场效应磁传感器的制作方法

文档序号:6026326阅读:92来源:国知局
专利名称:场效应磁传感器的制作方法
技术领域
本发明的各个方面涉及磁传感器,以及更具体地,涉及场效应磁传感器。
背景技术
磁传感器在各种应用和工业中越来越重要。例如,通常在汽车应用中实现磁传感器。无刷直流电机、角度传感器(例如,与磁阻传感器组合以用于360度的感测)、电流传感器、发动机和变速器传感器、磁停车传感器、防抱死刹车系统(Anti-lock Braking System, ABS)传感器和胎压传感器被广泛用于现代车辆中。已将磁传感器用于这些和其他应用中, 以用于改善舒适度和安全性。因为磁场容易穿透大多数的材料,所以磁传感器在汽车应用中尤其有用。磁传感器还对污垢和例如可能对光传感器的适当操作而言是挑战的其他条件非常地不敏感。检测磁场强度和/或磁场方向的传感器是基于各种不同物理机制和技术的。对于使用传感器的具体实现,可以例如根据可检测的磁场范围和应用面积来选择传感器的类型,并且尺寸、构造、技术和功耗是附加选择标准。例如,一些传感器采用可以常规工业集成电路(IC)工艺来制造的双极型晶体管和场效应晶体管。尽管在这些和其他应用及工业中十分有用,但是很多磁传感器对于检测小磁场或磁场中的小变化较为不敏感。这种特性可能限制磁传感器的应用。

发明内容
各种示例实施例涉及用于包括以上讨论的多种器件和应用的场效应磁传感器。根据示例实施例,场效应磁传感器包括衬底中的第一和第二源极/漏极端子,衬底中的第三源极/漏极端子,以及第一和第二源极/漏极端子之间的沟道区,其中由漂移区来隔离沟道区。沟道区处于未偏置的状态时抑制经由漂移区的在第一和第二源极/漏极端子中的每个源极/漏极端子与第三源极/漏极端子之间的电流流动。与沟道区相邻的栅极 (或独立栅极)偏置沟道区,使得沟道区允许经由漂移区的在第三源极/漏极端子与第一和第二源极/漏极端子中的每个源极/漏极端子之间的电流流动。传感器对磁场作出响应, 以当处于偏置状态时使得在第三源极/漏极端子与第一和第二源极/漏极端子之一之间传送的电流量大于在第三源极/漏极端子与第一和第二源极/漏极端子中的另一个源极/漏极端子之间传送的电流量。另一示例实施例涉及具有两个η+端子和衬底中的η讲电子库(electron reservoir)端子的磁传感器,每个η+端子包括半导体衬底中的η+掺杂区。两个ρ讲区位于 η+端子与η阱电子库端子之间,每个ρ阱区抑制在η阱电子库与η+端子之间的电流流动。 对于每个P阱区,P+阱接触区位于衬底的上表面,并且与P阱区相连。轻η型掺杂材料在衬底中,并延伸至P阱区之间。栅极氧化物在衬底上方,并且在轻η型掺杂材料和每个ρ阱区的上部沟道区的上方,以及栅电极在栅极氧化物和沟道区的上方。栅电极被配置为响应于施加至栅电极的电压来控制沟道区处的电荷密度,以在沟道区中创建反型层(inversionlayer)来使电流经由轻η型掺杂材料在沟道区之间的一部分在η阱电子库端子与η+端子之间流动。另一示例实施例涉及用于操作场效应磁传感器的方法,所述场效应磁传感器具有半导体衬底中的第一、第二和第三源极/漏极端子。处于导通状态时,偏置与第一和第二源极/漏极区直接相邻的沟道区,以在沟道区中创建反型层并且在第一和第二源极/漏极区中的每个源极/漏极区与沟道区之间的漂移区之间、以及经由漂移区与第三源极/漏极端子传送电流。电流流动对磁场作出响应,以使得在第三源极/漏极端子与第一和第二源极 /漏极端子之一之间传送的电流量大于在第三源极/漏极端子与第一和第二源极/漏极端子中的另一个源极/漏极端子之间传送的电流量。处于截止状态时,沟道区被用于减弱第三源极/漏极端子与第一和第二源极/漏极区中的每个源极/漏极之间的电流流动。在一些实现中,相对于第三端子选择性地偏置第一和第二端子,以控制第三端子与第一和第二端子中每个端子之间的电流流动方向。


