基于光声效应的超声换能器脉冲响应的测量方法

文档序号:6112438阅读:301来源:国知局
专利名称:基于光声效应的超声换能器脉冲响应的测量方法
技术领域
本发明属于超声换能器的参数检测技术领域,特别涉及一种基于光声效应的超声换能器脉冲响应的测量方法。
背景技术
超声检测技术已被广泛应用在结构缺陷探测、定位以及监测结构内部损伤过程、研究材料断裂机理等工程领域中。然而,现在许多实验室及现场试验仍然采用非标准的或未经标定的超声换能器及设备,导致很难对不同实验室的测量结果进行比较,也很难得出定量的实验结果。因此,测量和标定超声换能器的特性是发展定量声学无损检测技术的重要内容之一,同时也是评价并改善换能器特性的基础,这一工作既为换能器使用者、也为制造者所关注。
超声换能器的脉冲响应是超声换能器最基本的参数之一,超声换能器把超声波转变为电信号,产生的电信号等于入射超声和换能器脉冲响应的卷积,所以要精确得到待测超声,就必须知道超声换能器的脉冲响应,通过超声换能器电信号和脉冲响应的逆卷积运算,即可得到待测超声。但是,目前,由于技术所限,所有的超声换能器生产商,都无法提供超声换能器的脉冲响应,只能提供超声换能器的频率响应,而频率响应只是脉冲响应的模,通过输入不同频率的标准正弦超声波来确定。

发明内容
为了解决上述现有技术中存在的不足之处,本发明的目的在于提供一种基于光声效应的超声换能器脉冲响应的测量方法。该方法操作简单,可快速给出超声换能器的脉冲响应。
本发明通过下述技术方案实现,基于光声效应的超声换能器脉冲响应的测量方法包括如下步骤用一束脉冲激光均匀照射一个标准吸收体激发超声,待测的超声换能器接收此超声信号,并转变为电信号e(t),则超声换能器的脉冲响应h(t)为h(t)=e(t)⊗[cL2aRsin(θ)*I′(t)]θ=arc(L-ctR),]]>其中a为标准吸收体的吸收系数,R为标准吸收体的半径,c是声速,t为时间,L为待测的超声换能器距标准吸收体中心的距离,表示逆卷积运算,I′(t)为光电传感器测量入射激光时间分布函数I(t)的一阶导数。
为了更好地实现本发明,所述脉冲激光的脉宽为1微秒~1纳秒。所述标准吸收体为吸收均匀的薄圆柱体;所述标准吸收体用染色的凝胶制成,按下述方法制备而成水100毫升、琼脂5克、墨水1滴,加热至沸腾,自然冷却而成;所述标准吸收体的高度为0.5~1毫米,标准吸收体的直径为5毫米~10毫米。所述墨水可为红、黄、蓝、黑等各色墨水。
所述脉冲激光入射方向与标准吸收体的高度方向平行,即脉冲激光入射方向与标准吸收体的底面垂直。所述超声换能器测量面的法线方向与标准吸收体的底面平行,超声换能器与标准吸收体位于同一平面。所述标准吸收体和超声换能器均置于水中,以达到声阻抗匹配。
基于光声效应的超声换能器脉冲响应的测量装置由脉冲激光器、扩散片、标准吸收体、超声换能器、信号采集卡及计算机组成,脉冲激光器发出的激光由扩散片扩散为照度均匀的光,照射标准吸收体,用待测的超声换能器接受超声信号通过信号采集卡传给计算机,所述标准吸收体和超声换能器均置于水槽中。
本发明根据光声效应理论,当用脉冲激光照射吸收体时,吸收体吸收光能引起温升,温升导致热膨胀而产生超声波,这就是光声效应。当用脉冲激光照射一个点源吸收体时(点源吸收体体积为无限小的吸收体),距点源r0处的超声信号记为Ppoint(t),Ppoint(t)=ar0I′(t-r0c),]]>a为点源吸收体的吸收系数,t表示时间,c是声速,I′表示入射激光时间分布函数的一阶导数。假定用超声换能器来探测此超声信号,h(t)是超声换能器的脉冲响应,则超声换能器探测到的电信号epoint(t)可表示为,epoint(t)=Ppoint(t)*h(t),星号表示卷积。对于一个吸收系数分布为A(t)的吸收体,可以看作是许多点源吸收体的叠加,这样的吸收体产生的超声信号P(t),可以看作是许多点源吸收体产生的超声信号的叠加P(t)=Ppoint(t)*∫∫A(ct,θ,φ)(ct)2sinθdθdφ=(1t∫∫A(ct,θ,φ)(ct)2sinθdθdφ)*I′(t)]]>t表示时间,c是声速,θ和φ分别为球坐标中的极角和方位角。用脉冲响应为h(t)的超声换能器来探测此超声信号,则产生的电信号e(t)为e(t)=(1t∫∫A(ct,θ,φ)(ct)2sinθdθdφ)*I′(t)*h(t)]]>(公式1)因此如果用一个已知吸收系数分布的吸收体作为标准,同时用一个已知时间分布函数的激光来照射,即在公式1中,(1t∫∫A(ct,θ,φ)(ct)2sinθdθdφ)]]>和I′是已知的,那么,用一待测的超声换能器来检测激发的超声信号,设超声换能器检测到的电信号为e(t),则有h(t)=e(t)⊗[(1t∫∫A(ct,θ,φ)(ct)2sinθdθdφ)*I′(t)].]]>在本发明的实验安排下,∫∫A(ct,θ,φ)(ct)2sinθdθdφ=2aRsin(θ)|θ=arc(L-ctR)]]>(∫∫A(ct,θ,φ)(ct)2sinθdθdφ表示对吸收体的球面积分,球心为超声换能器的接收面,球面半径为ct;对于本发明中的标准吸收体来讲,可以简化为平面弧线积分,并且因为样品与探测器较远,弧线积分可近似为直线积分,同时由于样品为均匀吸收体,所以设吸收系数分布函数等于常数a,故∫∫A(ct,θ,φ)(ct)2sinθdθdφ=2aRsin(θ)|θ=arc(L-ctR)),]]>R表示标准吸收体的半径,a表示吸收系数,设L为待测的超声换能器距标准吸收体中心的距离,由于本实验安排中,L远大于标准吸收体的尺寸,所以 可以近似为 故h(t)=e(t)⊗[cL2aRsin(θ)*I′(t)]θ=arc(L-ctR),]]>表示逆卷积运算,可以计算出超声换能器的脉冲响应h(t),这就是本发明的理论基础。
本发明与现有技术相比,具有以下优点和有益效果本发明方法理论清晰,操作简单,可给出脉冲响应,既包括超声换能器声电转换的强度分布,又包括声电转换的相位分布。本发明基于光声效应测量超声换能器脉冲响应的方法可以较精确的测量出超声换能器的脉冲响应,对提高超声换能器的性能及超声换能器的使用都有重要的意义,具有良好的产业化前景。


