只把变动从AP14下载到每个TLP12以节约通信带宽。TLP12到AP14通信协议通常包含足够的冗余和误差检查来避免错误数据进入重要信号表。当AP14和TLP12有空闲可用的处理能力时,AP14定期重新验证重要信号表中的条目以保证无线定位系统中的重要信号表的所有条目完全同步。每个TLP机架有一个和机架相关的最大性能。例如,单个TLP机架只能支持48到60个SCS10。当无线通信系统超出单个TLP机架的能力时,用以太网把多个TLP机架连接到一起。控制器模块12-3负责TLP之间的通信和联网,并负责通过以太网和其它TLP机架中的控制器模块以及应用处理器14通信。当定位处理需要使用连接到不同TLP机架的SCS10时,需要TLP间的通信。每个无线传输的定位处理被分配给单个TLP机架中的单个DSP模块。TLP机架中的控制器模块12-3选择执行定位处理的DSP模块,然后把所有用于定位处理的RF数据路由到那个DSP模块。如果需要来自连接到多个TLP12的SCS10的RF数据,则所有必需的TLP机架中的控制器模块互相通信以将RF数据从所有必需的SCS10移到他们各自连接的TLP12上,然后移到DSP模块和分配给定位处理的TLP机架。为了冗余,控制器模块支持两个完全独立的以太网。任一网络中的中断或失效都导致受影响的TLP12立即把所有的通信切换到另外一个网络。控制器模块12-3维护无线定位系统的完整网络图,包括和每个TLP机架相关联的SCS10。网络图是存储在控制器模块中的一个表,包含可用在定位处理中的候选SCS/天线以及和每个SCS/天线相关联的各种参数的列表。图3A给出了一个示范性网络图的结构。在这个表中每个连接到SCS10的天线都有一个单独的条目。当无线传输出现在和多个TLP机架通信的SCS10覆盖的一个区域时,所涉及的TLP机架中的控制器模块确定哪一个TLP机架是用于管理定位处理的“主”TLP机架。通常,和为无线传输分配有主要信道的SCS10相关联的TLP机架被指定为主机架。但是,如果该TLP暂时没有用于定位处理的资源,或者定位处理中包含的大多数SCS10连接到另外一个TLP机架并且控制器模块正使得TLP间的通信最少,就指定另外一个机架为主机架。这个决定过程是完全动态的,但在为每个主要信道分配预定优选TLP机架的TLP12中的表的帮助下进行。无线定位系统操作人员创建这些表,并使用网络操作控制台对其编程。这里描述的联网对于与同一无线载波相关联的两个TLP机架以及在两个无线载波覆盖的区域重叠处或交界处的机架起作用。因此可联网属于第一无线载波的TLP12,并因此从属于第二无线载波的TLP12(以及和TLP相关联的SCS10)接收RF数据。这个网络在农村地区特别有用,其中可通过在多个无线载波的小区站点上部署SCS10来增强无线定位系统。因为在很多情况下,无线载波并不同时分配给小区站点,如果无线定位系统只用来自单个无线载波的小区站点,这个特征能得无线定位系统可访问比可用天线地理上更分散的天线。如下所述,恰当地选择和使用用于定位处理的天线可提高无线定位系统的性能。控制器模块12-3向AP14传递包括位置记录在内的很多消息,下面将对它们中的一些进行介绍。通常,解调的数据不从TLP12传到AP14。但是,如果TLP12从一个特定的无线发射机接收解调的数据并识别出无线发射机是覆盖区域不同的第二载波的注册用户,TLP12就可把解调的数据传给第一(当前服务的)AP14A。这使得第一AP14A能和与第二无线载波相关的第二AP14B通信,并判断特定无线发射机是否已注册某种类型的定位服务。如果注册了,第二AP14B就命令第一AP14A把特定无线发射机的标识存入重要信号表中,从而只要特定的无线发射机在和第一AP14A相关联的第一无线定位系统覆盖区域内就可定位特定的无线发射机。当第一无线定位系统检测到特定无线发射机在超出预定时间门限内仍没有注册时,第一AP14A就告知第二AP14B,由于没有处于和第一AP14A相关的覆盖区内,特定无线发射机的标识正从重要信号表中删除。诊断端口TLP12支持一个在无线定位系统运行和问题诊断中很有用的诊断端口。可在TLP12上访问或者通过把TLP连接到AP的以太网远程访问这个诊断端口。诊断端口使得操作人员可把所有从SCS10接收到的解调和RF数据以及定位处理的中间和最终结果写入一个文件。这些数据在处理完定位估计后从TLP12删除,因此诊断端口提供了一种方法来保存用于接下来后处理和分析的数据。发明人运行大规模无线定位系统的经验是,很少有定位估计有很大的误差,并且这些大误差可影响整个无线定位系统任何测量时期的运行统计。因此,可为操作人员提供一些工具使得无线定位系统可检测剔除导致大误差产生的因素并诊断和减轻这些误差,这是很重要的。诊断端口可设置成保存上面的信息用于所有的定位估计,用于来自特定无线发射机或者特定测试点的定位估计,或者用于满足特定判断标准的位置估计。例如,对于测定点的固定电话或者驱动测试,诊断端口可实时地确定定位估计中的误差,然后记录上面描述的那些误差超出预定门限值的定位估计信息。通过把和每个固定电话以及驱动测试测量相关的纬度、经度存入表中,然后计算进行相应测试点定位估计时的径向误差,诊断端口来实时地确定误差。冗余TLP12使用几种新颖的技术来实现冗余,使得无线定位系统可支持M加N冗余方法。M加N冗余也就是说N个冗余(或备用)TLP机架用来为M个联机TLP机架提供完全的冗余备份。例如,M为10,N为2。首先,不同TLP机架中的控制器模块在预定时间间隔不断地在它们之间以及和监控TLP机架的AP14交换状态和“心跳”消息。因此,每个控制器模块都了解无线定位系统中其它控制器模块的连续的完整状态。不同TLP机架中的控制器模块定期选择某个TLP12中的控制器模块作为该组TLP机架的主控制器。如果第一TLP12A在它的状态消息中报告失效或者降级状态,或者在分配的预定时间内第一TLP12A不能报告任何状态或者心跳消息,那么主控制器就可把第一TLP机架设置成离线状态。如果主控制器把第一TLP机架设置成离线状态,那么它就可分配第二TLP12B执行冗余切换功能,并让第二TLP12B承担离线的第一TLP12A的任务。自动向第二TLP12B发送第一TLP12A已载入的配置;可从主控制器或者连接到TLP12的AP14上下载该配置信息。主控制器可以是任何不处于离线状态的TLP12上的一个控制器模块,但是主控制器最好是处于备用状态的TLP12中的控制器模块。当主控制器是备用TLP12中的控制器模块时,可加快检测失效的第一TLP12A、把第一TLP12A设成离线状态、然后执行冗余切换功能。其次,优选通过用于冗余控制的高可靠性DACS来路由SCS10和每个TLPT1/E1通信模块12-2之间的所有T1或者E1通信。DACS13B从SCS10连接到包含DS0的准备的(groomed)T1/E1电路上,也连接到每个TLP12的每个T1/E1通信模块上。每个TLP12上的每个控制器模块包含一个描述DACS连接列表和端口分配的DACS13B图。这个DACS13B连接到上面提到的以太网,可由任一TLP12上的任一控制器模块12-3控制。当主控制器把第二TLP12设置成离线状态时,主控制器向DACS13B发送命令让它把与第一TLP12A通信的T1/E1电路切换到处于备用状态的第二TLP12B。同时,AP14把第二(当前离线)TLP12B正在使用的完整的配置文件下载到第三(当前联机)TLP12C。从首次检测到失效的第一TLP机架到完成切换第三TLP承担处理职责的时间通常不到几秒钟。很多情况下,和失效的第一TLP机架相关联的SCS10不会丢失RF数据,定位处理可不中断的继续进行。当第一TLP12A设置成离线状态期间,在TLP失效时,NOC16将生成一个报警消息通知无线定位系统的操作人员发生了这种事件。第三,每个TLP机架都有冗余的电源、风扇以及其它组件。TLP机架还可支持多个DSP模块,从而单个DSP模块或者甚至是DSP模块上的单个DSP的失效只减少处理资源的总数量,但不会导致TLP机架的失效。在这段描述的所有情况中,都可在不把整个TLP机架设成离线状态的情况下替换TLP12的失效组件。例如,如果一个电源失效,冗余电源完全可以单独支持机架的负荷。失效的电源包含必需的电路来把它自己从机架的负荷中删除,并且不会导致机架的进一步降级。同样,失效的DSP模块也可从机架的激活部分删除它自己,从而不会导致骨干或者其它模块的失效。这使得机架包括第二DSP的其它部分继续行使正常功能。当然,减少了机架的总的处理吞吐量但避免了整个机架都失效。应用处理器(AP)14AP14是一个中心数据库系统,包括很多管理整个无线定位系统的软件进程,为外部用户和应用提供接口,存储位置记录和配置,并支持各种应用相关的功能。AP14使用大小适于无线定位系统吞吐量的商用硬件平台。AP14还使用商用关系数据库系统(RDBMS),对该数据库系统进行有效地定制以提供这里描述地功能。尽管SCS10和TLP12通常实时地共同运行以确定位置并创建位置记录,AP14既可实时地运行来存储和转发位置记录,也可非实时地运行来后处理位置记录和定期地访问与报告。对各种类型系统和应用分析的存储、检索和后处理位置记录能力是本发明很好的一个优点。主要的软件处理部分称作ApCore,如图4所示,它具有以下主要功能AP性能守护者(ApPerfGuard)是专门负责启动、终止和监控大多数其它ApCore进程以及ApCore与NOC16的通信的软件进程。一从NOC接收到配置更新命令,ApPerfGuard就更新数据库并把变化通知给所有的进程。当NOC指引ApCore进入特定的运行状态时,ApPerfGuard启动和终止适当的进程,并不断地监控其它正在运行的软件进程,如果它们退出或停止运行就重新启动它们或者重新启动不再正常响应的进程。把ApPerfGuard指定成具有最高处理优先级进程中的一个,从而其它“失控”进程不能阻塞这个进程。还为ApPerfGuard指定专门的其它软件进程不能访问的内存,以避免其它软件进程可能导致的崩溃。AP调度程序(ApMnDsptch)是从TLP12接收位置记录并向其它进程转发位置记录的软件进程。该进程分别为系统中配置的每个TLP12包含一个线程,每个线程从对应的TLP12接收位置记录。为了系统的可靠性,ApCore维护一个从每个TLP12最近接收到的位置记录序号的列表。此后,AP14和TLP12维护一个协议,TLP12用它发送具有唯一标识的每条位置记录。ApMnDsptch向多个进程转发位置记录,这些进程包括Ap911、ApDbSend、ApDbRecvLoc和ApDbFileRecv。AP任务分配进程(ApDbSend)控制无线定位系统中的任务列表(TaskingList)。任务列表是所有触发判断标准的主列表,这些判断标准确定要定位哪些无线发射机、哪些应用创建该判断标准以及哪些应用接收位置记录信息。ApDbSend进程分别为每个TLP12包含一个线程,通过它ApDbSend和每个TLP12上的重要信号表保持任务列表同步。ApDbSend不向重要信号列表发送应用信息,只向它发送触发判断标准。因此,TLP12不知道为什么必须要定位无线发射机。利用任务列表可根据移动识别码(MIN)、移动用户识别码(MSID)、电子序列号(ESN)以及其它识别码、拨出字符序列和/或数字、归属系统标识(SID)、发起端小区站点和扇区、发起端RF信道或者消息类型来定位无线发射机。任务列表允许多个应用从同一个无线发射机接收位置记录。例如,可向911PSAP、车队管理应用、业务管理应用以及RF最优化应用发送拨叫“911”的无线发射机的位置记录。任务列表还包含多种用于触发判断标准的标记和域,其中的一些在本文的其它地方有所介绍。例如,其中的一个标记指定了无线定位系统提供无线发射机大致或者最终估计之前的最长时间限制。另外一个标记允许对诸如无线发射机身份之类的特定触发判断标准关闭定位处理。另外一个域包含改变特定触发判断标准所需要的认证;认证使得无线定位系统的操作人员指定哪些应用有权添加、删除或者改变触发判断标准以及相关联的域或标记。另外一个域包含和触发判断标准相关联的服务的定位级别(LocationGradeofService);服务级别告诉无线定位系统和特定触发判断标准相关联的定位处理所要的精度级别和优先权级别。例如,有些应用只要大致估计就可以了(可能是为了减少定位处理的花费),而另外一些应用只需不保证在给定传输完成的低优先权处理就可以了(这可能会被高优先权的处理任务中断)。无线定位系统还包含支持在任务列表触发判断标准中使用通配符的装置。例如,可这样输入一个触发判断标准“MIN=215555****”。这会导致无线定位系统触发对任何以六位数215555开始后跟任意四位数的无线发射机的定位处理。通配符可位于触发判断标准的任意位置。通过把相关的无线发射机组织在一起,该功能节省了任务列表和重要信号表中所需的存储位置的数量。ApDbSend还可动态分配任务。例如,每个小时ApDbSend自动把MIN、ESN、MSID或者拨叫“911”的无线发射机的其它标识存入任务列表。这样,如果有更多的紧急情况,还可定位拨叫“911”的无线发射机的更多传输。例如,如果PSAP回叫最近一小时内曾拨叫“911”无线发射机,无线定位系统就在来自无线发射机的呼叫响应消息上触发,并使得PSAP可使用这个新的位置记录。起始事件之后这种动态任务分配可以设置成任何时间间隔、任何触发判断标准。ApDbSend进程还是用于从其它应用接收任务分配请求的服务器。例如,诸如车队管理之类的应用可通过socket连接发送任务请求。这些应用可设置或者删除触发判断标准。ApDbSend进行每个应用的认证过程来验证该应用有权设置或者删除触发判断标准,并且每个应用只能改变和该应用相关的触发判断标准。AP911进程(Ap911)管理无线定位系统和E9-1-1网络单元之间的每个接口,比如汇接机键(TandemSwitch)、选择性路由器、ALI数据库和/或PSAP。Ap911进程分别为每个到E9-1-1网络单元的连接包含一个线程,它可支持不止一个到每个网络单元的线程。如这里所述,Ap911进程可根据用户的配置同时在很多种模式下运行。E9-1-1位置记录的实时处理是AP14中具有最高处理优先级的处理之一,并且Ap911完全在随机访问存储器(RAM)之外执行以避免和首次存储位置记录以及随后从任何类型磁盘中检索位置记录相关联的时延。当ApMnDsptch向Ap911转发位置记录时,Ap911立即作出路由决定并通过适当的接口向E9-1-1网络单元转发位置记录。并行运行的不同进程把位置记录存入AP14数据库中。通过Ap911进程和其它进程,AP14支持两种向包括E9-1-1在内的应用提供位置记录的模式“推”和“拉”模式。只要AP14的位置记录可用,应用请求推模式就接收该位置记录。这种模式对位置记录时间要求很严格的E9-1-1特别有效,因为E9-1-1网络必须在无线呼叫者拨叫“911”后的几秒钟内把9-1-1呼叫路由到正确的PSAP。应用请求推模式并不自动接收位置记录,相反为了接收到关于无线发射机的最近或者其它位置记录,必须向AP14发送一个和特定无线发射机有关的请求。来自应用的请求可指定最近的位置记录、一系列位置记录或者满足指定时间或其它判断标准(比如传输类型)的所有位置记录。在“911”呼叫情况中使用推模式的过程是,E9-1-1网络首先接收“911”呼叫的话音部分,然后查询AP14来接收和该呼叫相关的位置记录。当Ap911进程连接到很多E9-1-1网络单元时,Ap911必须确定哪个E9-1-1网络单元推这个位置记录(假设使用“推”模式)。AP14用一个动态路由表对此作出判断。动态路由表用来把地理区域分成很多小区。动态路由表中的每个小区或者条目包含该小区的路由指令。众所周知,纬度的一分是6083英尺,每毫度大约365英尺。此外,经度的一分是6083英尺的cos(纬度)倍,比如费城大约是4695英尺,或者说每毫度大约280英尺。一千乘一千大小的表或者说一百万个单元可包含用于大约69英里乘53英里的面积的路由指令,这个面积比费城的面积大,在每个单元可包含一个365英尺乘280英尺的地理区域。