组合液体状况监测器和液位传感器的制作方法

文档序号:5865704阅读:123来源:国知局
专利名称:组合液体状况监测器和液位传感器的制作方法
技术领域
本发明涉及传感器,用于实时提供诸如液压油的液体的化学/污染状况的连续电指示,以及内燃机和动力传输装置中使用的润滑油的添加剂损耗、酸化和其它类型的降解的电指示。
背景技术
题为“Fluid Condition Monitor”并且转让给本申请的受让人的共同未决申请(申请号为220,556,申请日为1998年12月23日)中示出并描述了利用阻抗光谱学技术监测液体的此类装置的一个实例。前述装置利用了一个带有交叉指状部件的探头,该探头浸入液体并由交流信号顺序地以低频和较高的频率进行激励。测量在两种频率的激励期间的电压并计算阻抗,高频和低频之间阻抗的差可以用作液体状况的指示,该液体状况可以通过一个阻抗差测量值查找表来确定,该表测量了具有已知状况的液体的阻抗差。所述传感装置或传感器目前利用了一个探头,该探头具有一对相邻且大致平行放置并浸入液体中具有电连接的电极,以使其中一个电极由交流电压顺序地以选定的频率进行激励;并且,根据其阻抗确定的传感或输出电流流经剩余的电极并在剩余的电极中进行检测。
参考图6,其中示出了一个用于确定液体状况的已知系统,例如在R.A.Bauer等人的、标题为“Fluid Condition Monitor”并且受让给本申请的受让人的共同未决申请(顺序号为220,556,申请日期为1998年12月23日)中描述的系统。图6的已知系统采用了顺序地分别以低频和高频交流激励电压(例如,0.1赫兹和10赫兹)激励一个具有一对浸入液体的电极的探头并确定在另一电极中的结果电流和根据测量的电流计算阻抗之差的技术。该系统在图6中总体上表示为1并采用了一个浸入要监测的液体的激励电极2,电流传感或输出电极3与激励电极2靠近且大致平行地交叉指状放置。电极2经由屏蔽导线4接收激励电压,屏蔽导线4电子控制器(图6中未示出)接收一个通过电平位移器5施加的模拟激励信号。输出或电流传感电极3经由屏蔽导线6连接到电流至电压转换器7的输入,电流至电压转换器7的输出通过一个相连接的电平位移器8施加到未示出的电子控制器中提供的模数转换器的输入。电流至电压转换器7具有可变电阻Rf,Rf由一个沿9从未示出的控制器接收的自动量程控制信号来改变。前述共同未决申请中详细示出和描述了系统的信号处理,其细节在此引入作为参考,为简短起见,不再赘述。
单独一组液位传感电极12和13被浸入液体中并由导线14和15连接到未示出的控制器。图6的现有技术的系统包括一个浸入液体的单独的温度传感装置(例如一个热敏电阻器,以标号10表示),该装置通过导线11将一个信号提供给未示出的电子控制器中提供的温度传感信号处理电路。
还已知的是,可以为图6的现有技术系统的探头电极排列提供一种替代配置,以螺旋状或螺旋形相间放置的平行线的形式代替图6中示出的交叉指状电极2和3。M.H.Polcyznsky等人的、题为“Monitoring FluidCondition With A Spiral Electrode Configuration”并且转让给本申请的受让人的共同未决申请09/432,971(申请日期为1999年11月3日)中示出并描述了一种此类用于探头的螺旋形配置。
迄今为止,还需要在采用了状况传感器或监测器的蓄水器或容器中提供液位的电指示的情况下,必须在液体中提供一组额外的电极并因此为相间的有关液体状况传感电极提供支持,以及提供用于电气上确定液位的单独的电子电路。此配置已被证明为成本较高并使液体状况监测探测组件的施工和安装较为复杂,尤其是要监测的液体包含在需要密封的蓄水器或容器中的时候。
特别是,要在机动车的仪表板上采用该液体状况监测传感器用以为传动系统或发动机油箱中的液体的状况提供一个连续的电指示的情况下,从成本和安装复杂化的角度看,在大量的大规模生产中,添加额外的电极用于液位传感的带来的复杂性被认为是费用非常高昂的。因此,长期以来一直需要提供一种传感采用了液体状况监测器的蓄水器或容器中的液位并无需单独的液位传感电极就可以提供液体状况的电指示的方法或装置。

发明内容
本发明解决了上述问题,在一个公共的传感器探头中提供了带有液位传感的组合液体状况传感功能而无需用于传感功能的单独的电极和电路。本发明的传感器利用了一对浸入液体的靠近且大致平行的电极,其中一个电极分成上下两个部分,所述两个部分电连接在一起并共同由一个交流电流顺序地以高频和低频进行激励以确定液体的状况。剩余的电极是传感电极,它向电子控制器提供一个信号电流,用于计算高频和低频激励时阻抗的差异以根据存储的信息确定液体状况。