图1为本发明的测量装置侧视图。
图2为本发明的测量装置俯视图。
具体实施例方式
下面结合附图及实施例对本发明作进一步详细的描述。
如图1、图2所示,本发明的测量装置由脉冲激光器1(脉冲激光器的脉宽为1微秒~1纳秒)、扩散片3、标准吸收体4、超声换能器5、信号采集卡及计算机6组成。由脉冲激光器1产生的激光束2,经过扩散片3成为均匀照射的光斑9,照射标准吸收体4(标准吸收体按下述方法制备而成水100毫升,琼脂5克,黑色墨水1滴(0.5毫升),加热至沸腾,自然冷却而成;标准吸收体为吸收均匀的薄圆柱体,标准吸收体的高度为0.5~1毫米,标准吸收体的直径为5毫米~10毫米)。脉冲激光入射方向与标准吸收体4的高度方向平行,即脉冲激光入射方向与标准吸收体4的底面垂直。激发的超声用待测的超声换能器5接收,转变为电信号,测得的电信号e(t)通过信号采集卡传给计算机6,就可以得出超声换能器5的脉冲响应h(t),h(t)=e(t)⊗[cL2aRsin(θ)*I′(t)]θ=arc(L-ctR),]]>其中a为标准吸收体4的吸收系数,R为标准吸收体4的半径,c是声速,L为待测的超声换能器距标准吸收体中心的距离,表示逆卷积运算,I′(t)为光电传感器测量入射激光时间分布函数I(t)的一阶导数。超声换能器5测量面的法线方向与标准吸收体4的底面平行,超声换能器5与标准吸收体4位于同一平面。标准吸收体4和待测的超声换能器5置于水槽8中,水槽8中充满水7,标准吸收体4的95%是水,所以标准吸收体4的密度和水的密度非常接近,因此超声波在标准吸收体4的表面不会产生反射,达到声阻抗匹配。
权利要求
1.一种基于光声效应的超声换能器脉冲响应的测量方法,其特征在于包括如下步骤用一束脉冲激光均匀照射一个标准吸收体激发超声,待测的超声换能器接收此超声信号,并转变为电信号e(t),则超声换能器的脉冲响应h(t)为h(t)=e(t)⊗[cL2aRsin(θ)*l′(t)]θ=arc(L-ctR),]]>其中a为标准吸收体的吸收系数,R为标准吸收体的半径,c是声速,L为待测的超声换能器距标准吸收体中心的距离,表示逆卷积运算,I′(t)为光电传感器测量入射激光时间分布函数I(t)的一阶导数。
2.根据权利要求1所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述脉冲激光的脉宽为1微秒~1纳秒。
3.根据权利要求1所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述标准吸收体为吸收均匀的薄圆柱体。
4.根据权利要求3所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述标准吸收体按下述方法制备而成水100毫升、琼脂5克、墨水1滴,加热至沸腾,自然冷却而成。
5.根据权利要求3所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述薄圆柱体高度为0.5~1毫米,直径为5毫米~10毫米。
6.根据权利要求1所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述脉冲激光入射方向与标准吸收体的高度方向平行,即脉冲激光入射方向和标准吸收体的底面垂直。
7.根据权利要求1所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述超声换能器测量面的法线方向与标准吸收体的底面平行。
8.根据权利要求1所述的基于光声效应的超声换能器脉冲响应的测量方法,其特征在于,所述标准吸收体和超声换能器均置于水中。
全文摘要
本发明公开了一种基于光声效应的超声换能器脉冲响应的测量方法,该方法用一束脉冲激光均匀照射一个标准吸收体激发超声,超声换能器接收此超声信号,并将超声信号转变为电信号,则由超声换能器产生的电信号和入射激光时间分布函数的一阶导数及标准吸收体的吸收系数分布之间的逆卷积运算,可求出超声换能器的脉冲响应。本发明可以精确的测量出超声换能器的脉冲响应,对提高超声换能器的性能及超声换能器的使用具有重要的意义,具有良好的产业化前景。
文档编号G01N29/30GK1831528SQ20061003420
公开日2006年9月13日 申请日期2006年3月10日 优先权日2006年3月10日
发明者王博 申请人:暨南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1