在表中分配给每个实体的位数必须能支持最大数量的路由可能性。例如,如果路由可能性的总数是16或者不到16,那么动态路由表的存储空间是四位的一百万倍或者0.5兆字节。使用这种方案,费城大小的区域可包含在大约20兆字节或者不到20兆字节的表中,就有充足的路由可能性可用。在存储器价格相对不贵的情况下,该发明的动态路由表为AP14提供了一种只向恰当的E9-1-1网络单元快速推用于“911”呼叫的位置记录的方法。AP14允许使用人工或者自动方法存放动态路由中的每个条目。例如,使用自动方法,电子地图应用可创建指定E9-1-1网络单元(比如PSAP)覆盖区域的多边形区域。然后把多边形区域转换成多边形内经度纬度点的列表。接着为负责该地理多边形的E9-1-1网络单元给对应每个经度、纬度点的动态路由表单元指定路由指令。当Ap911进程接收到指定无线发射机的“911”位置记录时,Ap911把经度纬度转换成动态路由表中指定小区的地址。然后Ap911查询该小区来确定路由指令,这可采用推或拉模式,并且E9-1-1网络单元的标识负责服务发生“911”呼叫的地理区域。如果选用推模式,则Ap911自动把位置记录传给E9-1-1网络单元。如果选用拉模式,则Ap911把位置记录存入“911”位置记录电路表中,等待查询。上面描述的动态路由方法需要使用地理上定义的数据库,该数据库可用于除了911之外的其它应用,从而除了Ap911之外的其它进程也可支持该数据库。例如,AP14可自动确定发出用于位置敏感计费应用的无线呼叫的计费区域。此外,当特定无线发射机进入或离开应用指定的地理区域时,AP14可自动发送报警。在和每个触发判断标准相关联的域和标记中定义特定的地理数据库、动态路由操作以及其它定位触发操作的使用。无线定位系统包括使用能创建覆盖指定地理区域的多边形电子地图以便于管理这些地理上定义的数据库的装置。无线定位系统从电子地图中提取包含在多边形中的指定经度、纬度点。每个应用可使用它自己的多边形集合,并且可定义在集合中的每个多边形中包含用于被触发的无线传输的位置记录时要执行的动作集合。AP数据库接收进程(ApDbRecvLoc)通过共享内存从ApMnDsptch接收所有的位置记录,并将这些位置记录存入AP位置数据库。ApDbRecvLoc启动10个线程,每个线程从共享内存中检索位置记录,在把记录插入数据库前验证每个记录的有效性,然后将这些记录插入到数据库正确的位置记录部分。为了保持完整性,具有任何类型错误的位置记录都不会写入位置记录数据库,而是把它们存入一个无线定位系统操作人员可查看的错误文件中,在解决错误后再把它们输入数据库。如果位置数据库失效或者进入离线状态,就把位置记录写入ApDbFileRecv可处理的一个扁平文件中。AP文件接收进程(ApDbFileRecv)读取包含位置记录的扁平文件,并把这些记录插入到位置数据库中。扁平文件是AP14使用的一种为了在除整个硬件磁盘驱动器都失效之外的所有情况下保证AP14完整性的安全机制。ApDbFileRecv读取的扁平文件有几种不同类型,包括数据库崩溃、同步、溢出和已修正错误。如果位置数据库暂时不可访问,就由ApDbRecvLoc进程写数据库崩溃扁平文件;这个文件允许AP14确保在这种类型问题发生期间保存这些位置记录。在冗余AP系统对间转移位置记录时,就由ApLocSync进程(将在下面进行描述)写同步扁平文件。当位置记录以比ApDbRecvLoc处理以及将记录插入到位置数据库更快的速度进入AP14时,就由ApMnDsptch写溢出文本文件。这可能发生在很高的峰值速率期间。溢出文件避免在峰值期间丢失任何记录。已修正错误扁平文件中存储有错误但已修改过来现在可插入到位置数据库的位置记录。因为AP14在无线定位系统中处于很重要的中心角色,所以将AP14的体系结构设计成完全冗余。冗余的AP14系统包括完全冗余的硬件平台、完全冗余的RDBMS、冗余的磁盘驱动、相互之间冗余的网络、TLP12、NOC16和外部应用。同时还把AP14的体系结构设计成支持容错冗余。下面的例子描述了冗余AP支持的功能。当主AP14以及冗余AP14都处于联机状态时,每个TLP12向两个AP都发送位置记录。只有主AP14处理进入的任务分配请求,也只有AP14从NOC16接收配置变化请求。然后,在小心的控制之下主AP14同步冗余AP14。主AP和冗余AP都接受来自NOC的基本的启动和关机命令。这两个AP不断地监控它们自己的系统参数和应用的状况并监控其它AP14的对应参数,然后根据综合得分确定哪一个AP14是主AP哪一个是冗余AP。通过编辑不同进程向共享内存区域报告的错误、监控交换空间和磁盘空间来确定该综合得分。有几个进程专门支持冗余。在每个AP14上都运行AP位置同步进程(ApLocSync),该进程检测AP间同步位置记录的需要,然后创建列出需要从一个AP14传到另外一个AP14的位置记录的“同步记录”。接着用socket连接在AP间传递这些位置记录。ApLocSync把位置记录部分和存储在每个位置数据库中的位置记录序号比较。通常,如果主AP14和冗余AP14都正常运行,就不需要同步,因为这两个AP同时从TLP12接收位置记录。但是,如果一个AP14失效或者被设置成离线模式,那么就需要同步。不论什么时候ApMnDsptch连接到TLP12,都要通知ApLocSync,从而使它可判断是否需要同步。在每个AP14上都运行AP任务分配同步进程(ApTaskSync),该进程同步主AP14和冗余AP14之间的任务分配信息。主AP14上的ApTaskSync从ApDbSend接收任务分配信息,然后将任务分配信息发送给冗余AP14上的ApTaskSync进程。如果主AP14在ApTaskSync完成复制任务前失效,则在失效AP14重新回到联机状态时ApTaskSync就执行完整的任务分配数据库同步。在每个AP14上都运行AP配置同步进程(ApConfigSync),该进程同步主AP14和冗余AP14之间的配置信息。ApConfigSync使用RDBMS复制工具。配置信息包括为了保证无线载波网络中的无线定位系统正常运行SCS10、TLP12以及AP14所需要的所有信息。除了上面描述的核心功能之外,AP14还支持很多进程、功能和接口,它们在无线定位系统运行中很有用,同时也对需要位置信息的各种应用有用。尽管这里描述的进程、功能和接口属于AP14部分,但是这些进程、功能和接口的实现渗透在整个无线定位系统中,因此不应该仅仅只把它们的发明价值局限于AP14。漫游AP14支持位于不同城市或者运行在不同无线载波上的无线定位系统间的“漫游”。如果第一无线发射机在第一无线定位系统上申请了一个应用,并且在第一无线定位系统的第一AP14上有一个任务列表,那么第一无线发射机还可申请漫游。每个无线定位系统中的每个AP14和TLP12都包含一个维护有效“归属”用户标识列表的表。该列表通常是一个范围,例如对目前的蜂窝电话来说,范围可由和蜂窝电话的MIN或者MSID相关联的NPA/NXX代码(或者区号和电话局)来确定。当满足“归属”判断标准的无线发射机传输时,TLP12从一个或多个SCS10接收解调的数据,并检查重要信号表中的触发信息。如果满足任何触发判断标准,就开始对该传输的定位处理;否则,无线定位系统不处理该传输。当不满足“归属”判断标准的第一无线发射机在第二格无线定位系统中传输时,第二无线定位系统中的第二TLP12检查重要信号表中的触发。然后进行下面三个操作中的一个(i)如果传输满足重要信号表中的现有判断标准,就定位该发射机并把位置记录从第二无线定位系统的第二AP14转发到第一无线定位系统的第一AP14;(ii)如果第一无线发射机在重要信号表中有“漫游”条目。它说明第一无线发射机已在第二无线定位系统中“注册”但没有触发判断标准,则第二无线定位系统就不处理该传输并像下面所述的那样调整终止时间戳;(iii)如果第一无线发射机没有“漫游”条目,并且也没有“注册”,那么就把解调的数据从TLP12传到第二AP14。在上面的第三种情况中,第二AP14使用第一无线发射机的标识来把第一无线定位系统中的第一AP14看成第一无线发射机的“归属”无线定位系统。第二无线定位系统的第二AP14像第一无线定位系统的第一AP14发送查询以确定第一发射机是否申请了某种定位应用并在第一AP14的任务分配列表中有某种触发判断标准。如果在第一AP14中存在触发,就从第一AP14向第二AP14发送触发判断标准以及相关联的域与标记,并将它们作为有触发判断标准的“漫游”条目输入到任务分配列表和重要信号表中。如果第一AP14响应第二AP14说明第一无线发射机没有触发判断标准,那么第二AP14就在任务分配列表和重要信号表中作为没有触发判断标准的“漫游”条目在任务分配列表和重要信号表“注册”第一无线发射机。因此,可由第二无线定位系统的TLP12把第一无线发射机的当前以及未来的传输看成没有触发判断标准的注册,第二AP14不需要再向第一AP14作额外的查询。当第二AP14把第一无线发射机注册为在任务分配列表和重要信号列表中的有触发判断标准或者没触发判断标准的一个漫游条目,为漫游条目分配一个终止时间戳。将终止时间戳设置成当前时间加上一个预定的第一时间间隔。第一无线发射机每次传输时,任务分配列表和重要信号表中的路由条目的终止时间戳调整成最近传输的当前时间加上预定的第一时间间隔。如果第一无线发射机在它自己的漫游条目的终止时间戳之前没有其它传输,那么就自动删除漫游条目。如果在删除之后第一无线发射机进行另外一次传输,那么重新进行注册过程。第一AP14和第二AP14维护跨越广域网的通信。网络可建立在TCP/IP协议或者和最新版本IS-41类似的协议基础上。每个和其它无线定位系统中的其它AP通信的AP14都维护一个表,该表提供对应于无线发射机标识有效范围的每个AP14和无线定位系统标识。多级传递(MultiplePass)位置记录某些应用需要非常快速地获得无线发射机位置的大体估计,可稍后再发送更为精确的位置估计。例如,这对E9-1-1系统很有用,该系统处理无线呼叫,并且必须很快对呼叫路由作出判断,对于显示在E9-1-1呼叫捕获者(calltaker)电子地图终端上的更为精确的位置可等待稍微长一点的时间。无线定位系统以一种新颖的多级传递位置处理模式来支持这些应用,我们将在后面对其进行介绍。AP14以多级传递位置记录来支持这种模式。对应特定的条目,AP14中的任务分配列表中有一个标记,指明特定应用在接收到大致位置估计之前的最大时间限制和特定应用必须接收最终位置估计的第二最大时间限制。对于这些特定应用,AP14在位置记录中包含一个指明位置估计状态的标记,可将其设置成初步传递估计(即大致估计)或者最终传递估计。无线定位系统一般在应用设置的时间内确定最佳的位置估计,无线定位系统将处理在时间限制内支持的最大数量的RF数据。如果任何特定无线传输都可触发用于一个或多个应用的位置记录,则无线定位系统可同时支持多种模式。例如,具有特定MIN的无线发射机可拨叫“911”。这可触发用于E9-1-1应用的两级传递位置记录,但是对于监控特定MIN的车队管理应用而言,这只触发单级位置记录。这可扩展到任意数量的应用。多解调和触发在城市或者密集的郊区的无线通信系统中,可在相对较近的距离内多次重用频率或者信道。因为无线定位系统不需要无线通信系统的帮助就能独自检测和解调无线传输,所以一个无线传输常常可被无线定位系统中的多个SCS10检测和成功解调。这可能是有意的也可能是无意的。无意的情况是由相邻频率重用造成的,从而当每个SCS10认为它只监控配置SCS10的小区站点内出现的传输时,就可在多个SCS10上的预定门限之上接收特定的无线传输。有意的情况是通过把多个SCS10设计成检测和解调发生在特定小区站点和特定频率上的传输造成的。如上所述,这通常使用相邻的或者接近的SCS10来提供系统解调冗余,从而进一步提高成功检测和解调特定无线传输的可能性。每种类型的事件都可能导致无线定位系统内的多个触发,导致多次启动对同一传输的定位处理。这会导致过度而无效的使用处理和通信资源。因此,无线定位系统包含一些装置来检测什么时候多次检查和解调了同一传输,并选择最佳解调SCS10作为定位处理的开始点。当无线定位系统在多个SCS/天线上多次检测并成功解调同一传输时,无线定位系统使用下面的标准来选择用来继续确定是否触发和启动定位处理过程的解调SCS/天线(再次重复,可能在确定最终决定中权衡这些标准)(i)相对于其它SCS/天线,优先使用配置在已分配特定频率的小区站点上的SCS/天线,但是如果没有配置在指定特定频率的小区站点上的运行的联机SCS/天线,就可能调整这个优先选择;(ii)相对于SNR较低的SCS/天线,优先使用具有更高SNR的SCS/天线;(iii)相对于错误位数较多的SCS/天线,优先使用在解调过程中具有更少错误位数的SCS/天线。无线定位系统操作人员可调整应用到每个优选值使得它适应每个系统的特定设计。与无线通信系统的接口无线定位系统具有与无线通信系统(比如移动交换中心(MSC)或者移动位置控制器(MPC))通信的接口。这个接口可基于标准的安全协议,比如最新版的IS-41或者TCP/IP协议。这些协议的格式、域以及认证特征都是已知的。无线定位系统支持通过这些接口的用来帮助在无线传输的成功检测、解调和触发并提供向无线通信系统传递位置记录方法的各种命令/响应和信息消息。特别地,这个接口为无线定位系统提供获得有关向哪些无线发射机分配小区站点特定话音信道参数的信息。无线定位系统在到无线通信系统的接口上支持的一些消息实例如下所示对MIN/MDN/MSID/IMSI/TMSI映射的查询——某些类型的无线发射机可以以一种能通过电话网拨叫的常见形式传输它们的标识。其它类型的无线发射机用无线通信系统内部的一个表把不能拨出的标识转换成可拨出的号码来传输它们。在大多数情况下,传输的标识是永久的,但是也可能是暂时的。连接到AP14位置应用的用户通常喜欢用可拨出的标识把触发存入任务列表中。可拨出的标识通常称作移动目录号(MDN)。需要转换的其它类型的标识包括移动识别号码(MIN)、移动用户识别码(MSID)、国际移动用户识别码(IMSI)以及暂时移动用户识别码(TMSI)。如果无线通信系统对无线发射机传输的消息中的任何数据域都加密,则无线定位系统也可在查询标识信息的同时查询加密信息。无线定位系统包括一些装置,用它来向无线通信系统查询由位置应用存入任务列表中的触发标识的替换标识,或者用它来向无线通信系统查询SCS10解调标识的替换标识。其它事件也可触发这种类型的查询。对于这种类型的查询,无线定位系统通常发出命令,而无线通信系统则响应。查询/命令话音RF信道分配上的变化——话音信道上的很多无线传输并不包含标识信息。因此,当触发无线定位系统执行话音信道传输上的定位处理时,无线定位系统向无线通信系统查询以获得当前为其触发无线定位系统的特定发射机的话音信道分配信息。例如,对于AMPS传输,无线定位系统通常需要无线发射机当前使用的小区站点、扇区以及RF信道号。对于TDMA传输,无线定位系统通常需要无线发射机当前使用的小区站点、扇区、RF信道号以及时隙。需要的其它信息元素包括长码掩码和加密密钥。通常,无线定位系统发出命令,无线通信系统响应。但是无线定位系统也可从包含这里所述信息的无线通信系统接收触发命令。命令/响应消息集的时序很关键,因为在无线通信系统中经常发生话音信道断路。换言之,无线定位系统将定位在特定信道上传输的无线发射机——因此无线定位系统和无线通信系统必须同时确信无线发射机的标识以及话音信道分配信息是完全同步的。无线定位系统使用几种方法来实现这个目标。例如,无线定位系统可向特定无线发射机查询话音信道分配信息,接收必需的RF数据,然后再向同一无线发射机查询话音信道分配信息,然后确认无线发射机的状态在无线定位系统手机RF数据期间没有变化。不必在第二查询之前完成定位处理,因为它只对检验已接收到正确的RF数据来说很重要。例如,无线定位系统也可命令无线通信系统避免特定无线发射机在无线定位系统接收RF数据期间发生切换。然后,在收集到RF数据后,无线定位系统再次查询同一无线发射机的话音信道分配信息,命令无线通信系统再次允许切换所提到的无线发射机,然后确认无线发射机的状态在无线定位系统收集RF数据期间没有变化。