针对液位传感功能,激励电极被分成单独进行激励的上下两个部分;并且,从每个部分的激励确定的电流的比率和信号相移提供了两个电极是否都浸入液体(即液体处于所需的液位)的指示。如果任一电极高于液位,都将检测到相移的显著增大。电流的比率可以用于指示浸入的电极的比例,用以由此确定液体的中间液位。这样,本发明通过将激励电极分段而在同一探头中将液位传感与液体状况监测相结合,并无需提供用于液位传感功能的单独一组电极。


图1是根据本发明的组合液位传感和液体监测系统的示意图;图2是用于图1的系统的以平面排列的传感探头的图示;图3用于图1的系统的电子控制器功能的框图;图4用于图1的系统的传感探头的一个替代实施例的剖面;图5用于图1的系统的传感探头的另一实施例的剖面视图;以及图6是根据现有技术的液体监测系统的示意图。
具体实施例方式
参见图1至3,本发明的系统总体上以20表示并包括一个总体上由22表示的传感器探头,该传感器探头被浸入包含在容器或蓄水器24中要进行监测的液体中。尽管图1中示出的蓄水器是开口的,但是应当理解,在某些应用中,该蓄水器可以是封闭的或密封的。本发明的系统被连接到一个总体上26表示的电子控制器,该控制器包括用于液体状况监测功能的信号处理电路,前述的共同未决申请中示出并描述了该电路,为简洁起见,此处省略了该电路。
图2中以放大的细节示出了探头22,它包括激励电极28和30,激励电极28和30包括一个下激励电极30和一个上激励电极28,优选地,它们对齐放置并与一个拾取或电流传感电极32相靠近且平行排列。每一电极都具有叉指,分别表示为28a、30a和32a。电流传感电极32连接到屏蔽导线34,屏蔽导线34将一个传感的电流信号提供给电流至电压转换器36的负输入,转换器36具有一个反馈电阻Rf,转换器36的输出沿导线38连接到控制器26的传感的液位信号输入。
激励电极28和30分别通过导线40和42连接到单刀双掷模式控制开关SW1和SW2的公共端。
反馈电阻Rf通过一个来自控制器26沿线39施加的自动量程控制信号来改变,以使探头可以适应由该探头在具有不同阻抗的液体中传感的电流的范围。
探头22可以是独立式的,也可以是以足够维持平面阵列的厚度形成交叉指状部件,如图2中的实线所示。或者,电极28、30和32可以是淀积在一个基板上的薄膜,如图2中的虚线所示并以标号33表示。
每一模式控制开关SW1和SW2都将其“ON”一侧的端子连接到一个公共输入接点44,该公共输入接点44沿线46从控制器26接收一个模拟激励信号。来自控制器26的该模拟激励信号由数字至模拟转换器48产生,转换器48从控制器26的逻辑中央处理单元50接收输入,逻辑中央处理单元50包含用于同时为液体状况监测功能和液位传感功能产生激励信号的电路。逻辑CPU50还向线39提供一个自动量程增益控制信号。
参见图1和3,从接点44向控制器26中提供的多路转换器52的参考输入提供了一个驱动信号参考。沿线38的液位传感信号也施加于多路转换器52的一个单独的输入。多路转换器52还沿线54从一个浸入液体的临近探头22的温度传感元件56接收传感的温度的输入。
SW1和SW2的与“ON”端子相对一侧的端子都分别接地,如图1中所示。SW1和SW2的公共切换端子分别由一个沿线56从逻辑CPU 50输出的模式控制切换信号通过继电器55控制,如图1中所示。应当理解,出于功能说明的目的,图1中的开关SW1和SW2显示为机械开关,但是,SW1和SW2的切换功能优选地通过电子方式实现,并且如果需要可以纳入控制器中。
多路转换器52向模拟至数字转换器58提供了一个输出,模拟至数字转换器58向逻辑CPU50提供了一个输入。逻辑CPU50还连接到控制器26内的程序存储器ROM 60和存储器RAM 64。逻辑CPU50还连接到一个通信接口64,通信接口64沿线68向警报/显示70提供了多个输出,警报/显示70优选地远离控制器26。沿线74向通信接口64的一个输入提供了一个用户起动信号72。
参见图4,探头的一个替代实施例总体上由122表示并包括一个具有管状结构和安装在圆柱形外壳129内的架座125上的上激励电极128。管状的下激励电极130安装在底座127上并在外壳129内从该处向上延伸,与上激励电极132对齐并相间隔。
电流传感电极132具有管状结构并环绕电极128和130。传感电极132具有一个向上延伸通过架座125的部分132a,用于从该处与屏蔽导线34进行电连接。
下激励电极130连接了导线133,导线133从连接处向上延伸通过架座125以用于连接到导线42。类似地,上激励电极128具有一个从连接处向上延伸通过架座125并连接到导线40的部分128a。这样,图4的探头122的激励和传感电极具有共轴布置。
参见图5,其中示出了总体上以222表示的探头的另一实施例,各个电极置于一个中空的管形支撑223上,应当理解,该管形支撑223浸入容器24内的液体中。