以上讨论并非旨在描述本公开的每种实施例或每种实现。附图和以下描述也是对各种实施例进行举例说明。考虑结合附图的以下详细描述,可以更完整地理解各种示例实施例,其中图I示出了根据本发明示例实施例的场效应磁传感器。图2示出了根据本发明另一示例实施例的针对场效应磁传感器的作为所施加的栅极电压的函数的漏极电流的曲线图。图3示出了根据本发明另一示例实施例的针对场效应磁传感器的作为所施加的栅极电压的函数的场效应磁传感器的端子之间的电流位移的曲线图。图4示出了根据本发明另一示例实施例的作为所施加的栅极电压的函数的场效应磁传感器的灵敏度的曲线图。图5不出了根据本发明另一不例实施例的双沟道NMOS传感器。图6不出了根据本发明另一不例实施例的双沟道反转NMOS传感器。
具体实施例方式尽管本发明能够适应各种修改和备选形式,但是已经通过举例在附图中示出了本发明的具体细节,并且将对本发明的具体细节进行详细的描述。然而,应该理解地是本发明不局限于特定实施例描述的发明。相反,本发明覆盖落在包括权利要求所限定方面的本发明范围内的所有修改、等价物和备选。此外,贯穿本文档所使用的术语“示例”是说明性而非限制性的。本发明被认为是可应用于多种不同类型的磁传感器以及与传感器一起使用的相关设备和系统。尽管不必如此限制本发明,但是可以通过使用本上下文对示例的讨论来理解本发明的各个方面。根据示例实施例,场效应磁传感器包括两个相应端子和第三端子,并且经由针对每个相应端子的沟道区来在第三端子与每个相应端子之间传送电流。沟道区位于相应端子之间,并且响应于通过栅极对沟道区提供的偏置来与相应端子传送(例如,去向相应端子和/或来自相应端子的)电流。还通过漂移型区来分离沟道区,所述漂移型区一般独立于栅极和通过栅极施加的任意偏置来传送电流。传感器将相应端子的相应电流流动限制在偏置沟道区中。在没有磁场的情况下,经由偏置沟道区在第三端子与每个相应端子之间流动的电流大致相等。在存在磁场的情况下,经由偏置沟道区在第三端子与相应端子之一之间流动的电流大于在第三端子与相应端子中的另一端子之间流动的电流。可以(例如经由至相应端子的接触区来)感测并使用该差分电流,以检测磁场的存在。在一些实现中,相应端子是漏极端子,而第三端子是源极端子。在其他实现中,相应端子是源极端子,而第三端子是漏极端子。在任一情形下,在存在磁场的情况下,针对每个相应端子,经由偏置沟道区的电流流动将受到不同程度的影响。此外,可以通过(例如, 经由与沟道电容性耦合的栅电极来)控制偏置的施加,来逐应用地调谐场效应磁传感器的灵敏度。可以各种方式中的一种或多种方式来实现如上所讨论的第三端子。在一些实施例中,第三端子是半导体衬底中的掩埋端子,可以将所述掩埋端子实现为电子源(例如,深η 阱)。在其他实施例中,在两个或多个端子之间分离第三端子,其中,所述两个或多个端子相连或被配置为当不存在磁场时对每个相应端子提供合并的并且大致相等的电流。在一些实施例中,传感器包括将相应端子与第三端子隔离的阱区和处于未偏置状态的沟道之间的漂移区,其中阱区的由漂移区和相应的第一或第二端子定界的针对每个端子的部分形成的沟道区。当偏置漂移区与相应端子之间的阱区时,这部分阱区工作,以实现在漂移区与相应端子之间传送电流的反型区,其中,漂移区还与第三端子电耦合。在其他实施例中,漂移区具有与相应端子相同的极性,掺杂阱区的极性与相应端子的极性相反。阱区将漂移区与相应端子隔离,并且当处于未偏置状态时减弱或阻止经由漂移区的在第三端子与相应端子之间的电流流动。当(经由栅极)偏置沟道中的阱区时, 在漂移区与相应端子之间形成反型层以使电流流动。各种实施例涉及如上所讨论的传感器,其中,反型层和(在适当的情况下)沟道区本身的尺寸受到限制,从而限制了在相应区与第三端子之间流动的电流量。在一些示例中, 由一个或多个栅电极来控制反型层(例如,以形成厚度小于大约IOOnm或小于大于20nm的薄反型层),其中所述一个或多个栅极经由沟道与栅极之间的电介质材料来与沟道电容性耦合。在其他示例中,诸如以上讨论的掺杂阱区之类的掺杂区被用于限制沟道区的尺寸及沟道区中流动的电流量。在其他示例中,配置和/或操作栅极和沟道区,以产生将去向/来自相应区的电流限制到限制值的反型层。在一些实施例中,设置每个沟道的物理结构以限制反型区。