由于各种原因,无线定位系统或者无线通信系统可能宁愿在执行位置处理之前把无线发射机分配给另外一个话音信道。因此,作为命令/响应序列的一部分,无线通信系统可命令无线定位系统暂时挂起定位处理,一直到无线通信系统完成无线发射机的切换序列通知无线定位系统可接收RF数据以及可接收数据的话音RF信道之后。无线定位系统也可能发现特定无线发射机当前使用的话音RF信道不适于获得可接受的位置估计,并请求无线通信系统命令无线发射机切换。为了执行一系列位置估计,无线定位系统也可请求无线系统命令无线发射机按顺序切换到一系列话音信道,由此通过一系列的切换,无线定位系统可提高位置估计的精度;我们将在后面进一步对这个方法进行介绍。无线定位系统也可用这种命令/响应消息集来查询无线通信系统的有关特定小区站点上特定时间使用特定话音信道(时隙等)的无线发射机的标识。这使得无线定位系统首先执行不知道标识的传输的定位处理,然后再确定进行传输的无线发射机的标识,并把该信息附加到位置记录的后面。这个特定的发明功能使得话音信道传输可使用自动连续的位置。接收触发——无线定位系统可从无线通信系统接收触发从而可在不知道无线发射机标识的情况下执行话音信道传输上的定位处理。这个消息集合旁路任务分配列表,不使用无线定位系统内的触发机制。相反,无线通信系统独自确定要定位哪一个无线传输,然后向无线定位系统发送命令让它从特定小区站点上的特定话音信道收集RF数据并执行定位处理。无线定位系统用一个包含采集RF数据时间戳的确认来响应。当定位处理结束后,无线定位系统还用适当格式的位置记录来响应。根据给无线定位系统的命令的时间和以RF数据采集时间戳作出的响应,无线通信系统确定无线发射机的状态是否在接到命令后改变以及成功RF数据采集的可能性是不是很大。进行传输——无线定位系统可命令无线系统强制特定的无线发射机在特定的时间或者指定的时间范围传输。无线通信系统用一个确认和希望传输的时间或者时间范围来响应。例如,无线定位系统可强制的传输类型包括审计响应和呼叫响应。使用这个消息集,无线定位系统还可命令无线通信系统强制无线发射机使用更高的功率传输。很多情况下,为了延长电池的使用时间,无线发射机在传输时总是试图使用最低的功率设置。为了提高位置估计的精度,无线定位系统宁愿无线发射机使用更高的功率设置。无线通信系统用一个说明将使用更高功率以及希望传输的时间或者时间范围的确认来响应无线定位系统。延迟无线通信系统对移动接入的响应——有些空中接口协议,比如CDMA,使用这样一种机制,即无线发射机在最低或者很低的功率级别设置上启动诸如接入信道之类信道上的传输,然后按顺序进行下面的步骤(i)无线发射机进行接入传输;(ii)无线发射机等待无线通信系统的响应;(iii)如果无线发射机在预定的时间内没有接收到无线通信系统的响应,无线发射机把传输功率增加一个预定值,然后返回步骤(i);(iv)如果无线发射机在预定的时间内接收到无线通信系统的响应,则无线发射机就进入正常的消息交换。这种机制对保证无线发射机传输时只使用最低的有用功率级别设置不浪费能量或者电池使用时间来说很有用。但是,也有可能无线发射机上设置的能成功地和无线通信系统通信的最低功率级别不足以获得可接受的位置估计。因此,无线定位系统可命令无线通信系统把它对这些传输的响应延迟一个预定的时间。这个延迟操作将导致无线发射机比平时要多重复一次或者多次步骤(i)到(iii),结果是一个或者多个接入传输将处于比正常情况下更高的功率级别。更高的功率级别更适于使得无线定位系统作出更精确的位置估计。无线定位系统可命令这种类型的延迟操作用于特定无线发射机、特定的无线传输类型(例如,用于所有的“911”呼叫)、在发射机要与之通信的基站周围指定范围内的无线发射机,或者特定区域内的所有无线发射机。向无线发射机发送确认——无线定位系统不包括通知无线发射机操作的装置,因为无线定位系统不能发射;如前所述,无线定位系统只能接收传输。因此,如果无线定位系统要进行传输,例如,某操作完成后的确认声音,无线定位系统就命令无线通信系统传输特定的消息。例如,这种消息可包括发送到无线发射机的一个可听得见的确认声音、话音消息或者合成消息,或者通过短消息业务或寻呼发送的文本消息。无线定位系统接收来自无线通信系统的一个告知已接收该消息并将其发送给无线发射机的确认。这个命令/响应消息集在使得无线定位系统支持某些终端用户应用功能(比如禁止定位处理)方面很重要。报告位置记录——对于那些要向无线通信系统报告的无线发射机以及那些无线通信系统启动的触发来说,无线定位系统自动向无线系统报告位置记录。无线定位系统还报告无线通信系统查询的任何历史位置记录以及无线通信系统有权接收哪些位置记录。监控内部无线通信系统接口、状态表除了上面提到的无线定位系统和无线通信系统之间的接口之外,无线定位系统还包括监控无线通信系统中现有接口的装置,它将重要消息截取给无线定位系统用来确定无线发射机和这些发射机使用的RF信道。例如,这些接口包括用在无线通信系统中的使用GSM空中接口协议的“a-接口”和“a-bis接口”。这些接口是在各种标准中发布的众所周知的接口。通过监控在基站(BTS)、基站控制器(BSC)和移动交换中心(MSC)以及其它点之间这些接口上的双向消息,无线定位系统可获得有关无线发射机指定信道分配的和无线通信系统自己了解的相同的信息。无线定位系统包含监控各种位置上这些接口的装置。例如,SCS10可监控BTS到BSC的接口。或者,TLP12或者AP14也可监控集中很多BTS到BSC接口的BSC。无线通信系统内部的这些接口没有加密,熟悉本领域的那些人都了解该分层协议。无线定位系统监控这些接口的优点是无线定位系统不需要独自检测和解调来自无线发射机的控制信道消息。此外,无线定位系统可从这些接口获得所需的所有话音信道分配信息。使用这些用于控制信道传输的装置,SCS10接收上面所述的传输,并把控制信道RF数据记录到存储器中而不执行检测和解调。无线定位系统分别监控无线通信系统内指定接口上出现的消息,当无线定位发现某个消息包含触发事件时就导致无线定位系统中的触发。在由触发事件启动后,无线定位系统确定无线传输发生的大致时间,并命令第一SCS10A和第二SCS10B搜索各自的存储器来查找传输的开始。所选的第一SCS10A是配置在无线发射机与之通信的基站上的SCS或者靠近无线发射机通信基站的SCS。换言之,第一SCS10A是为其分配作为主信道的控制信道的SCS。如果第一SCS10A成功地判断并报告传输的开始,那么定位处理使用下面描述的装置继续正常进行。如果第一SCS10A不能成功的确定传输的开始,则第二SCS10B报告传输的开始,然后定位处理继续正常进行。无线定位系统还对话音信道传输使用这些装置。对于包含在任务分配列表中的所有触发,无线定位系统监控指定接口以等待属于那些触发的消息。例如,重要的消息包括,话音信道分配消息、切换消息、跳频消息、功率增加/功率降低消息、定向重试消息、终止消息以及其它类似的操作和状态消息。无线定位系统不断地维护AP14状态表中无线发射机的状态拷贝。每当无线定位系统检测到属于任务分配列表的消息时,无线定位系统就更新它自己的状态表。此后,无线定位系统可每隔一定的时间间隔触发执行定位处理,访问状态表来精确地判断无线发射机当前使用哪一个小区站点、扇区、RF信道以及时隙。这里的实例描述了无线定位系统和基于GSM无线通信系统接口的装置。无线定位系统还支持和基于其它空中接口的系统类似的功能。对于某些空中接口,比如CDMA,无线定位系统还在状态表中存储某些来自控制信道访问脉冲串的标识信息;这些信息将在后面用来解码用于话音信道的掩码。例如,CDMA空中接口协议使用无线发射机的电子序列号(ESN)来部分确定用在话音信道传输编码的长码掩码。因为很多无线发射机只传输一次,所以无线定位系统在状态表中维护任务分配列表中条目的这些信息;例如,很多CDMA移动发射机只在无线发射机在地理区域激活后的第一访问脉冲串中传输它们的ESN。在无线定位系统和无线通信系统间的接口不可使用和/或无线定位系统不监控某个无线通信系统内部接口的情况下,独立确定长码掩码的这种能力很有用。无线定位系统的操作员可自由设置无线定位系统维护所有无线发射机的标识信息。除了上面的原因之外,无线定位系统还可提供对所有通过拨叫“911”触发定位处理的无线发射机的话音信道跟踪。如前所述,无线定位系统使用动态的任务分配在拨叫“911”后指定的时间提供对无线发射机的定位。通过维护状态表中所有无线发射机的标识信息,无线定位系统能在指定触发事件发生的情况下对所有的发射机进行话音信道跟踪,而不仅仅是对任务分配列表中有预先条目的那些发射机。应用接口使用AP14,无线定位系统支持多种到终端用户和载波定位应用的使用诸如TCP/IP、X.25、SS-7和IS-41之类安全协议的标准接口。AP14和外部应用的每个接口都是经过认证的安全连接,它允许AP14检验连接到AP14的标识。这是必要的,因为每个连接到的应用只限于访问实时和/或历史的位置记录。此外,AP14还支持其它附加的命令/响应、实时和后处理功能,将在下面对它们进行详细介绍。访问这些附加的功能也需要认证。AP14维护一个用户列表,认证也就意味着和每个用户对应关联。如果应用对位置记录或功能没有适当的认证或者访问权限,那它就不能访问这些位置记录或功能。此外,AP14还记录每个应用所做的所有操作,这样在出现问题或者后面需要调查操作时就可使用这些记录。对于下面列表中的每个命令或功能,AP14都愿意支持对每个操作或者每个操作的结果进行适当确认的协议。编辑任务分配列表——这个命令允许外部应用添加、删除或者编辑任务分配列表中的条目,其中包括和每个条目相关的任何域任何标记。这个命令可对单个条目操作,也可对一批条目操作,对一批条目操作时在单个命令中包含一个条目列表。后面这种操作很有用,例如,在诸如外部应用支持大量无线发射机的位置敏感计费应用的大批量应用中,并且最好这种操作的协议开销也最小。这个命令可添加或者删除用于任务分配列表中特定条目的应用,但是,如果还包含发出命令的用于未关联或未授权的其它应用,那么这个命令就不能完全删除这个条目。设置定位时间间隔——可把无线定位系统设置成每隔一定的时间间隔就在控制信道或者话音信道上对特定的无线发射机执行定位处理。例如,在发射机使用话音信道时,某些应用每隔几秒钟就需要知道无线发射机的位置。当无线发射机开始传输时,无线定位系统就开始用任务分配列表中的标准条目触发。如果条目中的某个域或者标记说明在设置的时间间隔进行位置更新,那么无线定位系统就在由定时器而不是标识或其它传输的判断标准触发的任务分配类别中创建动态任务。定时器的定时范围从1秒钟到几个小时,每次定时器到期,无线定位系统将自动触发定位该无线发射机。无线定位系统使用与无线通信系统的接口查询无线发射机的状态,其中包括前面描述的话音信道的参数。如果无线发射机使用话音信道,那么无线定位系统执行定位处理。如果无线发射机当前没有进行任何传输,无线定位系统就命令无线通信系统让该无线发射机立即传输。当设置了动态任务时,无线定位系统还设置动态任务结束的期限。终端用户添加/删除——这个命令由无线发射机的终端用户执行,它把无线发射机的标识存入启动了定位处理的任务分配列表中、从任务分配列表中删除无线发射机的标识从而不再把标识作为触发器、或者把无线发射机的标识存入关闭了定位处理的任务分配列表中。当终端用户关闭定位处理时,也就是禁止定位处理时,无线发射机不进行任何定位处理。无线定位系统的操作员可响应终端用户的禁止定位处理命令选择无线定位系统所进行的如下操作之一(i)禁止操作能覆盖任务列表中的所有其它触发,包括由诸如“911”之类的紧急呼叫引起的触发。(ii)禁止操作能覆盖任务分配列表中除了由诸如“911”之类的紧急呼叫引起的触发之外的任何其它触发。(iii)任务分配列表中的其它某些触发能覆盖禁止操作。在第一种情况中,终端用户完全控制无线发射机传输的隐私,因为在这种发射机上不会因为任何原因执行定位处理。在第二种情况中,终端用户在紧急情形下仍使用定位处理,但在其它时间不使用。在第三种情况的一个实例是,雇主即特定无线发射机的真正的所有者可覆盖雇员即在工作中使用无线发射机但不想被定位的人的终端用户操作。如上所述,无线定位系统可查询无线通信系统以获得包含在无线发射机中的标识到其它标识的映射。终端用户的添加和删除受字符和数字拨叫序列以及按下无线发射机上“发送”或等价按钮的影响。无线定位系统的操作人员可了解并选择它们的序列。例如,禁止定位处理的序列可以是“*55发送”。也可用其它序列。当终端用户拨叫指定的序列时,无线发射机在无线通信系统的某个指定控制信道传输这个序列。既然无线定位系统独自检测和解调所有的反向控制信道传输,无线定位系统可独自解释指定的拨叫序列并对任务分配列表进行正确的功能更新,如上所述。当无线定位系统完成对任务分配列表的更新时,无线定位系统命令无线通信系统向终端用户发送确认。如前所述,这可采用可听得到的声音、录音或者合成的声音或者是文本消息。在无线定位系统和无线通信系统间的接口上执行这个命令。命令传输——这个命令允许外部应用引起无线定位系统向无线通信系统发送命令使得特定的无线发射机或者无线发射机组传输。这个命令可包含一个指示无线发射机应立即传输还是在指定时间传输的标记或域。因为该传输将被检测、解调和触发,导致定位处理和生成位置记录,所以这个命令可根据命令定位无线发射机。这在消除或减少确定位置中诸如等待无线发射机下一个注册时间或者等待发生独自传输的时延方面很有用。外部数据库查询和更新——无线定位系统包括这样的装置,可用它来访问外部数据库、使用传输或触发判断标准中无线发射机标识或其它参数查询外部数据库以及把来自外部数据库的数据和无线定位系统生成的数据合在一起以创建新的增强位置记录。然后把增强位置记录转发给发出请求的应用。例如,外部数据库可包含这些数据元素,比如客户信息、医疗信息、申请功能、应用相关信息、客户帐号信息、联系信息或者针对定位触发事件的指定操作集。无线定位系统还可更新外部数据库,例如,增加或减少和提供定位服务相关的计费计数器,或者用特定无线发射机的最新位置记录更新外部数据库。无线定位系统包含执行这里描述的多个外部数据库上的操作的装置。要访问以及后面操作要处理的外部数据库的这个列表和序列包含在任务分配列表触发判断标准中的某个域中。随机匿名定位处理——无线定位系统包含执行大规模随机匿名定位处理的装置。这个功能对某些类型的需要收集大量有关无线发射机分布而不考虑单个发射机标识的数据的那些应用很有价值。这种类型的应用包括RF优化,它使得无线载波通过同时确定位置以及传输的其它参数来测量无线通信系统的性能;交通管理,这使得政府机构和商业办事处可使用车辆中无线发射机行进的重要统计值来监控各高速公路上的交通流量;局部交通估计,这使得商业企业可估计特定区域周围的交通流量来帮助确定某种商业的发展能力。请求随机异常定位处理的应用可从两个来源接收位置记录(i)其它应用生成的位置记录拷贝;(ii)无线定位系统不考虑任何判断标准随机触发的位置记录。任何一个来源生成的所有位置记录在转发时都从位置记录中删掉所有的标识和触发判断标准信息;但是发出请求的应用可确定记录是由完全随机的处理生成还是来自其它触发判断标准的拷贝。只要处理和通信资源可用并且将在特定时刻没有被使用,无线定位系统中对随机选择的传输执行定位处理低优先级的任务就可生成该随机的位置记录。发出请求的应用可说明随机定位处理是在无线定位系统的整个覆盖区域执行、在指定的地理区域比如沿着指定的高速公路执行,还是在指定小区站点的覆盖区域执行。从而,发出请求的应用能把无线定位系统的资源引导到各应用最感兴趣的那些区域。根据应用需要的随机性,无线定位系统可调整随机选择某些类型传输的优先级,例如,注册消息、发起消息、寻呼响应消息或者话音信道传输。地理区域组的匿名跟踪——无线定位系统包含触发对指定地理区域无线发射机匿名组反复进行定位处理的装置。例如,某个定位应用需要监控无线发射机在指定时间内的行进路线,但无线定位系统没有给出无线发射机的标识。这个时间可能是几个小时、几天或者几个星期。