探头222具有一线状的以图5中尺寸“P”表示的间距螺旋地绕于支撑223上并向下延伸支撑223的长度的电流传感电极232。线状的上激励电极228以相应的间距“P”绕于支撑223上并与线232间隔相同的距离(以图5中的参照“S”表示);并且线228大约向下延伸到传感电极232的中点并在该处终止。线状的下激励电极230也以间距“P”螺旋地绕于支撑223上并与传感电极228间距“S”,并且向下延伸到传感电极232的下端。
上激励电极228在其上端被连接到导线40;下激励电极230被连接到导线242,导线242通过支撑223中提供的孔225延伸并向上通过支撑管223。传感电极232在其上端被连接到屏蔽导线34’,应当理解,屏蔽导线34’被连接到电流至电压转换器36。
在运行中,开关SW1和SW2被推向图1示出的实线位置,每个开关的公共连接件被推向“ON”一侧的端子以用于液体状况监测运行模式。
对于液位传感功能运行模式,开关SW1通过远程模式控制切换信号被推向图1中示出的虚线的位置而连接至接地端子。激励电流通过开关SW2施加到下电极30,电极32中的传感电流通过控制器26来确定。然后远程模式控制切换信号使开关SW1返回位置“ON”并将开关SW2推向接地位置;然后通过开关SW1激励电极28并确定电极32中的传感的电流。然后逻辑CPU确定由电极28和30的单独的激励传感的电流的比率。采用该比率以确定各个电极浸入液体的比例,作为参考,1∶1的电流比率表示液位完全充满了蓄水器。
在燃料液位低于两个电极的情况下,结果电流将低于一个预先确定的阈值,系统将此情况解释为故障。此外,相移也将增大。
这样,本发明提供了一种独特而新颖的液体状况监测探头,该探头使激励电极在其中点分开并可以交替激励该电极的上部和下部;并且采用传感的电流的比率来确定电极浸入液体的比例用以由此确定液位。液体监测功能是通过共同激励激励电极的上电极部分和下电极部分实现的,由此利用同一电极布置用于这两种功能。
尽管就示出的实施例对本发明进行了上文中的说明,应当理解,可以对本发明作出修改和变更,并且本发明只应由随后的权利要求书来限定。
权利要求
1.一种用于检测蓄水器中液体的状况和液位的方法,包括(a)将第一电极至少部分地置于液体中;(b)将第二电极靠近所述第一电极的上部置于液体中;(c)将第三电极靠近所述第一电极的下部置于液体中;(d)将所述第三电极接地并使用一个交变电压激励所述第二电极,顺序地将所述第二电极接地并使用一个交变电压激励所述第三电极,并且检测来自所述激励的所述第一电极中的电流;(e)比较所检测到的电流并由此确定蓄水器中的液位;以及(f)使用一个频率相对较低的交变电压同时激励所述第二和第三电极并且检测所述第一电极中的电流,确定体阻抗和表面阻抗以及根据已知的状况对阻抗的关系确定液体的状况。
2.如权利要求1所述的方法,其特征在于所述放置所述第二电极的步骤包括使所述第二电极与所述第一电极的上部相互交叉,并放置所述第三电极的步骤包括使所述第三电极与所述第一电极的下部相互交叉。
3.如权利要求1所述的方法,其特征在于在液体中放置所述第一、第二和第三电极的步骤包括将所述电极安装在一个基板上。
4.如权利要求1所述的方法,其特征在于所述放置所述第二和第三电极的步骤包括使所述第一和第二电极的长度相等。
5.如权利要求1所述的方法,其特征在于所述检测所述第一电极中的电流的步骤包括将电流转换为电压。
6.如权利要求1所述的方法,其特征在于所述检测所述第一电极中的电流的步骤包括将一个屏蔽导线连接到所述第一电极。
7.如权利要求6所述的方法,其特征在于所述检测来自所述第一电极的电流的步骤包括将所述屏蔽导线连接到一个电流至电压转换器。
8.如权利要求1所述的方法,其特征在于所述检测来自每一激励的电流的步骤包括确定从所述第二和第三电极的激励检测到的电流的比率。
9.如权利要求1所述的方法,其特征在于所述放置第一、第二和第三电极的步骤包括以螺旋形排列放置所述第一、第二和第三电极。
10.如权利要求1所述的方法,其特征在于所述放置所述第二和第三电极的步骤包括将第二和第三电极与所述第一电极共轴放置。
全文摘要
一种具有一个分成两段并与一个电流传感电极靠近且平行放置的激励电极的组合液体状况监测器和液位传感器。对于液体状况监测模式功能,激励电极的两段都以高频和低频顺序地被激励,在传感电极中传感的电流用于计算阻抗之差以确定液体的状况。对于液位传感模式功能,一个模式切换电路将一个激励电极段接地并激励另一激励电极段,然后将该另一激励电极段接地并激励该一个段,结果电流的比率用于确定电极浸入液体的多少并由此确定液位。
文档编号G01N33/28GK1547660SQ02816599
公开日2004年11月17日 申请日期2002年8月29日 优先权日2001年8月31日
发明者J·E·汉森, E·F·布克, L·Q·邹, V·E·施泰达, P·J·麦金尼斯, B·帕尔, J E 汉森, 布克, 施泰达, 邹, 麦金尼斯 申请人:伊顿公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1