例如,可以在窄沟槽中形成沟道区,或者在finFET型器件的fin型区中形成沟道区,其中沟道延伸至衬底上方。在这种应用中,可以将对沟道区的偏置施加限制在沟道的一部分(例如,fin区的上部),以响应于施加至沟道的偏置来限制沟道中形成的反型层的宽度。现在转到附图,图I示出了根据本发明另一示例实施例的场效应磁传感器100的截面。传感器100包括第一端子110和第二端子112,以及处于垂直结构中的第一和第二端子下方的衬底130中的第三端子120。栅极140在栅电介质材料142的上方,所述栅电介质材料142将栅极与沟道区174和176以及漂移区161隔离。此外,尽管示出了在沟道区174和176上方延伸的连续栅极,但是可以将栅极140分离为在相应沟道区上方的独立部件(例如,如以下所进一步讨论的,不必须向在沟道之间的漂移区161提供偏置)。阱区170和172位于第一和第二端子110和112的下方,并且与第一端子和第二端子110和112相邻,以抑制在端子110和120之间以及端子112和120之间的相应电流。 针对阱区170和172的相应高掺杂接触区171和173被配置为根据施加至接触区的电位来固定阱区的电位。阱区170和172的上部形成相应的沟道区174和176,所述沟道区174和 176处于未偏置状态时如上一样抑制电流。栅极140偏置沟道区174/176中与栅电介质材料142相邻的部分,以促进如虚线 111和113所示的端子110与120之间以及端子112与120之间的相应的电流流动。所述电流流动取决于所施加的电压(例如,端子120处的电压高于或低于端子110和112处的电压)。偏置在阱区170和172的上部沟道区174和176中分别创建反型层。例如,栅极140 可以施加偏置,以与场效应晶体管相类似的方式来控制电介质材料142与沟道区174/176 之间的氧化物/硅界面处的电荷密度。电流流过施主区160、区160中与沟道区174/176相邻的漂移部分161以及在阱区170和172的沟道中且与栅电介质层142相邻的前述反型层。可以设置施加至栅极140的偏置量,以控制每个沟道区174/176中的反型层的尺寸以及相应的传感器100中的电流量。在一些实现中,传感器100还包括控制器180,所述控制器180控制和/施加对栅极140的偏置。例如,还可以耦合控制器180以对相应的接触区171和173施加电位,以及控制器180还可以与端子110和112耦合以从端子110和 112读取输出。示出了作为示例示出的具有极性区的传感器100,以及可以利用交替区(例如,针对不同的载流子类型的交替P型和N型区)来实现传感器100。在这种应用中,端子110与 120之间以及端子112与120之间的电流流动可以是与通过虚线111和113所示出的方向相反的方向。此外,使用比所示出的所有部件要少的部件或者使用附加部件来实现一些实施例,例如,以上在图I的描述之前描述的那些实施例,或者在本文任何其他地方(例如,权利要求中)描述的实施例。根据端子110和112是高η+掺杂的并且工作为漏极端子且端子120是工作为电流源端子(如电子库一样)的深η阱区的实施例,传感器100如下工作。衬底130是P型衬底,并且电流通过轻掺杂η-施主层160在深η阱区120与漂移区161之间流动。阱区 170和172是处于未偏置状态时减弱或阻止电子流抵达端子110和112的P阱区,并且阱区170和172还将这种电子流限制在沟道区174和176中邻近栅电介质层142的小反型层 (例如,10-30nm厚)中。接触区171和173是重掺杂p+区,所述高掺杂P+区相应地形成针对阱区170和172的接触区,以用于固定(设置)阱区的电位。在没有磁场的情况下,从源极120注入的总电流在两个漏极端子110和112之间大致平分,漏极端子110和112处的输出电流的差分读出(例如,经由控制器180)将不揭示任何信号。由栅氧化物142、端子110或112和轻掺杂η-施主层160的η-漂移区161来对沟道区174和176定界。