使用这个装置,无线定位系统在应用关注的地理区域中随机选择一个发起传输的无线发射机;对感兴趣的传输执行定位处理;不可逆地把无线发射机地标识转换并加密成新编码的标识符;只把新编码的标识符作为识别方法来创建位置记录;把位置记录转发给请求位置的应用;在任务分配列表中为无线发射机创建动态任务,其中动态任务有一个终止期限。随后,只要指定的无线发射机开始传输,无线定位系统就被动态任务触发,执行对感兴趣传输的定位处理,使用和前面相同的装置不可逆地把无线发射机地标识转换并加密成新编码的标识符从而编码的标识符相同,用编码的标识符创建位置记录,把位置记录转发给请求位置的应用。这里描述的装置可和无线定位系统的其它功能组合到一起使用控制信道传输或者话音信道传输来执行这种类型的监控。此外,这里描述的装置完全保护无线发射机的私有标识,但使得其它的种类应用可监控无线发射机的行进方式。这种应用在确定新公路规划和设计、修改路线规划或者构建商业零售店方面很有用。位置记录分组、排序和标注(Labeling)——无线定位系统包含为某些请求应用后处理位置记录以对位置记录进行分组、排序或者标注的装置。对于无线定位系统支持的每个接口,无线定位系统存储应用请求并有权处理的数据类型的概况以及应用所需要的过滤器或者后处理操作类型。很多应用,比如这里提到的例子,并不需要单个的位置记录或者单个发射机的指定标识。例如,RF应用从用于特定小区站点或者信道的位置记录的大量数据集合中获取的数值要比从单个位置记录中获取的数值多。另外一个例子,交通监控应用只需要知道指定公路或者高速公路上发射机的位置记录,并根据公路或者高速公路的路段和行进的方向把这些记录分组。其它应用可请求无线定位系统转发已格式化的位置记录以通过调整发射机位置估计来提高可视显示效果,从而发射机的位置直接显示在电子地图上所画的公路段上而不是该公路段的附近。因此,无线定位系统最好将位置估计“归并”到画出来的最接近的路段上。无线定位系统可将只和特定小区站点、扇区、RF信道或者RF信道组通信的无线发射机的位置记录过滤并报告给应用。在向发出请求的应用转发记录前,无线定位系统先验证记录中的适当域确实满足要求。不满足要求的记录不会转发,只转发满足要求的记录。有些过滤器是地理的,必须由无线定位系统计算。例如,无线定位系统可处理位置记录以确定最近的路段以及在该路段上无线发射机的行进方向。然后,无线定位系统只向特定路段上的应用转发记录,通过添加一个包含确定的路段的域进一步增强位置记录。为了确定最接近的路段,发出请求的应用为无线定位系统提供一个感兴趣的路段数据库。这个数据库在表中存储每个路段的端点的经度和纬度坐标。可将每个路段模型化为直线或者曲线,它们可支持单向或双向行进。然后对于无线定位系统确定的每个位置记录,无线定位系统把位置记录中的经度和纬度和存在数据库中公路段相比较,确定连接该段端点和位置记录经度和纬度的模型化线的最短长度。最短长度是一个计算的假想线,它和连接存储路段两端点的线垂直。当确定最接近的路段时,通过把定位处理报告的无线发射机行进方向和路段的方向相比较,无线定位系统可进一步确定在该路段上行进的方向。然后,无线定位系统报告相对于路段方向误差最小的方向。网络操作控制台(NOC)16NOC16是个网络管理系统,它允许无线定位系统操作员很容易就可访问无线定位系统的设计参数。例如,在有些城市中,无线定位系统可包含成千上万个SCS10。NOC是具有图形化用户界面的管理大型无线定位系统的最有效方法。如果无线定位系统中的某些功能没有正常运行,NOC还可接收到实时的报警。操作员可利用这些实时报警迅速采取纠正措施,避免定位服务的降级。无线定位系统的试验表明系统维护高定位精度的能力与操作员保证系统在预定参数范围内运行直接相关。定位处理无线定位系统能用两种不同的方法执行定位处理,分别是基于中心的处理和基于站的处理。这两种技术在专利5,327,144中首次披露,在本文中进一步改进。定位处理部分依赖于精确确定在多个天线和多个SCS10上接收到的信号的某些相位特征的能力。因此,无线定位系统的一个目标是识别和删除阻止定位处理确定所接收信号特征的相位误差的来源。相位误差的一个来源位于无线发射机本身内部,即允许电话调节到特定信道传输的振荡器(通常是晶体振荡器)和锁相环。有些空中接口规范,比如IS-136和IS-95A,有传输无线电话可夹杂相位噪声方面的规范。其它空中接口规范,比如IS-553A,没有严格地说明相位噪声。因此本发明的一个目标是通过自动选择使用基于中心的处理或者基于站的处理来自动减少和/或消除部分作为定位处理中相位误差源的无线发射机相位噪声。自动选择还考虑SCS10与TLP12之间所用通信链路的有效性以及每个SCS10和TLP12上DSP资源的可用性。当使用基于中心的处理时,TDOA、FDOA的确定和多径效应处理在TLP12中和位置、速度的确定一起执行。当无线发射机的相位噪声超过预定门限时优先选择这种方法。在很多情况下,基于中心的处理在减少或消除作为相位误差源的无线发射机相位噪声方面最有效,因为用来自两个天线的实际RF传输的数字化表现形式来执行TDOA估计,这两个天线可能在同一个SCS10上也可能在不同的SCS10上。在这种方法中,本领域的一般技术人员可认识到发射机的相位噪声是TDOA处理中的共有模式噪声,因此可在TDOA判断过程中将其自我消除。这种方法对相位噪声很高的低价格AMPS蜂窝电话的运行效果最好。在基于中心的处理中的基本步骤如图6中的流程图所示,它包括如下步骤无线发射机发起控制信道上或者话音信道上的传输(步骤S50);在无线定位系统中的多个天线和多个SCS上接收到传输(步骤S51);在连接到每个天线的接收机中把传输转换成数字格式(步骤S52);把数字数据存储在每个SCS10中的存储器中(步骤S53);解调传输(步骤S54);无线定位系统确定是否开始对该传输的定位处理(步骤S55);如果被触发,TLP12从多个SCS的存储器中请求数字数据的拷贝(步骤S56);从多个SCS10向所选的TLP12发送数字数据(步骤S57);TLP12对来自天线对的数字数据执行TDOA、FDOA和多径效应减轻(步骤S58);TLP12用TDOA数据进行定位和速度确定,创建位置记录并将其转发给AP14(步骤S59)。在从SCS10向TLP12发送数字数据时,无线定位系统使用可变的位数来表示传输。如前所述,为了获得足够的动态范围,SCS接收机采用高分辨率或者每次采样使用多位数来数字化无线传输。在使用可能同时接收靠近SCS10A远离SCS10B的信号的宽带数字化接收机时,更加需要这样。例如,表示84dB的动态范围最多需要14位。但是,定位处理并不总是对每个数字采样都需要高分辨率。通常,无线定位系统每次数字采样用较少的位数就可获得足够的定位精度。因此,为了通过保留每个SCS10和TLP12之间通信链路的带宽使得无线定位系统的实现代价最小,无线定位系统确定在保证所需精度的前提下数字化表示传输所需的最少位数。这个判断是根据无线发射机使用的特定空中接口协议、传输的SNR、衰落和/或多径传输干扰传输的程度以及每个SCS10中处理和通信队列的当前状态作出的。可从两个方面减少从SCS10发送到TLP12的位数减少每次采样的位数,在定位处理中使用传输可用的最短长度或者最少的段。TLP12使用最小的RF数据执行定位处理,然后把这个结果和要求的精度相比较。这个比较是在可信的时间间隔计算结果基础上执行的。如果位置估计不在所要求的精度范围内,TLP12再次向所选的SCS10请求额外数据。这些额外数据可能包含每采样的额外位数和/或传输的更多段。请求额外数据的过程反复进行直到TLP12达到预定的定位精度为止。在上面描述的基本步骤中还包含其它一些细节。在专利5,327,144和5,608,410以及本文的其它部分中对它们有所描述。其中对早先专利中所描述过程的一个改善是对用于定位处理中各基线的单个基准SCS/天线的选择。在现有技术中,使用电话周围的天线对来确定基线。在本发明的无线定位系统中,尽管还要采用下面所述的其它判断标准,但所用的单个基准SCS/天线通常是SNR最高的信号。在用在定位处理中的其它SCS/天线较弱比如和背景噪声基本接近或者低于背景噪声(即信噪比为0或为负)时,使用高SNR的信号作为基准有助于基于中心的定位处理。当使用基于站的定位处理时,基准信号是重新调制的信号,有意地让该信号具有很高的信噪比,进一步帮助使用其它SCS/天线上的极弱信号进行的定位处理。我们将在下面介绍基准SCS/天线的实际选择。无线定位系统通过先递归估计直接路径部分之外的其它多径部分,然后从接收信号中减去这些部分,从而减轻多径效应的影响。因此,无线定位系统建立接收信号的模型,把模型和实际接收到的信号相比较,并用加权最小平方差尽量减小两者之间的差别。对于无线发射机传输的每个信号x(t),各SCS/天线上接收到的信号是信号的复杂组合y(t)=Σx(t-τn)anejω(t-τn),]]>n从0到n其中x(t)是无线发射机传输的信号;an和τn是多径部分的复合振幅和时延;N是多径部分总数;a0和τ0是最直接路径部分的常量。无线定位系统的操作员根据经验确定用于无线定位系统在其中运行的特定环境的各多径部分的约束集。约束的目的是限制无线定位系统在优化各多径减轻计算结果上所花费的时间。例如,可将无线定位系统设置成只确定多径的四部分第一部分的时延处于τ1A到τ1B之间;第二部分的时延处于τ2A到τ2B之间;第三部分的时延处于τ3A到τ3B之间;第四部分也与之类似;但第四部分是能有效地表示时延超出第三个范围的数百个(有些分散)多径部分复杂组合的一个值。为了便于处理,无线定位系统把前面的等式变换到频域,然后对单个部分处理从而使得加权最小平方差最小。当使用基于站的处理时,TDOA和FDOA确定以及多径效应减轻都在SCS10中执行,而位置和速度判断在TLP12中执行。如专利5,327,144中所述,基于站的处理的主要优点是减少了在每个SCS10和TLP12间通信链路上的数据数量。但是,还有其它一些优点。本发明的一个新目标是增加TDOA处理过程中的有效信号处理增益。如前所述,基于中心的处理具有消除或者减少由无线发射机相位噪声引起的相位误差的优点。但是前面的介绍中没有说明在使用基于站的处理时怎样消除或减少同样的相位噪声误差。使用如图6所示的步骤,本发明减少了相位误差,并增加了有效信号处理增益,这些步骤如下所示无线发射机启动在控制信道或者话音信道上的传输(步骤S60);在无线定位系统中的多个天线和多个SCS10上接收到这个传输(步骤61);在连接到的每个天线的接收机中把传输转换成数字格式(步骤62);把数字数据存储在SCS10中(步骤S63);解调传输(步骤S64);无线定位系统确定是否开始对传输的定位处理(步骤S65);如果被触发,第一SCS10A解调传输并确定合适的相位修正时间间隔(步骤S66);在每个相位修正时间间隔中,第一SCS10A计算合适的相位修正和振幅修正,并将相位和振幅修正和解调的数据一起编码(步骤S67);把解调的数据、相位修正以及振幅修正参数从第一SCS10A发送给TLP12(步骤S68);TLP12确定用在定位处理中的SCS10和接收天线(步骤S69);TLP12把解调的数据、相位修正和振幅修正参数发送给每个将用在定位处理中的第二SCS10B(步骤S70);第一SCS10A和每个第二SCS10B基于解调数据创建一个第一重调制信号和相位修正、振幅修正参数(步骤S71);第一SCS10A和每个第二SCS10B用存储在存储器以及第一重调制信号来执行TDOA、FDOA和多径效应减轻(步骤S72);从第一SCS10A和每个第二SCS10B向TLP12发送TDOA、FDOA和多径效应减轻数据(步骤S73);TLP12用TDOA数据进行位置和速度确定(步骤S74);TLP12创建一条位置记录,并将该位置记录转发给AP14(步骤75)。确定相位修正和振幅修正参数的优点在基于IS-95A的CDMA无线发射机的定位中是最明显的。众所周知,IS-95A发射机的反向传输采用非相干调制。对于每秒4800比特速率的CDMA接入信道来说,每比特要发送256个码片,可获得24dB的综合增益。使用前面描述的技术,各SCS10中的TDOA处理可集成超过160毫秒的脉冲串(196,608个码片)来产生53dB的综合增益。即使配置了SCS10的基站不能检测同样的CDMA传输,这个额外的处理增益也使得本发明可用SCS10检测和定位CDMA传输。对于特定的传输,如果计算的相位修正参数或者振幅修正参数是0或者说不需要修正,那么为了节省在各SCS10和TLP12间通信链路上传输的位数,就不再发送这些参数。在本发明的其它实施例中,无线定位系统可把固定的相位修正时间间隔用于特定空中接口的特定传输或者所有传输、或者特定类型无线发射机进行的所有传输。例如,这可能建立在无线定位系统在某段时期内所采集的、不同种类发射机的相位噪声表现出合理一致性的经验数据的基础上。在这些情况中,SCS10就可省掉确定适当相位修正时间间隔的处理步骤。本领域的一般技术人员知道有很多测量无线发射机相位噪声的方法。在其中的一个实施例中,可在SCS中的DSP中生成在第一SCS10A上接收到纯的没有噪声的重新调制信号拷贝,然后把接收到的信号和各相位修正时间间隔比较,直接测量相位差。在这个实施例中,把相位修正参数作为相位修正时间间隔内相位差的负数。用来表示相位修正参数的位数随着相位修正参数的大小变化,每个相位修正时间间隔中的位数也可能不同。有些传输在传输早期表现出更大的相位噪声而在传输中期或者后期的噪声少一些。基于站的处理对相位噪声相对较低的无线发射机最有用。尽管这并不是它们各自的空中接口标准所必需的,但是使用TDMA、CDMA或者GSM协议的无线电话的相位噪声通常都比较低。当无线发射机的相位噪声增加时,相位修正时间间隔减小并且/或者用来表示相位修正的参数位数增加。当用来表示解调数据加上相位修正和振幅参数的位数超过基于中心处理所需的预定位数时,基于站的处理不是很有效。因此,本发明的目标是自动为定位所需要的每个传输确定是使用基于中心的处理还是使用基于站的处理来处理定位。作出该判断的步骤如图7所示,这些步骤包括如下步骤无线发射机发起控制信道上或者话音信道上的传输(步骤S80);在第一SCS10A上接收到这个传输(步骤81);在连接到每个天线的接收机中把传输转换成数字格式(步骤82);无线定位系统确定是否开始对传输的定位处理(步骤S83);如果被触发,第一SCS10A解调传输并估计合适的相位修正时间间隔和编码相位修正和振幅修正参数所需的位数(步骤S84);然后,第一SCS10A估计用于基于中心处理所需的位数;根据每种方法的位数,SCS10或者TLP12确定是使用基于中心的处理还是使用基于站的处理来执行对该传输的定位处理(步骤S85);在本发明的另外一个实施例中,无线定位系统可把基于中心的处理或者基于站的处理用于特定空中接口协议的所有传输,或者某种类型无线发射机的所有传输。例如,这可能建立在无线定位系统在某段时期内所采集的、不同种类发射机的相位噪声表现出合理一致性的经验数据的基础上。在这些情况中,SCS10和/或TLP12就可省掉确定适当处理方法的处理步骤。本发明用于基于中心的处理和基于站的处理的进一步的改善是在最终的无线发射机位置和速度确定中使用包括基线在内的门限判断标准。对于每个基线,无线定位系统计算如下这些参数基准SCS/天线在计算基线中使用的SCS/天线端口,峰值,均值,用在基线和定位处理时间间隔中的SCS/天线端口上接收到的传输功率的变化,用在基线中的SCS/天线和基准SCS/天线之间频谱互相关性的值,基线的时延,多径效应减轻参数,在多径效应减轻计算后剩下的值,SCS/天线对最终定位方案中加权GDOP的作用,以及如果最终定位方案中包括基线,该基线适当值的量度。包含在最终定位方案中的每个基线都满足或者超出这里所述的各参数的门限值。如果基线不能满足一个或多个门限标准,那么就从定位方案中去除该基线。因此,实际用在最终定位方案的SCS/天线数量常常要比考虑的总数量小。在专利5,327,144和5,608,410中披露了定位处理使得下面的最小平方差(LSD)最小的方法,该最小平方差为LSD=[Q12(Delay_T12-Delay_O12)2+Q13(Delay_T13-Delay_O13)2+...+Qxy(Delay_Txy-Delay_Oxy)2]在本实施例中,为了使得定位处理代码更为有效,把该等式变成下面的形式LSD=Σ(TDOA0i-τi+τ0)2wi2,]]>其中i从1到N-1其中N=用在定位处理中的SCS/天线的数量;TDOA0i=从基准小区0开始的第i个小区的TDOA;τi=从无线发射机到第i个小区的视线传播时间的理论线(theoreticallineofsightpropagationtime);τ0=从发射机到基准小区的视线传播时间的理论线;wi=用于第i个基线的权值或者质量因子。在本实施例中,无线定位系统还使用该等式的另外一种形式,它可在基准信号不强或者使用该等式前一形式会在定位方案中引起偏差时帮助确定定位方案,该形式的等式为LSD′=Σ(TDOA0i-τi)2wi2-b2Σwi2,]]>其中i从1到N-1其中N=用在定位处理中的SCS/天线的数量;TDOA0i=从基准小区0开始的第i个小区的TDOA;TDOA00设为0;τi=从无线发射机到第i个小区的视线传播时间的理论线;b=为各理论点所分别计算的偏差,所述理论点使得该点上的LSD’最小化;wi=用于第i个基线的权值或者质量因子。等式的LSD’形式通过把w0取为其它权值中的最大值或者根据基准小区上相关信号强度确定w0,为消除基准站点上定位方案中的偏差提供了一种更为简单的方法。注意如果w0比其它权值大很多,那么b大约和τ0相等。通常,权值或者质量因子都建立在和上面讨论的包含基线的门限判断标准相类似的判断标准的基础之上。亦即,判断标准的计算结果用于权值,当低于门限时,就把权值设置为0,并不用于最终定位方案的确定中。定位处理的天线选择过程以前的发明和公开,比如前面提到的那些,描述了这样的技术,即为了确定位置需要第一、第二或者第三天线、小区站点或者基站。专利5,608,410还进一步披露了一个动态选择子系统(DSS),该系统负责确定哪些天线站点位置的哪些数据帧用于计算作出响应的传输的位置。在DSS中,如果从超过门限数量的站点接收数据帧,DSS就判断哪些作为候选哪些要排除在外,然后动态的组织用于定位处理的数据帧。DSS通常使用比最小天线站点数量多的天线站点,从而过度地确定方案。此外,DSS确保用在定位处理的所有传输都接收自同一发射机的同一传输。但是,前面发明的优选实施例存在几个局限。首先,每个天线站点(或小区站点)只使用一个天线,或者在传输到中心站点前先在一个天线站点(或小区站点)上把来自两个或四个分散天线的数据组合到一起。此外,接收到传输的所有天线站点都向中心站点发送数据,即使DSS后来丢弃了这些数据帧。因此,可能会浪费通信带宽用来发送无用数据。本发明发现尽管为了确定位置最少只需要两个或三个站点,但用在定位处理中的天线和SCS10的实际选择对定位处理的影响很大。此外,最好在定位处理中的每个SCS上使用多个天线。在定位处理中独自地使用来自小区站点上多个天线数据的原因在于每个天线上接收到的信号受多径效应、衰落以及其它干扰的影响都是不一样的。众所周知,当两个天线距离上分开超过一个波长,那么每个天线都会在各自独立的路径上接收信号。因此,使用多个天线,常常可获得无线发射机位置的额外的不同信息,从而可以改善无线定位系统减轻多径效应影响的能力。因此,本发明的一个目标是提供一种改进的方法,以使用来自定位处理中SCS10上多个天线的信号。另外一个目标是提供一种方法来改善用来选择用在定位处理中的协作天线和SCS10的动态处理。第一个目标通过在SCS10中提供装置以选择和使用定位处理中SCS上任意数量的天线上采集来的任何数据段的方法来实现。如前所述,小区站点上的每个天线连接到SCS10内部的接收器上。每个接收器把从天线接收到的信号转换成数字形式,然后把数字化信号暂时存储在接收器的存储器中。TLP12提供了一些装置来指导SCS10从接收机的暂时存储器中检索数据段,并提供用于定位处理的数据。通过在无线定位系统内提供监控用于接收无线定位系统要定位的传输的大量天线的方法,然后根据预定的参数集合选择用在定位处理中的更小的天线集合实现第二个目标。该选择过程的一个实例如图8的流程图所示,它包括如下步骤无线发射机启动控制信道上或者话音信道上的传输(步骤S90);在无线定位系统中的多个天线和多个SCS10上接收到这个传输(步骤91);在连接到每个天线的接收机中把传输转换成数字格式(步骤92);把数字数据存储在每个SCS10的存储器中(步骤S93);在至少一个SCS10A上解调传输,并确定发生传输的信道号和正在为无线发射机服务的小区站点扇区(步骤S94);根据正在服务的小区站点和扇区,把某个SCS10A指定为处理该传输的主SCS10(步骤S95);主SCS10A确定与解调数据相关联的时间戳(步骤S96);无线定位系统确定是否开始对传输的定位处理(步骤S97);如果定位处理被触发,无线定位系统确定用在定位处理中的SCS10和天线的候选列表(步骤S98);每个候选SCS/天线在主SCS10A确定的时间戳测量并报告传输信道号中的一些参数(步骤S99);无线定位系统用指定的判断标准来选用候选SCS/天线,并选择用在定位处理中的基准SCS/天线和SCS/天线的处理列表(步骤S100);使用来自SCS/天线的处理列表的数据,无线定位系统进行前面所述的定位处理(步骤S101)。选择主SCS/天线因为要根据主SCS/天线的设计来部分确定SCS10和天线10-1的候选列表,所以“主”SCS/天线的选择过程是很重要的。当无线发射机在特定RF信道上传输时,通常可在信号衰落到低于可解调门限之前传播很远。因此,往往有很多SCS/天线可解调该信号。特别是在市区和无线通信系统频率重用模式密集的郊区更是如此。例如,由于无线的高使用率以及密集的小区站点空间,发明者测试了在一英里范围内的小区站点上使用相同的RF信道和相同的数字色码的无线通信系统。因为无线定位系统独立的解调这些传输,所以无线定位系统通常可在两个、三个或者更多分散的SCS/天线上的解调同一传输。当无线定位系统从不同的SCS/天线上接收到多个解调的数据帧时,无线定位系统检测该传输已在多个SCS/天线上多次解调,其中每个数据帧都有一些低于预定错误位数门限的错误位数,解调的数据在可接受的错误位数范围之内,并且所有的数据帧都出现在预定的时间间隔内。当无线定位系统检测来自多个SCS/天线的解调数据时,为了确定把哪一个SCS/天线指定为主SCS,它检查下面的参数定位处理时间间隔内的平均SNR,在同一时间间隔内SNR的方差,接收到的传输的开始与纯粹前导(pre-cursor)(对于AMPS,即点分Barker码)的相关性,解调数据中的错误位数,从传输开始前到传输开始这段时间中SNR的变化次数和速率,以及其它类似参数。通常,在每个SCS/天线上在定位处理的整个传输时间长度内或者在更短的时间间隔内确定平均SNR。依赖于特定空中接口协议,在各SCS10报告的时间戳之前、之中或者之后的短时间内,更短时间间隔内的平均SNR可通过执行与点分序列和/或Barker码和/或同步字的相关性来确定。时间范围通常在时间戳+/-200毫秒的范围内。无线定位系统通常用下面的判断标准来选用SCS/天线,在组合这些判断标准确定最终结果时其中的每个判断标准都有一定的权值(乘以一个适当的因子)优先选择低错误位数的SCS/天线,再选择高错误位数的SCS/天线,给定SCS/天线的平均SNR必须高于指定的SCS/天线的预定门限;优先选择平均SNR高的SCS/天线,再选择平均SNR低的SCS/天线;优先选择SNR变化小的SCS/天线,再选择SNR变化大的SCS/天线;优先选择SNR变化率快的SCS/天线,再选择SNR变化率慢的SCS/天线。无线定位系统的操作员可调整应用到各判断标准的权值以适应各系统的特定设计。基于预定的判断标准集,比如小区站点类型、小区站点上的天线类型、天线的几何形状、某些天线比其它天线权值高的权值因子,来选择SCS10和天线10-1的候选列表。权值因子考虑无线定位系统运行的地形、有助于各天线作出良好位置估计的经验数据以及各不同WLS装置不同的其它因子。在其中的一个实施例中,无线定位系统选择比指定的距离主站点最大半径(max_radius_from_primary)内最多可达最大站点数量(max_number_of_sites)的包括所有SCS10的候选列表。例如,在具有很多小区站点的市区或者郊区环境中,可能把站点的最大数量限制为19。19个站点包括主站点、环绕主站点的第一圈六个站点(假设采用典型的六边形小区站点分布),以及环绕第一圈的下一圈十二个站点,如图9所示。在另外一个实施例中,在郊区或者农村,将最大半径设置成40英里以保证最广阔的候选SCS/天线可用。无线定位系统提供了一些装置来把候选SCS10的总数限制在最大数量(最大候选数量)之内,尽管每个候选SCS允许从可用天线中选择最佳端口。这限制了无线定位系统花费在处理特定位置上的时间。例如,可把最大候选数量设置成32,这意味着在典型的三扇区无线通信系统中,最多可为特定传输的定位处理考虑32*6=192个天线。为了限制处理特定位置花费的时间,无线定位系统提供了限制用在定位处理中天线数量的处理天线最大数量。处理天线最大数量通常比可选的最大数量小,通常为16。在无线系统可根据前面所述的预定判断标准集动态确定候选SCS10和天线列表的同时,无线定位系统还可将固定的候选列表存储在表中。从而,对于无线通信系统中的每个小区站点和扇区,不管无线发射机什么时候开始在小区站点和扇区的发射时,无线定位系统都有一个定义SCS10和天线10-1候选列表的表。每次触发定位请求时并不是动态选择候选SCS/天线,相反当开始定位处理时,无线定位系统直接从表中读取候选列表。通常,选择大量的候选SCS10来为无线定位系统提供足够的机会和能力来测量和减轻多径效应。对于任一给定的传输,一个或多个SCS10上的一个或多个天线可接收受多径不同程度影响的信号。因此,在无线定位系统内动态地选择比其它天线多径影响更小的天线集合是有好处的。无线定位系统使用各种技术来尽量减轻接收信号中的多径效应;但是它常常是谨慎地选择多径最少的天线集合。选择基准和协作SCS/天线在选择用在定位处理中的SCS/天线集的过程中,无线定位系统使用多种判断标准来选用候选SCS/天线,这些判断标准包括定位处理时间间隔内的平均SNR,在同一时间间隔内SNR的变化,接收到的传输的开始和纯粹前导(对于AMPS,即点分Barker码)和/或来自主SCS/天线的解调数据的相关性,与解调该传输的SCS/天线报告的on-set相关的传输on-set的时间,从传输开始前到传输开始这段时间中SNR的变化次数和比率,以及其它类似参数。通常,上在用于定位处理的整个传输长度中或者在更短的时间间隔内在候选列表中的每个SCS上为每个SCS/天线确定平均SNR。依赖于特定空中接口协议,在各SCS10报告的时间戳之前、之中或者之后的短时间内,更短时间间隔内的平均SNR可通过执行与点分序列和/或Barker码和/或同步字的相关性来确定。时间范围通常在时间戳+/-200毫秒的范围内。无线定位系统通常用下面的判断标准来选用SCS/天线,在组合这些判断标准确定最终结果时其中的每个判断标准都有一定的权值给定SCS/天线的平均SNR必须高于指定的SCS/天线的预定门限;优先选择平均SNR高的SCS/天线,再选择平均SNR低的SCS/天线;优先选择SNR变化小的SCS/天线,再选择SNR变化大的SCS/天线;优先选择开始比解调SCS/天线开始报告近的SCS/天线,再选择那些开始比较远的SCS/天线;优先选择SNR变化率快的SCS/天线,再选择SNR变化率慢的SCS/天线;优先选择低增长加权GDOP的SCS/天线,再选择较高增长的加权GDOP,其中根据主SCS估计的路径损失加权。无线定位系统的操作员可调整应用到优先选择的权值以适应各系统的特定设计。用在定位处理中的不同SCS10的数量被最大化到一个预定的限制值;各SCS10上天线的数量也有预定的限制;使用的SCS/天线的总数也限制在max_number_antennas_processed之内。把使用上面所述过程的级别最高的SCS/天线指定为用于定位处理的基准SCS/天线。SCS10中的最佳端口选择通常,候选列表或者用于定位处理的列表中的SCS/天线在特定SCS10上只包含一个或者两个天线。在这些情况中,无线定位系统允许SCS10从特定SCS10上的所有或者某些天线中选择“最佳端口”。例如,如果无线定位系统选择使用第一SCS10上的某个天线,那么第一SCS10就从连接到SCS10的典型的六个天线端口中选择最佳的天线端口,或者只从小区站点的一个扇区的两个天线端口中选择最佳端口。除了选择最佳端口时考虑的所有天线都在一个SCS10上之外,该过程使用和上面描述的选择用于定位处理中的SCS/天线相同的过程并比较相同的参数来选择最佳天线端口。在为了选择最佳端口对天线进行比较时,SCS10还可把接收到的信号分成段,然后测量接收信号各段中的SNR。SCS10可通过如下方法选择SNR最高的最佳天线端口(i)使用大多数段都具有最高SNR的天线端口;(ii)把所有段中的SNR取平均,使用平均SNR最高的天线端口;(iii)使用在任何段中SNR都最高的天线端口。检测冲突和冲突恢复因为无线定位系统在定位处理中使用来自多个SCS/天线端口的数据,所以在一个或多个特定SCS/天线端口接收到的信号就有可能包含来自另外一个无线发射机的信道间干扰(co-channelinterference)(即在两个无线发射机间出现了部分或者完全冲突)。还有一个可能是信道间干扰的SNR比目标发射机信号的SNR高,如果无线定位系统没有检测到,则信道间干扰可能会导致错误地选择SCS10上天线端口、参考SCS/天线、候选SCS/天线或者用在定位处理中的SCS/天线。信道间干扰也可能导致差的TDOA和FDOA结果,从而导致失败或者很差的位置估计。冲突的概率随着所归属的无线通信系统中小区站点密度的增大而增加,特别是在频率经常重用和无线使用率高的密集的郊区或农村。因此,无线定位系统包含有用来检测和恢复前面所述的某些类型的冲突的装置。例如,在选择最佳端口、基站SCS/天线或者候选SCS/天线的过程中,无线定位系统确定接收信号的平均SNR以及在传输时间间隔中的SNR方差;当SNR方差超过预定门限时,无线定位系统就赋予一个冲突出现的概率值。如果SCS/天线接收到的信号在单步中增加或者减少它的SNR,并且增加量或减少量超出预定门限时,无线定位系统就赋予一个冲突出现的概率值。此外,如果远程SCS上接收到的信号的平均SNR比传播模型预测的平均SNR大,给定无线发射机开始传输的小区站点、已知传输功率以及发射机和接收机的天线模式,则无线定位系统就赋予一个冲突出现的概率值。如果冲突出现的概率超过预定的门限,那么无线定位系统执行下面描述的进一步处理来验证冲突是否影响SCS/天线上接收的信号以及影响的程度有多大。赋予概率值的优点是减少或者消除了对大量没有冲突的传输额外处理。要注意到门限级别、指定的概率以及这里描述的冲突检测和恢复过程的其它细节都是可配置的,即可以根据特定的应用、环境、系统变量等等影响选择的因素作出选择。为了在基准SCS/天线判断、最佳端口判断或者定位处理中使用来自特定天线端口的RF数据之前,在冲突概率超出预定门限的SCS/天线上接收传输,无线定位系统最好能核实来自各天线端口的RF数据来自正确的无线发射机。这是通过如下方式确定的,例如,通过解调接收到的信号段以核实诸如MIN、MSID或其它标识信息是正确的,或者拨叫号码或其它消息特征与初始解调传输的SCS/天线所接收到的相匹配。无线定位系统还把在天线端口接收到信号的短段和在主SCS10上接收到的信号关联起来以验证关联的结果是在预定门限之上。如果无线定位系统检测到在整个传输中的SNR方差在预定门限之上,无线定位系统就把传输分成段,并像这里描述的那样测试每个段来验证段中的能量是主要来自己选择定位处理的无线发射机的信号还是来自干扰发射机的信号。即使无线定位系统检测到在特定SCS/天线上已出现部分冲突,无线定位系统仍可在定位处理中选择使用来自该SCS/天线的RF数据。