这些沟道区174/176是电子耗尽型的,并且不可以携带任何电流。在这种情形下,由漏极端子110/112、源极端子120和栅极140形成的整个晶体管是处于截止状态的情形,并且在两个漏极端子处没有检测到电流。当向栅极140施加足够的电压时,左方和右方的沟道区174和176变为反型的,并且将轻掺杂漂移区161与η+漏极端子110和112相连。在这种情形下,晶体管是处于导通状态的情形,并且在相应的漏极端子处可以观察到电流。总的导通电流取决于器件的几何形状(例如,沟道长度。漏极至漏极的距离)和掺杂分布。在存在磁场以及当晶体管处于导通状态时,载流子经受到洛伦兹力,该洛伦兹力引起了载流子磁通朝向两个漏极端子110和112之一的偏斜,磁场的方向与载流子磁通正交(例如,磁场与图I中的图平面垂直)。这种载流子磁通朝向两个漏极端子110和112之一的偏斜引起了漏极端子之间的可检测的电流位移(displacement)。电流及其偏移在晶体管处于截止状态的情形时可以忽略不计,而当晶体管处于导通状态的情形时增大,这允许通过施加至栅电极的电压来开通和关断传感器。通过感测两个漏极端子110和112处的电流差,可以检测磁场强度值(例如,所述磁场强度值与电流111和113之间的差相对应)。传感器110的灵敏度与电流位移、磁场和驱动场效应晶体管的总电流相关。更精确地,由如下等式给出传感器的灵敏度
AT5=了^(等式 D
Is * D其中,Λ Id表示漏极端子110和112处的电流位移(111-113),Is表示输入源极电流,以及B表示施加的磁场的磁通密度。在一些实现中,将控制器180编程或配置为执行计算,以输出与以上等式I表示的传感器灵敏度相对应的值。在本文所讨论的这些和其他上下文中,可以通过使用诸如本文所描述的计算机处理器或其他逻辑电路之类的逻辑电路来实现控制器180。传感器100被配置为利用在顶部η+接触区(端子110,112)处施加的正电压来工作,或者利用施加至本文所讨论的端子120处的正电压来工作,以有效地在端子之间互换源极/漏极功能,从而有效地互换经由111、113所示的电子流方向。因此,在一些实施例中, 端子120是用作源极的深η阱,将电流或电压源150可选地耦合在深η阱120层和GND端子之间。在其他实施例中,经由一组电流测量部件来将端子110/112与正电压相连,使得将电流从端子110/112导入至端子120。还可以将端子120实现为深η阱漏极(其中将电流源连接在正电源或偏置电压与漏极之间),并经由一组电流测量部件将(源极)端子110/112 连接至GND端子,使得电流从漏极(120)导入源极(110/112)。可以执行这些方法,以促进期望的偏移量校正。在一些实现中,控制器180被配置为如上所述的控制对端子110/112 和120的电压偏置和/或电流源的施加。可以调制和/或限制区160中如虚线111和113所示的载荷子垂直流动的部分的宽度。例如,可以通过对端子120施加适当极性的电压或电流源来实现这种调制和/或限制。在一些实现中,可以通过经由接触区171和173将阱170和172相对于源极(例如,端子120)负偏置来控制区160中载荷子流动的垂直部分的宽度。尽管示出了一个器件,但是可以在公共传感器装置中实现两个或多个这种器件 100。每个器件可以被定向为按照期望的方向来检测磁场。例如,可以将两个正交结构并入 X和Y方向来感测相应的磁场。可以各种方式设计、制造和测试如本文所描述的传感器。在一些实现中,使用CMOS 技术来通过数字地提取用于磁传感器仿真的掺杂分布来执行仿真。可以使用精细对称仿真网格(fine symmetric simulation mesh)来避免与数字仿真相关的不对称,所述不对称即使在没有施加磁场的情况下也会导致漏极端子处非物理上的电流位移。图2示出了根据本发明另一示例实施例的针对场效应磁传感器的作为所施加的栅极电压的函数的漏极电流的曲线图200。例如,可以使用诸如图I所示的传感器100之类的传感器,通过在与氧化物/半导体平面相平行的方向施加20mT的磁场来获得曲线图200。 