在这些情况下,SCS10使用上面描述的装置来识别接收到的传输中代表来自定位处理选择的无线发射机的的部分,以及接收到的传输中包含信道间干扰的部分。无线定位系统可命令SCS10仅发送或者使用接收到的传输中选定的不包含信道间干扰的段。当只用选定的来自SCS/天线的段确定基线的TDOA和FDOA时,无线定位系统只使用基准SCS/天线上接收到的传输的相应段。无线定位系统继续对基线使用未检测到冲突的所有段。在很多情况下,无线定位系统只使用一部分传输就能完成定位处理,并获得可接受的定位误差。即使使用前面的技术失败了,该发明的选择接收到的适当传输子集的能力以及一段一段执行定位处理的能力使得无线定位系统仍能成功地完成定位处理。多级传递(MultiplePass)定位处理某些应用需要非常快速地获得无线发射机位置的大体估计,可稍后再发送更为精确的位置估计。例如,这对E9-1-1系统很有用,该系统处理无线呼叫,并且必须很快对呼叫路由作出判断,对于显示在E9-1-1呼叫捕获者电子地图终端上的更为精确的位置可等待稍微长一点的时间。无线定位系统用一种新颖的多级传递位置处理模式来支持这些应用。很多情况下,可用更长的传输段通过更长的积分时间间隔增加的处理增益来提高定位精度。但是更长的传输段在SCS10和TLP12中需要更长的处理时间,并且通过SCS10到TLP12的通信接口传输RF数据也要更长的时间。因此,无线定位系统包括这样的装置,用它来标识那些需要快速大致位置估计然后再进行生成更好位置估计的更完全定位处理的传输。重要信号表中包含需要多级传递定位方法的各重要信号的标记。这个标记说明发出请求的位置应用发送初步估计所允许的最大时间,以及发出请求的位置应用发送最终估计所允许的最大时间。无线定位系统通过选择要执行定位处理的传输的子集来执行大致位置估计。例如,无线定位系统可选择主SCS/天线标识的平均SNR最高的段。在用前面描述的方法但只使用传输的子集大致确定位置估计后,TLP12把位置估计转发给AP14,然后AP14把大致估计转发给发出请求的应用,其中用一个标记说明估计是大致的。无线定位系统使用上述的所有方法执行标准定位处理,并转发位置估计,其中用一个标记说明位置估计的最终状态。无线定位系统可在TLP12中的同一DSP上按顺序执行大致位置估计以及最终位置估计,也可在不同的DSP上并行执行定位处理。为了满足发出请求的位置应用的最大时间要求,并行处理是必要的。无线定位系统支持同一无线传输的不同位置应用的不同的最大时间要求。甚短基线TDOA无线定位系统被设计成可在市区、郊区以及农村运行。在农村,当没有足够的来自单个无线载波的小区站点可用时,无线定位系统的SCS10可部署在其它载波或者其它类型塔上的小区站点,包括AM或者FM广播站、寻呼以及双向无线塔。在这些情况下,无线定位系统并不共享无线载波的现有天线,而是要另外安装适当的天线、滤波器和低噪声放大器来匹配要定位的无线传输频带。例如,AM广播站塔可能需要增加800MHz的天线来定位蜂窝带宽的发射机。但是,也有可能出现这些情况,没有可在合理的花费内使用的任何其它类型的塔,那么就必须把无线定位系统部署在无线载波的少数几个塔上。在这些情况下,无线定位系统支持称作甚短基线TDOA的天线模式。在其它天线安装在一个小区站点塔从而把天线放置在距离不到一个波长的位置时这种天线模式将被激活。每个小区站点仅需要增加一个天线,从而无线定位系统使用扇区中的现有接收天线和另外一个紧邻现有接收天线的天线。通常,扇区中的这两个天线的放置方向使得主电波的主轴或者方向线是平行的,这样可精确确定这两个天线元素间的空间。此外,校准SCS10中从天线元素到接收机的两个RF路径。在正常模式下,无线定位系统确定用于距离很多波长的天线对的TDOA和FDOA。对于使用两个不同小区站点天线的基线上的TDOA来说,天线对之间相距成千上万个波长。对于使用同一小区站点上天线的基线上的TDOA来说,天线对间相距几百个波长。在任何一种情况中,TDOA的判断有效地产生对分基线并通过无线发射机的位置的双曲线。当天线相距多个波长时,接收到的信号沿各自独立的路径从无线发射机到各天线,其中经历不同的多径和多普勒变换。但是,当两个天线的相距不到一个波长时,接收的两个信号沿着相同的路径,并经历相同的衰减、多径和多普勒变换。因此无线定位系统的TDOA和FDOA处理通常产生0(或接近0)赫兹的多普勒变换,零到一纳秒的时间差。短时间差和甚短基线上两个天线接收到的信号之间的明确相位差等价。例如,在843MHz,AMPS反向控制信道传输的波长大约是1.18英尺。0.1纳秒的时间差和接收到的大约30度的相位差等价。在这种情况下,TDOA测量生成一条基本呈直线的双曲线,仍通过无线发射机的位置,并且其方向是从甚短基线上两个天线形成的平行线旋转30度的方向。当把单个小区站点上的这个甚短基线TDOA和在两个小区站点间基线上TDOA测量经过组合到一起时,无线定位系统只用两个小区站点就可得到位置估计。用于提高定位精度的带宽监控方法目前,在美国,AMPS蜂窝发射机是主要的无线发射机,并且AMPS反向话音信道传输通常是通过话音和监测音(supervisoryaudiotone)调制的FM信号。话音调制是标准的FM,直接和使用无线发射机的人所说的话音成正比。在典型的交谈中,每个人说话的时间不到35%,也就是说在大部分时间内反向话音信道没有针对话音的调制。不管有没有话音,反向信道不断的由SAT调制,无线通信系统用SAT来监控信道状态。SAT调制速率大约为6KHz。话音信道支持带内消息,它们用于转接控制以及其它应用,比如建立三方呼叫、在接听第一个呼叫的同时接听第二个呼入,或者响应来自无线通信系统的“审计”消息。尽管这些消息在话音信道上传输,但它们具有和控制信道消息类似的特征。这些消息并不经常传输,定位系统忽略这些消息并把精力集中在更普遍的作为重要信号的SAT传输。考虑到上面描述的FM话音和SAT反向话音信道信号的带宽限制带来的困难,本发明的一个目标就是提供一种改进的方法,通过它可用反向话音信道(RVC)信号来定位无线发射机,特别是在紧急情况中。本发明的另外一个目标是提供这样一种定位方法,它允许定位系统避免在测量结果不能满足指定精度和可靠性要求的情况中使用RVC信号来做出位置估计。这节省了系统的资源,并提高了整个定位系统的有效性。这个改善方法基于两种技术。图10A是本发明用反向话音信号测量位置的第一种方法的流程图。该方法包括下面的步骤(i)首先假设使用无线发射机的用户希望定位,或者希望更新或改善位置。例如,如果无线用户拨叫了“911”,寻求紧急帮助。因此,假设用户和位于中央的分配器连接并通信。(ii)当分配器需要特定无线发射机的位置更新时,它通过应用接口向无线定位系统传输带无线发射机标识的位置更新命令。(iii)无线定位系统用一个说明无线定位系统已查询无线通信系统并且已获得为无线发射机分配的话音信道的确认来响应分配器。(iv)分配器指示无线用户拨叫9位或者更多位数的数字然后按下“发送”键。这个序列可能是类似“123456789”或“911911911”之类的。当无线用户拨叫至少9位的序列并按下“发送”键时,对反向话音信道产生两个作用。首先,特别是AMPS蜂窝话音信道,数字拨号导致在话音信道上发送双音多频(DTMF)音调。DTMF音调的调制指数是很高的,并且在DTMF序列的每位数发送期间,通常发射信号的带宽浮动超过+/-10KHz。第二作用在按下“发送”按钮后产生。不管无线用户是否订购了三方呼叫或者其它服务功能,无线发射机都将使用“空白和突发”模式通过话音发送消息,其中发射机暂时停止发送FM话音和SAT,转而发送采用和控制信道(10Kbits曼彻斯特编码)同样方式调制的突发消息。如果无线用户拨叫少于9位的数字,则消息包括大约544位。如果无线用户拨叫9位或者更多数字,消息大约由987位组成。(v)在分配器通知后,无线定位系统将监控话音信道中传输信号的带宽。如前所述,当只发射SAT时,甚至话音和SAT同时发射时,发射的信号中没有足够的带宽来计算高质量的位置估计。因此,无线定位系统预留定位处理资源,一直等到发射的信号超出指定带宽为止。例如,这可设置在8KHz到12KHz的范围内。当发送拨叫数字的DTMF时或者发送突发消息时,带宽通常超过指定的带宽。实际上,如果无线发射机在拨号过程中确实传输DTMF信号,带宽估计会超出指定的带宽很多倍。这就提供了多个执行位置估计的机会。如果无线发射机在拨号过程中没有传输DTMF信号,在按下“发送”时仍发送突发消息,带宽通常会超过指定的门限。(vi)只有当信号的传输带宽超过指定的带宽时,无线定位系统才发起定位处理。图10B是本发明用反向话音信道信号测量位置的另外一种方法的流程图。该方法包括下面的步骤(i)首先假设使用无线发射机的用户希望定位,或者希望更新或改善位置。例如,如果无线用户拨叫了“911”,寻求紧急帮助。因此,假设用户和位于中央的分配器连接并通信。(ii)当分配器需要特定无线发射机的位置更新时,它通过应用接口向无线定位系统传输带无线发射机标识的位置更新命令。(iii)无线定位系统用一个确认响应分配器。(iv)通过向无线发射机发送“审计”或者类似的消息,无线定位系统命令无线通信系统让无线发射机发射。审计消息是无线通信系统从无线发射机接收响应而不需要终端用户操作的机制,也不会导致无线发射机振铃或者报警。接收到审计消息导致无线发射机用一个话音信道上的“审计响应”消息响应。(v)在分配器通知后,无线定位系统将监控话音信道中传输信号的带宽。如前所述,当只发射SAT时,甚至话音和SAT同时发射时,发射的信号中没有足够的带宽来计算高质量的位置估计。因此,无线定位系统预留定位处理资源,一直等到发射的信号超出指定带宽为止。例如,这可设置在8KHz到12KHz的范围内。当发送拨叫数字的DTMF时或者发送突发消息时,带宽通常超过指定的带宽。实际上,如果无线发射机在拨号过程中确实传输DTMF信号,带宽估计会超出指定的带宽很多倍。这就提供了多个执行位置估计的机会。如果无线发射机在拨号过程中没有传输DTMF信号,在按下“发送”时仍发送突发消息,带宽通常会超过指定的门限。(vi)只有当信号的传输带宽超过指定的带宽时,无线定位系统才发起定位处理。用于提高定位精度的组合估计方法通过在无线发射机保持在原地时组合采用多种统计独立的位置估计,可提高无线定位系统的位置估计精度。即使是在无线发射机完全静止的情况下,无线发射机周围的物理和RF环境也是不断变化的。例如,车辆改变位置,另外一个引起位置估计过程产生冲突的无线发射机停止传输或者改变它的位置从而在后面的位置估计中不再引起冲突。因此,即使是在很短的时间内进行的连续传输,无线定位系统所提供的对每次传输的位置估计也会发生变化,并且每次位置估计和其它估计统计独立,特别是在不断变化的环境所导致的误差方面。当针对位置未变的无线发射机进行几次连续的统计独立的位置估计后,这些位置估计将趋于聚集到无线发射机的真实位置周围。无线定位系统使用加权平均或者其它类似的数学构造把这些位置估计组合在一起得到改善的估计结果。通过为每个独立的位置估计指定不同的质量因子来进行加权平均。例如,可根据相关性、置信区间或者定位处理的其它类似测量结果确定各独立估计的质量因子。无线定位系统可使用数种方法来从无线发射机获得多个独立的传输,这些方法包括(i)使用到无线通信系统的用于发送“进行传输”命令的接口;(ii)使用诸如TDMA或者GSM之类基于时隙的空中接口协议的多个连续的脉冲串;或者(iii)把某个时间段中的话音信道传输分成多段,对每个段分别执行定位处理。在无线定位系统增加组合到最终位置估计中的独立位置估计数量的同时,它监控指示聚集质量的统计量。如果统计量低于指定的门限值,那么无线定位系统认为无线发射机保持位置不变。如果统计量增加超过指定的门限值,无线定位系统认为无线发射机位置在变化从而停止执行其它的位置估计。例如,这个指示聚集质量的统计量可以是要组合到一起的单个位置估计以及动态计算出的组合位置估计的标准差计算结果或者均方根(RMS)计算结果。当向发出请求的应用报告位置记录时,无线定位系统用位置记录中的一个域说明组合在一起以生成所报告位置估计的独立位置估计的数量。我们将参照图11A到11D介绍另外一个获得和组合多个位置估计的示例性过程。图11A、11B和11C给出了公知的无线通信系统“发起”、“寻呼响应”以及“审计”序列示意图。如图11A所示,发起序列(由呼叫的无线电话发起)需要两次无线发射机传输,即“发起”信号和“选用(order)确认”信号。响应无线通信系统(例如,MSC)的话音信道分配发送选用确认信号。同样,如图11B所示,寻呼序列包含两次无线发射机传输。该寻叫序列由无线通信系统发起,例如,当其它电话呼叫无线发射机时。在被寻呼后,无线发射机发送寻呼响应;然后在分配了一个话音信道后,无线发射机发送选用确认信号。相反,审计过程使用单个反向传输,即审计响应信号。审计和审计响应序列的好处是不会使响应的无线发射机振铃。下面我们将解释使用这些序列来以更高精度定位电话的方式。例如,根据本发明,不停地向偷来的电话或者使用偷来序列号的电话发送审计信号,强迫它用多个审计响应来响应,从而以更高的精度定位该电话。但是,为了使用审计序列,无线定位系统用它和无线通信系统的接口发送适当的命令,该无线通信系统向无线发射机发送审计消息。无线定位系统还可强迫呼叫终止(挂断),然后再用标准的ANI码回呼无线发射机。可通过口头命令移动用户断开呼叫、通过在地面通信线端来断开呼叫、或者通过向基站发送人工的空中(over-the-air)断开消息,来终止呼叫。这个空中断开消息模拟在移动单元上按下“结束”按钮。回呼调用上面提到的寻呼序列,让电话发起用于位置估计的两次传输。参照图11D,我们总结一下这种新颖的高精度定位方法。首先,进行初始位置估计。接着,采用上面描述的审计或者“挂断并回呼”过程来得到移动单元的响应的传输,然后进行第二次位置估计。使用审计过程还是使用“挂断并回呼”过程取决于无线通信系统和无线发射机是否都已实现审计功能。重复第二步和第三步以获得需要的多次独立位置估计,最后,采用平均、加权平均或者类似的数学构造把多个统计独立的位置估计组合到一起以得到改善的估计结果。通过为每个独立的位置估计指定不同的质量因子来进行加权平均。可根据相关性、置信区间或者定位计算处理的其它类似测量结果确定质量因子。用于提高定位精度的带宽合成方法无线定位系统还能用人工带宽合成技术来提高带宽相对较窄的无线发射机位置估计的精度。例如,该技术可应用到那些使用AMPS、NAMPS、TDMA和GSM空中接口协议的发射机上,这些空中接口协议有很多单独RF信道让无线发射机使用。基于示范的目的,下面的描述将针对AMPS进行详细介绍;但是,很容易改变这里的描述把它应用到其它协议。这种方法依赖这样的原则,即每个无线发射机只在跨一个比无线发射机传输的单个窄带信号的带宽要宽的预定频率带宽的频率上传输窄带信号。这个方法还依赖前面提到的无线定位系统和无线通信系统间的接口,通过它WLS可命令无线通信系统挂断无线发射机或者切换到其它频率或RF信道。通过发送一系列的命令,无线定位系统可促使无线发射机连续切换,并以受控的方式切换到一系列的RF信道,允许WLS为了定位处理把一系列窄带传输信号有效地合成一个带宽更宽的接收信号。在本发明的优选实施例中,带宽合成装置包含用于确定无线发射机传输的宽带相频特征的装置。例如,窄带信号的带宽通常大约为20KHz,频率的预定宽带大约跨度12.5KHz,在这个例子中它是FCC分配给各蜂窝载波的频谱。利用带宽合成,可把TDOA测量结果的分辨率提高1/12.5MHz;亦即,可用时间分辨率是有效带宽的倒数。图12A中显示了无线发射机、校准发射机(如果使用了)、SCS10A、SCS10B、SCS10C和TLP12。校准发射机和三个SCS的位置是已知的前提。信号在图12A中用虚线表示,它由无线发射机和校准发射机传输,在SCS10A、10B和10C上接收,使用前面描述的技术来处理。在定位处理过程中,分别为每个发射机和每个成对SCS10把来自SCS(例如10B)的RF数据和来自其它SCS(例如10C)数据流互相关(在时域或者频域)以生成TDOA估计值TDOA23和TDOA13。