当栅极电压足以反转氧化物/硅界面的阱区(例如,174、176处的170、172)时,不能忽略不计的漏极电流开始流动,以及洛伦兹力的效应通过漏极端子(例如,110、112)处的电流位移显现出来。图3示出了根据本发明另一示例实施例的针对场效应磁传感器的作为所施加的栅极电压的函数的场效应磁传感器的端子之间的电流位移的曲线图300。例如,可以通过使用诸如图I所示的传感器100之类的传感器来获得具有相应电流位移的曲线图300。图4示出了根据本发明另一示例实施例的作为所施加的栅极电压的函数的场效应磁传感器的灵敏度的曲线图400。例如,该灵敏度例如可适用于诸如图I所示的传感器 100之类的传感器以及如上所描述的20mT的磁场。图5示出了根据本发明另一示例实施例的双沟道NMOS传感器500。例如,可以使用一个或多个上述手段实现传感器500,其中包括结合图I描述的手段,作为示例,利用相似的附图标记来指示一些或所有相似部件(例如,540和140都是栅极)。在绝缘体上娃 (SOI)的结构中形成传感器500,所述绝缘体上硅(SOI)的结构具有在掩埋绝缘体上方的硅区。传感器500包括源极端子510和512,以及分离的漏极端子520A和520B。通过p 阱区570/572隔离源极端子510/512。多晶硅栅极540具有下部氧化层并且位于沟道区的上方,所述沟道区分别包括位于氧化层附近的上部P阱区。将针对P阱区570/572的接触区571/573与相邻接触区隔离,并且所述接触区571/573可用于对P阱区施加电位。栅极540被配置为将偏置电容性地耦合至P阱区570/572的由源极端子510/512 和轻掺杂η-施主层560的上部漂移区来定界的上部。该偏置在P阱区中栅极下方形成了反型层,并且该偏置允许在源极端子510/520与漏极端子520Α/520Β之间的经由施主层560 的电流流动。所述电流流动对磁场作出响应,使得在漏极端子520Α/520Β处检测到的差分值在没有磁场的情况下大约是零,而在存在磁场的情况下是非零。图6不出了根据本发明另一不例实施例的双沟道反转NMOS传感器600。传感器 600与传感器500类似,具有在功能上互换的相应源极和漏极端子。具体地,端子610和612 是漏极端子,而端子620Α和620Β是源极端子(例如,相对于源极端子510/512,和漏极端子 520)。因此,对传感器600的操作与如上使用图5讨论的操作类似,具有从漏极至源极的电流。可以通过使用各种器件和方法来实现本文所描述的各种控制器和控制方法。例如,可以通过使用离散逻辑电路、全可编程电路和半可编程电路(比如,可编程逻辑阵列 (PLA)、专用处理器或被特殊编程的通用处理器)中的一个或多个实现逻辑和处理电路。这些和其他电路部件的组合也是可能的,并且这些和其他电路部件的组合在包括以上所讨论的实施例的各种实施例的范围之内。例如,可以各种基于电路的形式(比如,通过对数据处理电路模块的使用)来实现图I中的控制器180。通过在高速可编程计算机/处理器电路或具有离散电路或半可编程电路的组合电路(例如,现场可编程门阵列、可编程逻辑器件/ 阵列)中的实现来举例说明这些系统。 基于以上的讨论和说明,本领域技术人员将容易认识到在不严格地遵循本文所示出和描述的示例实施例和应用的情况下,可以对本发明进行各种修改和改变。例如,源/漏组合的不同取向可能是与P型或η型衬底相关,其中所述ρ型或η型衬底具有与基于空穴或基于电子的掺杂相对应的电流。此外,可以其他结构实现如附图中所示的垂直传感器,以及可以在形状上或构成上改变传感器部件的顺序/取向,以获得相似的功能(例如,与电流流经的小栅控沟道区的控制相关)。这种修改没有背离保护本发明的真正精神和范围,本发明的真正精神和范围包括以下权利要求所述的精神和范围。
权利要求