定位处理的中间输出是把联合互功率(cross-power)表示为频率(例如R23)的函数的系数集。例如,如果X(f)是在第一站点上接收到的信号x(t)的傅立叶变换,Y(f)是在第二站点上接收到的信号y(t)的傅立叶变换,那么联合互功率为R(f)=X(f)Y*(f),其中Y*是Y的共轭复数。任何频率f的R(f)相位角等于X(t)的相位减去Y(f)的相位。R(f)相位角称作边缘相位(fringephase)。在没有噪声、干扰以及其它误差时,在所观测的(相邻)频带内边缘相位完全是频率的线性函数;该线性函数直线的斜率是用干涉仪测量的组时延或者TDOA;带宽中心频率的截距,等于R(f)的平均相位值等价,在参照整个带宽时称作所观测的边缘相位。在带宽内,边缘相位看成频率的函数。将所获得的校准发射机的系数和所获得的无线发射机的系数组合到一起,对组合结果进行分析分别获得校准的TDOA测量结果TDOA23和TDOA13。在校准过程中,为了消除两者都有的系统误差,从无线发射机的边缘相位中减去校准发射机的边缘相位。因为每个原始的边缘相位本身是在两个SCS10上接收到信号的相位差,所以校准过程通常称作二次差分(double-differencing)测量,把校准的结果称作是经过二次差分过的结果。TDOA估计值T-ij是无线发射机传输的信号在站点i和j之间的到达(TDOA)时间差的最大可能估计值,并针对信号的多径传播效应进行校准和修正。把来自不同小区站点对TDOA的估计组合到一起得到位置估计。众所周知,通过观测更宽的带宽可获得更精确的TDOA估计。通常不可能增加无线发射机传输信号的“瞬间”带宽,但是可以命令无线发射机从一个频率切换到另外一个频率,从而在短时间内可以观测宽带宽。例如,在典型的无线蜂窝系统中,信道313-333是控制信道,其它395个信道是话音信道。在1号话音RF信道(RVC1)上传输的无线发射机的中心频率是826.030MHz,相邻信道的中心频率到中心频率的频率间隔是0.030MHz。分配给典型的7小区频率重用块的各小区的话音信道数量大约是57(即395除以7),这些信道分布在整个395个信道的范围内,相互间距离7个信道。注意用在AMPS系统的每个小区站点具有由FCC分配的扩展到整个12.5MHz带宽的信道。例如,如果我们指定重用模式中各频率集的小区站点为小区“A”到“G”,则分配给“A”小区的信道号可以是1、8、15、22,……,309;把“A”信道号加1就得到分配给“B”小区的信道号;照此类推直到小区G。这个方法在为无线发射机分配话音RF信道,且无线定位系统触发了对来自无线发射机的传输的定位处理时开始。例如,作为定位处理的一部分,TDOA估计值TDOA23和TDOA13组合到一起可能会有0.5微秒的标准差误差。把来自不同的RF信道的测量结果组合到一起的方法利用了TDOA、边缘相位以及无线频率间的联系。用τ来表示组时延或者TDOA的“真实”值,即在没有噪声、多径效应以及任何仪器误差时观测到的值;同样,用φ来表示边缘相位的真实值;用f表示无线电频率。边缘相位φ和τ以及f的关系为φ=-fτ+n(等式1)其中φ的单位是周期,f的单位是Hz,τ的单位是秒;n是一个整数,用来表示二次差分相位测量的固有的完整周期的不确定性。n的值是一个未知的前提,但在相邻频率亦即任何频率的信道之内的观测值是相同的。不同频率上观测到的n的值通常是不同。可从单个频率信道中的观测估计τ值,实际上,这是通过把作为该信道内频率的函数来观测的边缘相位归并到一条直线进行的。最佳直线的斜率是τ估计值的负数。在单一信道情况下,n是常数,从而可对等式1求导,得到dφ/df=-τ(等式2)通过将各信道的φ与f的观测值归并成直线可得到τ的独立估计值,但是当观测两个分离(不相邻)的频率信道,一条直线通常不能适配对应两个信道的φ与f观测结果,因为通常来说两个信道的整数n具有不同的值。但是,在某些条件下,可确定并消除这两个整数值之间的差别,然后用一条直线来适配两个信道上的所有相位数据集。因为它建立在更宽的频率范围基础之上,所以可更好的确定该直线的斜率。在某些条件下,斜率估计的不确定性和频率跨度成反比。在这个例子中,假设已为无线发射机分配话音RF信道1。信道1和416间的无线频差足够大从而开始不能确定对应这些信道的整数n1和n416之间的差。但是,根据其中一个信道或者根据这两个信道中的观测结果,可得到初始TDOA估计值τ0。现在无线定位系统命令无线通信系统让无线发射机从信道1切换到信道8。在信道8接收无线发射机的信号,并对其进行处理以更新或者修正估计τ0值。根据τ0,可计算“理论上的”作为频率函数的边缘相位φ0,它等于(-fτ0)。可计算实际观测到的相位φ和理论上的函数φ0之间的差,其中实际观测到的相位等于通常是一个周期1/50的很小片断内的真实相位φ-φ0=-f(τ-τ0)+n1或n8,取决于使用的信道(等式3)或者Δφ=-Δfτ+n1或n8,取决于使用的信道(等式4)其中Δφ=φ-φ0,Δτ=τ-τ0。等式4的曲线如图12B所示,它描述了信道1和8的Δφ-频率f图,其中Δφ是观测到的边缘相位φ和根据初始TDOA估计值τ0计算的φ0值之间的差。对于信道1的20KHz宽的频带,Δφ-f图通常是一条水平线。对于信道8的20KHz宽的频带,Δφ-f图通常也是一条水平线。这些线段的斜率通常接近于0,因为数值(fΔτ)通常在20KHz内的周期中不会显著变动,因为Δτ是估计值τ0误差的负数。通常误差值不会超过1.5微秒(在本例中它是标准差0.5微秒的三倍),1.5微秒和20KHz的乘积不到一个周期的4%。在图12B中,因为n1和n8间的差可任意大,所以可用信道8的Δφ图垂直替换很大部分的信道1的Δφ图。因为信道1和信道8的Δτ最大可能值(1.5微秒)和信道1与信道8之间的频率间隔(210KHz)的乘积是0.315周期,所以这个垂直替换或者信道1与信道8Δφ平均值之间的差将在n1和n8间的差的真实值±0.3周期的范围内。换言之,差n1-n8等于信道1和信道8的Δφ的平均值间的差,把它取整为最接近的整数。在通过取整过程确定了整数差n1-n8之后,把整数Δφ加到信道8或者从信道1中减去Δφ。信道1和信道8的Δφ平均值之间的差通常和初始的TDOA估计值τ0乘以210KHz相等。信道1和信道8的Δφ平均值之间的差除以210KHz,把结果加到τ0上就得到τ的估计值,即TDOA的真实值;这个新的估计值比τ0更为精确。频率步进和TDOA修正方法可扩展到隔得更远的信道以获得更为精确的结果。如果用τ1来表示从信道1和信道8获得的修正结果,可在刚描述的方法中用τ1替换τ0;无线定位系统可命令无线通信系统让无线发射机切换,比如从信道8到信道36;然后可用τ1来确定整数差n8-n36,并可根据信道1和信道36间的1.05MHz频率范围获得TDOA估计值。估计结果用τ2表示;然后无线发射机从信道36切换到信道112,照此类推。原则上,可跨越分配给蜂窝载波的整个频率范围。当然,该例中使用的信道号(1,8,36,112)是随意选择的。一般的原则是,基于小频率范围(从单个信道开始)的TDOA估计用来解决相隔更远的频率之间的边缘相位差的整数不确定性。后面的频率间隔不应该太大;它受TDOA预先估计不确定性的限制。通常,预先估计值中的最差情况的误差乘以频差不会超过0.5周期。如果由于单信道TDOA估计值的最差情况不确定性超过2.38微秒(等于0.5周期除以0.210MHz)不能跨越分配给特定小区的距离最接近的信道之间的最小频率间隔(比如210KHz),无线定位系统就命令无线通信系统让它促使无线发射机从一个小区站点切换到另外一个小区站点(比如从一个频率组转到另外一个频率组),从而频率级差更小。也有可能识别错两个信道相位差(Δφ)间的整数差,比如因为无线发射机在从一个信道切换到其它信道的过程中移动了。因此,作为检查,无线定位系统可颠倒各切换(例如,在从信道1切换到信道8后,从信道8切换到信道1),并确认确定的整数周期差和“前向”切换的数值相同符号相反。可用单个信道FDOA观测结果的明显非零的速率估计值来推断信道变化中包含的时间间隔。通常,这个时间间隔只是1秒的很小一部分。FDOA估计值误差乘以信道间的时间间隔必须小于0.5周期。无线定位系统通常使用多种冗余,并检查整数错误识别。911的引导重试(DirectedRetry)无线定位系统的另外一个新颖的方面涉及一种“引导重试”方法,该方法和至少支持第一调制方法以及第二调制方法的双模式无线通信系统一起使用。在这种情况下,假设第一和第二调制方法用在不同的RF信道上(亦即,分别用于支持WLS和PCS系统的无线通信系统的信道)。并假设要定位的无线发射机支持两种调制方法,换言之能在支持无线定位系统的无线通信系统上拨叫“911”。例如,引导重试方法可用于这样的系统中,即该系统中没有足够数量的支持无线定位系统的基站,但是运行在和其它无线通信系统相关联的无线定位系统服务的区域中。“第一”无线通信系统可以是一个蜂窝电话系统,“第二”无线通信系统可以是一个在与第一系统相同的区域中运行的PCS系统。根据本发明,当移动发射机当前使用第二调制方法(PCS)并试图发起到911的呼叫时,将导致移动发射机自动切换到第一调制方法,然后在第一无线通信系统指定的RF信道集合种的某个信道上用第一调制方法发起到911的呼叫。采用这种方式,可向系统本身没有无线定位系统服务的PCS或者类似系统用户提供定位服务。用于提高E9-1-1呼叫精度的修改的传输方法无线定位系统位置估计的精度部分地依赖于无线发射机的传输功率和从无线发射机开始的传输时间长度。通常,无线定位系统对传输功率较高和传输距离较长的传输的定位精度要比传输功率较低和传输距离较短的传输的定位精度高。但是,较高传输功率较长传输距离的这些传输特征对于无线通信系统没有什么吸引力。为了使得通信系统内的干扰最小并使得系统潜在容量最大,无线通信系统通常限制无线发射机传输的功率和传输的距离。通过在提高某些类型呼叫(比如无线9-1-1呼叫)定位精度的同时使得无线通信系统最小化传输功率和传输距离,下面的方法可同时满足这两个系统的相互冲突的要求。通常由无线通信系统控制传输功率和传输距离。亦即,无线发射机从无线通信系统基站的前向控制信道接收参数,这些参数定义了到该基站所有电话和所有无线传输的传输功率和传输距离。作为示例,在IS-136(TDMA)类型的系统中,基站可把DMAC参数设置为4,它说明无线发射机控制信道传输的输出功率比整个移动功率(portablepower)低8dB,或者大约100毫瓦。此外,通过最小化包含在传输中的域的数量,基站可把源传输长度设置为两个脉冲串的长度,或者13.4毫秒。为了提高精度,无线定位系统宁愿采用更高功率的传输,比如600毫瓦,三个或者更多脉冲串的长度,这可通过启用注入“认证”、“序列号”或者“移动辅助信道分配报告”之类的域来实现。AMPS、CDMA、GSM以及iDEN系统具有类似的控制网络中传输的参数。可用下面的方法提高无线发射机特定类型呼叫的精度,比如对“9-1-1”的呼叫。因为特定类型的呼叫可能比其它类型的呼叫要求更高的精度,所以这很重要。例如,对9-1-1的无线呼叫要具有联邦通信委员会指定的很特殊的精度要求,它可能并不适用于其它类型的呼叫。因此,这种方法是特地为对9-1-1的无线呼叫发明的,因为在美国,FCC要求“9-1-1”是无线电话紧急情况下可呼叫的唯一号码。该强制性的拨叫序列提供了一个统一的拨叫序列,它用作为紧急呼叫调用该方法的触发。在以前,不同的州和不同的城市沿高速公路标出各种不同紧急号码。用于提高精度的这个方法分为两部分(i)无线发射机内检测一个或多个触发事件并生成不同传输参数集的处理逻辑;(ii)无线定位系统内检测触发事件并用不同的传输参数集处理传输的处理逻辑。在无线发射机内,执行下面的步骤无线发射机监听无线通信系统的前向控制信道,接收广播的所有无线发射机都可使用的“正常”参数;无线发射机的用户通过拨叫一个数字序列并按下“发送”或者“确定”在无线发射机上发起呼叫;无线发射机内的处理器把拨叫的数字序列和存储在无线发射机中的一个或多个触发事件相比较(在这个例子中,触发事件可以是“9-1-1”和/或其变种,比如“*9-1-1”或“#9-1-1”);如果拨叫的数字序列和触发事件不匹配,那么无线发射机在呼叫中就使用标准的传输参数;以及如果拨叫的数字序列和触发事件相匹配,那么无线发射机就使用修改的传输序列。修改的传输序列由下面一个或多个步骤组成无线发射机首先检查前向信道上由基站广播的正常参数,确定正常功率设置和包含在传输中的标准域;无线发射机把它的传输功率在标准参数设置的功率基础上增加一个预定的量,最高可达最大功率设置;无线发射机把传输功率增加到最大功率设置;即使基站已接收到到无线发射机的接入探测,无线发射机仍传输指定数量的额外接入探测(在特定空中接口比如CDMA的情况下);即使在基站的前向信道上广播的边缘参数中没有请求这些域,无线发射机在传输的消息中仍可包含额外的附加域,比如“认证”、“序列号”或者“移动辅助信道分配报告”域;无线发射机在传输的消息之后再传输一个或多个重复的注册消息,其中每个注册消息的长度可以是基站前向信道上广播的传输参数所确定的正常长度,也可通过包含诸如“认证”、“序列号”或者“移动辅助信道分配报告”域之类的附加域把注册消息变得的更长;无线发射机在多个信道中的第一信道上传输消息后再在多个信道中的第二信道上传输一个或多个重复的注册消息,其中每个注册消息的长度可以是基站前向信道上广播的传输参数所确定的正常长度,也可通过包含诸如“认证”、“序列号”或者“移动辅助信道分配报告”域之类的附加域把注册消息变得的更长。在修改的传输序列中的其中一个步骤中,无线发射机在多个信道中的第一信道上传输消息后再在多个信道中的第二信道上传输一个或多个重复的注册消息。该步骤的目的是为无线定位系统提供不同频率上长度更长的传输。通过观测不同频率上的传输,无线定位系统可通过更好地减轻多径效应并降低干扰造成的噪声潜在地改善它的定位处理。在选择多个信道中的第二信道时,无线发射机可这样修改它的信道选择过程选择另一个第二信道,该信道被无线发射机收听范围内第二基站(第二基站可能与第一基站相同,或者是第一基站的另外一个扇区,或者是一个完全不同的基站)使用,并且无线发射机能在其上接收该第二基站广播的前向控制信道;或者选择另一个第二信道,无线发射机在该信道上检测不到任何基站在前向控制信道上活动(在这种情况下,无线发射机传输一个或多个注册消息而不期望从无线通信系统的接收到任何确认)。在一些无线通信系统中,传输的消息可能采用在诸如TDMA、CDMA或者GSM协议中定义的几个消息加密方案之一。设计这些加密方案部分是为了防止系统而不是基站正确地解释无线发射机传输的消息。作为本方法的另外一个步骤,即除了上面介绍的步骤之外的一个步骤,当发生触发事件时,无线发射机不进行加密,传输的所有消息都作为修改传输序列的一部分。通过把触发事件作为无线发射机修改基站广播的正常传输参数的唯一时刻,无线发射机大大减少了修改传输使用的次数,从而大大降低了不使用正常参数所引起的对无线通信系统增加干扰的可能性。例如,这对增加9-1-1紧急呼叫的定位精度而不对其它无线网络呼叫处理产生可测量到的降级很有好处。尽管无线9-1-1呼叫很重要,但无线9-1-1呼叫的实际密度相对于无线网络中的其它呼叫而言是很低的。整个美国,每天每个小区站点平均只有1.5个无线9-1-1呼叫。因此,在9-1-1呼叫过程中增加的传输功率或者传输距离所造成的对无线网络的干扰是很低的。即使使用本发明方法的电话造成干扰,所有现有空中接口协议中的标准呼叫处理都可为受干扰的电话提供退避和重试。因此,这个方法不会造成非紧急呼叫失败。尽管在上面的描述中该方法用于拨叫数字“9-1-1”的呼叫及其变种,实际上它也适用于其它类型的触发事件。最后,触发事件可永久地存储在无线发射机中,可由用户在无线发射机中设定,也可由无线通信系统广播从而让所有的无线发射机都接收到。此外,在修改的传输序列中采取的措施可永久地存储在无线发射机中,可由用户在无线发射机中设定,也可由无线通信系统广播从而让所有的无线发射机都接收到。无线定位系统可独立地解调多个信道上的传输,从而可为了定位目的检测和处理无线发射机发送的所有消息,其中包括上面描述的所有修改的传输序列。在大多数情况(如果不是全部情况)下,基站忽略无线发射机在消息中发送的附加域。此外,附加注册消息对基站的呼叫处理也没有什么影响。因此,上面描述的附加操作的主要目的是在不降级无线通信系统性能的同时帮助无线定位系统提高位置估计的精度。结论本发明的实际范围并不局限于这里披露的这些优选实施例。例如,前面披露的这些无线定位系统优选实施例使用的是说明性的术语,比如信号采集系统(SCS)、TDOA定位处理器(TLP)、应用处理器(AP)等等,不应把它们看成是权利要求保护范围的限制,或者把无线定位系统的发明特征局限于所披露的特定方法和特定装置。此外,本领域的一般技术人员可认识到,这里披露的本发明的可应用到定位系统的很多特征并不是建立在TDOA技术基础上的。例如,无线定位系统使用任务分配列表的那些过程也可用在非TDOA系统中。在非TDOA系统中,就不需要上面所描述的TLP来执行TDOA计算了。同样,本发明也不局限于使用按照上面介绍构造的SCS的系统,也不局限于使用满足上面描述的所有细节的AP的系统。其实,SCS、TLP和AP都是可编程的数据采集和处理设备,它们可具有和这里披露的本发明的概念不同的各种形式。在数字信号处理以及其它处理功能花费急剧降低的情况下,很容易把用于特定函数的处理从这里描述的功能单元(比如TLP)的转到其它功能功单元(比如SCS或AP)而不会改变发明系统的运行。在很多情况下,这里描述的实现的位置(亦即功能单元)仅仅是设计者的首选,而不是硬性的规定。因此,除了它们能清楚地说明限制之外,下面权利要求的保护范围并不意味着局限于上面所描述的特定实施例。权利要求书(按照条约第19条的修改)系统广播,以便多个无线发射机接收。26.如权利要求1中的方法,其特征在于,修改的传输序列中所要采取的操作可在无线发射机中永久存储。27.如权利要求1中的方法,其特征在于,修改的传输序列中所要采取的操作可由用户在无线发射机中编程设定。28.如权利要求1中的方法,其特征在于,修改的传输序列中采取的操作可被无线通信系统广播,以便所有无线发射机接收。29.如权利要求1中的方法,其特征在于,触发事件包括拨叫数字“9-1-1”和/或其变种,比如“*9-1-1”、“#9-1-1”,或者国际上和它等价的数字。30.如权利要求1中的方法,其特征在于,在触发事件发生时,无线发射机不进行加密。31.如权利要求1中的方法,其特征在于,无线发射机使得作为修改传输序列一部分传输的所有消息不进行加密。32.一种用在无线通信系统中的无线发射机,它能执行下面的功能a)从基站接收正常传输参数;b)当无线发射机用户拨叫一数字序列并按下“发送”或“确定”时发起一个呼叫;c)把拨叫的数字序列和存储在无线发射机中的一个或多个触发事件相比较;d)如果拨叫数字序列和触发事件不匹配,就在呼叫中使用正常传输参数;e)如果拨叫数字序列和触发事件匹配,就在呼叫中使用修改的59.如权利要求32中的无线发射机,其特征在于,修改的传输序列中所要采取的操作可被无线通信系统广播,以便所有无线发射机接收。60.如权利要求32中的无线发射机,其特征在于,触发事件包括拨叫数字“9-1-1”和/或其变种,比如“*9-1-1”、“#9-1-1”,或者国际上和它等价的数字。61.一种适于传输修改的传输序列以便于无线定位系统定位的无线发射机,其特征在于,修改的序列包括一个使用和无线通信系统中基站前向控制信道上所广播的正常传输参数不同的传输参数从无线发射机发送出的消息。62.如权利要求61中的无线发射机,其特征在于,无线发射机被编程以执行下面的功能无线发射机从基站接收正常的传输参数;当无线发射机的用户通过拨叫数字序列并按下预定按钮时发起一个呼叫;把拨叫的数字序列和存储在无线发射机内的一个或多个触发事件相比较;如果拨叫的数字序列和触发事件不匹配,则无线发射机就在呼叫中使用正常的传输参数;如果拨叫的数字序列和触发事件匹配,则无线发射机就使用修改的传输序列。63.如权利要求61中的无线发射机,其特征在于,修改的传输序列包括无线发射机把传输功率在正常参数中设置的功率基础上增加一个预定的数值,最高可达最大功率设置。64.如权利要求63中的无线发射机,其特征在于,修改的传输序列包括无线发射机可把传输功率增加到最大功率设置。65.如权利要求61中的无线发射机,其特征在于,即使在基站已向无线发射机确认接收到了接入探测,修改的传输序列仍包括无线发射机传输指定数量的额外接入探测。66.如权利要求61中的无线发射机,其特征在于,修改的传输序列包括无线发射机在传输的消息中包含至少一个附加域,即使在基站的前向信道上广播的标准参数中没有请求这些域。67.如权利要求61中的无线发射机,其特征在于,修改的传输序列包括无线发射机在传输的消息之后跟随一个或多个重复的注册消息。68.如权利要求61中的无线发射机,其特征在于,修改的传输序列包括无线发射机在多个信道的第一信道上传输的消息后在这些信道中另外的第二信道上跟随一个或多个重复注册消息。69.如权利要求66中的无线发射机,其特征在于,附加域是认证域。70.权利要求66中的无线发射机,其特征在于,附加域是序列号域。71.权利要求66中的无线发射机,其特征在于,附加域是移动辅助信道分配报告域。72.如权利要求68中的无线发射机,其特征在于,一个或多个重复的注册消息的长度可以是基站前向信道上广播的传输参数所确定的正常长度。73.如权利要求68中的无线发射机,其特征在于,可通过包含附加域把一个或多个重复的注册消息修改得更长。74.如权利要求68中的无线发射机,其特征在于,一个或多个重复的注册消息的长度可以是基站前向信道广播的传输参数所确定的正常长度。75.如权利要求68中的无线发射机,其特征在于,多个信道中的第二信道被选为无线发射机收听范围内第二基站使用的信道,并且无线发射机能在其上接收第二基站广播的前向控制信道。76.如权利要求68中的无线发射机,其特征在于,多个信道中的第二信道被选为无线发射机检测不到任何基站在前向控制信道上的活动的信道。77.如权利要求61中的无线发射机,其特征在于,触发事件在无线发射机中永久地存储。78.如权利要求61中的无线发射机,其特征在于,触发事件由用户在无线发射机中编程设定。79.如权利要求61中的无线发射机,其特征在于,触发事件被无线通信系统广播,以便多个无线发射机接收80.如权利要求61中的无线发射机,其特征在于,修改的传输序列中所要采取的操作可在无线发射机中永久存储。81.如权利要求61中的方法,其特征在于,修改的传输序列中所要采取的操作可由用户在无线发射机中编程设定。82.如权利要求61中的方法,其特征在于,修改的传输序列中所要采取的操作可被无线通信系统广播无线发射机接收。83.如权利要求61中的无线发射机,其特征在于,触发事件包括拨叫数字“9-1-1”和/或其变种,比如“*9-1-1”、“#9-1-1”,或者国际上和它等价的数字。权利要求1.一种用在无线定位系统(WLS)中定位移动无线发射机的方法,其步骤包括a)无线发射机从基站接收正常的传输参数;b)无线发射机的用户通过拨叫数字序列并按下“发送”或者“确定”在发射机上发起无线呼叫;c)无线发射机内的处理器把拨叫的数字序列和存储在无线发射机内的一个或多个触发事件相比较;d)如果拨叫的数字序列和触发事件不匹配,则无线发射机就在呼叫中使用正常的传输参数;e)如果拨叫的数字序列和触发事件匹配,则无线发射机就使用修改的传输序列。2.如权利要求1中的方法,其特征在于,修改的传输序列包括无线发射机把传输功率在正常参数中设置的功率基础上增加一个预定的数值,最高可达最大功率设置。3.如权利要求1中的方法,其特征在于,修改的传输序列包括无线发射机把传输功率增加到最大功率设置。4.如权利要求1中的方法,其特征在于,即使在基站已向无线发射机确认接收到了接入探测,修改的传输序列仍包括无线发射机传输预定数量的额外接入探测。5.如权利要求1中的方法,其特征在于,修改的传输序列包括无线发射机在传输的消息中包含额外附加域,即使在基站的前向信道上广播的正常参数中没有请求这些域。6.如权利要求1中的方法,其特征在于,修改的传输序列包括无线发射机在传输的消息之后跟随一个或多个重复注册消息。7.如权利要求1中的方法,其特征在于,修改的传输序列包括无线发射机在多个信道中的第一信道上传输的消息后在这些信道中另外的第二信道上跟随一个或多个重复注册消息。8.如权利要求5中的方法,其特征在于,附加域是认证域。9.如权利要求5中的方法,其特征在于,附加域是序列号域。10.如权利要求5中的方法,其特征在于,附加域是移动辅助信道分配报告域。11.如权利要求6中的方法,其特征在于,一个或多个重复注册消息的长度可以是基站前向信道上广播的传输参数所确定的正常长度。12.如权利要求6中的方法,其特征在于,可通过包含附加域把一个或多个重复注册消息修改得更长。13.如权利要求7中的方法,其特征在于,一个或多个重复注册消息的长度可以是基站前向信道广播的传输参数所确定的正常长度。14.如权利要求7中的方法,其特征在于,可通过包含附加域把一个或多个重复注册消息修改得更长。15.如权利要求12或14中的方法,其特征在于,附加域是认证域。16.如权利要求12或14中的方法,其特征在于,附加域是序列号域。17.如权利要求12或14中的方法,其特征在于,附加域是移动辅助信道分配报告域。18.如权利要求12或14中的方法,其特征在于,附加域是容量报告(CapabilityReport)域。19.如权利要求7中的方法,其特征在于,多个信道中的第二信道被选为无线发射机收听范围内第二基站使用的信道,并且无线发射机能在其上接收该第二基站广播的前向控制信道。20.如权利要求7中的方法,其特征在于,多个信道中的第二信道被选为无线发射机检测不到任何基站在前向控制信道上的活动的信道。21.如权利要求19中的方法,其特征在于,第二基站可以和第一基站相同,可以是第一基站的另外一个扇区,也有可能是完全不同的基站。22.如权利要求20中的方法,其特征在于,无线发射机将传输一个或多个注册消息而不期望无线通信系统的任何确认。23.如权利要求1中的方法,其特征在于,触发事件在无线发射机中永久地存储。24.如权利要求1中的方法,其特征在于,触发事件由用户在无线发射机中编程设定。25.如权利要求1中的方法,其特征在于,触发事件被无线通信系统广播,以便多个无线发射机接收。26.如权利要求1中的方法,其特征在于,修改的传输序列中所要采取的操作可在无线发射机中永久存储。27.如权利要求1中的方法,其特征在于,修改的传输序列中所要采取的操作可由用户在无线发射机中编程设定。28.如权利要求1中的方法,其特征在于,修改的传输序列中采取的操作可被无线通信系统广播,以便所有无线发射机接收。29.如权利要求1中的方法,其特征在于,触发事件包括拨叫数字“9-1-1”和/或其变种,比如“*9-1-1”、“#9-1-1”。30.如权利要求1中的方法,其特征在于,在触发事件发生时,无线发射机不进行加密。31.如权利要求1中的方法,其特征在于,无线发射机使得作为修改传输序列一部分传输的所有消息不进行加密。32.一种用在无线通信系统中的无线发射机,它能执行下面的功能a)从基站接收正常传输参数;b)当无线发射机用户拨叫一数字序列并按下“发送”或“确定”时发起一个呼叫;c)把拨叫的数字序列和存储在无线发射机中的一个或多个触发事件相比较;d)如果拨叫数字序列和触发事件不匹配,就在呼叫中使用正常传输参数;e)如果拨叫数字序列和触发事件匹配,就在呼叫中使用修改的传输序列。33.如权利要求32中的无线发射机,其特征在于,修改的传输序列包括无线发射机把传输功率在正常参数中设置的功率基础上增加一个预定的数值,最高可达最大功率设置。34.如权利要求32中的无线发射机,其特征在于,修改的传输序列包括无线发射机把传输功率增加到最大功率设置。35.如权利要求32中的无线发射机,其特征在于,即使在基站已向无线发射机确认接收到了接入探测,修改的传输序列仍包括无线发射机传输预定数量的额外接入探测。36.如权利要求32中的无线发射机,其特征在于,修改的传输序列包括无线发射机在传输的消息中包含额外附加域,即使在基站的前向信道上广播的正常参数中没有请求这些域。37.如权利要求32中的无线发射机,其特征在于,修改的传输序列包括无线发射机在传输的消息之后跟随一个或多个重复注册消息。38.如权利要求32中的无线发射机,其特征在于,修改的传输序列包括无线发射机在多个信道中的第一信道上传输的消息后在这些信道中另外的第二信道上跟随一个或多个重复注册消息。39.如权利要求36中的无线发射机,其特征在于,附加域是认证域。40.权利要求36中的无线发射机,其特征在于,附加域是序列号域。41.权利要求36中的无线发射机,其特征在于,附加域是移动辅助信道分配报告域。42.如权利要求36中的无线发射机,其特征在于,一个或多个重复注册消息的长度可以是基站前向信道上广播的传输参数所确定的正常长度。43.如权利要求37中的无线发射机,其特征在于,可通过包含附加域把一个或多个重复注册消息修改得更长。44.如权利要求38中的无线发射机,其特征在于,一个或多个重复注册消息的长度可以是基站前向信道广播的传输参数所确定的正常长度。45.如权利要求38中的无线发射机,其特征在于,可通过包含附加域把一个或多个重复注册消息修改得更长。46.如权利要求43或45中的无线发射机,其特征在于,附加域是认证域。47.如权利要求43或45中的无线发射机,其特征在于,附加域是序列号域。48.如权利要求43或45中的无线发射机,其特征在于,附加域是移动辅助信道分配报告域。49.如权利要求43或45中的无线发射机,其特征在于,附加域是容量报告域。50.如权利要求38中的无线发射机,其特征在于,多个信道中的第二信道被选为无线发射机收听范围内第二基站使用的信道,并且无线发射机能在其上接收该第二基站广播的前向控制信道。51.如权利要求38中的无线发射机,其特征在于,多个信道中的第二信道被选为无线发射机检测不到任何基站在前向控制信道上的活动的信道。52.如权利要求50中的无线发射机,其特征在于,第二基站可以和第一基站相同,可以是第一基站的另外一个扇区,也有可能是完全不同的基站。53.如权利要求51中的无线发射机,其特征在于,无线发射机将传输一个或多个注册消息而不期望无线通信系统的任何确认。54.如权利要求32中的无线发射机,其特征在于,触发事件在无线发射机中永久地存储。55.如权利要求32中的无线发射机,其特征在于,触发事件由用户在无线发射机中编程设定。56.如权利要求32中的无线发射机,其特征在于,触发事件被无线通信系统广播,以便多个无线发射机接收。57.如权利要求32中的无线发射机,其特征在于,修改的传输序列中所要采取的操作可在无线发射机中永久存储。58.如权利要求32中的无线发射机,其特征在于,修改的传输序列中所要采取的操作可由用户在无线发射机中编程设定。59.如权利要求32中的无线发射机,其特征在于,修改的传输序列中所要采取的操作可被无线通信系统广播,以便所有无线发射机接收。60.如权利要求32中的无线发射机,其特征在于,触发事件包括拨叫数字“9-1-1”和/或其变种,比如“*9-1-1”、“#9-1-1”。61.一种能使用修改的传输序列来定位无线发射机的无线定位系统,其特征在于,修改序列包括一个使用和无线通信系统中基站前向控制信道上所广播的正常传输参数不同的传输参数从无线发射机发送出的消息。全文摘要一种用于为移动装置提供精确定位的无线定位系统,它包括一个信号采集系统(10)、一个TDOA定位处理器(12)、一个应用处理器(14)和一个网络操作控制台(16)。为了使得无线定位系统中的干扰最小,位置确定过程使用修改了的传输参数。文档编号G01S19/46GK1448009SQ01807674公开日2003年10月8日申请日期2001年3月22日优先权日2000年3月31日发明者路易斯·A·斯蒂尔普,罗伯特·J·安德森,约瑟夫·W·希恩申请人:真实定位公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1