1.一种场效应磁传感器,包括在半导体衬底中的第一、第二和第三源极/漏极端子;分别针对第一和第二源极/漏极端子中的每个源极/漏极端子的沟道区,所述沟道区被配置为处于未偏置的状态时,抑制在第一和第二源极/漏极端子中的相应源极/漏极端子与第三源极/漏极端子之间的电流流动;漂移区,在衬底中,并隔离相应的沟道区;栅极,被配置为偏置沟道区以在相应的沟道区中创建反型层,所述反型层使在第三源极/漏极端子与相应的第一或第二源极/漏极端子之间的电流经由漂移区流动;以及传感器,所述传感器对磁场作出响应,以当沟道区处于偏置状态时,使得在第三源极/ 漏极端子与第一和第二源极/漏极端子之一之间传送的电流量大于在第三源极/漏极端子与第一和第二源极/漏极端子中的另一个源极/漏极端子之间传送的电流量。
2.如权利要求I的传感器,还包括衬底中的第一掺杂区,所述第一掺杂区被配置和布置为将去向或来自第一源极/漏极端子的电流的流动限制为经由反型层在第一源极/漏极端子与漂移区之间的电流流动,以及衬底中的第二掺杂区,所述第二掺杂区被配置和布置为将去向或来自第二源极/漏极端子的电流的流动限制为经由反型层在第二源极/漏极端子与漂移区之间的电流流动。
3.如权利要求I的传感器,由漂移区与第一和第二源极/漏极端子之一来为沟道区定界,所述沟道区被分别配置为处于未偏置状态时,抑制在第三源极/漏极端子与第一和第二源极/漏极端子之间的电流流动,以及处于偏置状态时,允许经由面向栅极的反型区在第三源极/漏极端子与第一和第二源极/漏极端子之间的电流流动。
4.如权利要求3的传感器,其中,每个沟道区是相应的较大阱区的一部分,每个较大阱区相应地延伸在第一和第二源极/漏极端子的下方和周围,以将相应端子的电流流动限制在沟道区。
5.如权利要求3的传感器,其中,每个沟道区是相应的较大阱区的一部分,每个较大阱区相应地延伸在第一和第二源极 /漏极端子的下方和周围,以将相应端子的电流流动限制为流经沟道区,每个较大阱区与高掺杂接触区相连,所述高掺杂接触区被配置为固定阱区的电位以减弱经由阱区的电流流动,以及栅极以固定电位偏置沟道区,以创建反型层。
6.如权利要求I的传感器,还包括输出电路,所述输出电路与第一和第二源极/漏极端子相连,并被配置为在没有磁场的情况下,输出来自第一和第二源极/漏极端子的大约是零的差分值,以及在存在磁场的情况下,输出来自第一和第二源极/漏极端子的非零差分值。
7.如权利要求I的传感器,其中,传感器被配置为将第三源极/漏极端子与第一和第二源极/漏极端子中任一源极/漏极端子之间的电流流动限制为通过栅极在沟道区中创建的反型区的电流流动。
8.如权利要求I的传感器,其中,第三源极/漏极端子包括两个接触区和在源极/漏极端子以及沟道区的下方的下层衬底区,其中所述两个接触区与第一和第二源极/漏极端子相邻并电绝缘,并且在接触区与沟道区之间的电流流过所述下层衬底区。
9.如权利要求I的传感器,其中,在绝缘体上硅的衬底的掩埋绝缘体上的硅层中形成源极/漏极端子和沟道区,第三源极/漏极端子包括两个接触区,所述两个接触区与第一和第二源极/漏极端子相邻并电绝缘,以及硅层被配置为经由沟道区传送在第三源极/漏极端子与第一和第二源极/漏极端子中的每个源极/漏极端子之间的电流。
10.如权利要求I的传感器,其中,在绝缘体上硅的衬底的掩埋绝缘体上的硅层中形成源极/漏极端子和沟道区,第三源极/漏极端子包括从硅的上表面延伸至掩埋绝缘体的掺杂区,以及硅层被配置为经由沟道区传送在第三源极/漏极端子与第一和第二源极/漏极端子中的每个源极/漏极端子之间的电流。
11.如权利要求I的传感器,其中,在绝缘体上硅的衬底的掩埋绝缘体上的硅层中形成源极/漏极端子和沟道区,第三源极/漏极端子包括从硅的上表面延伸至掩埋绝缘体的掺杂区,沟道区是相应的P阱区的一部分,所述P阱区还在相应的第一和第二源极/漏极端子的下方、以及硅层的位于P阱区与掩埋绝缘体之间的部分的上方延伸,以及硅层被配置为经由在P阱区的下方以及在P阱区之间延伸的电流路径以及沟道区中的反型层来传送在第三源极/漏极端子与第一和第二源极/漏极端子中的每个源极/漏极端子之间的电流。
12.如权利要求I的传感器,其中第一和第二源极/漏极端子是漏极区,而第三源极/ 漏极端子是源极区。
13.如权利要求I的传感器,其中第一和第二源极/漏极端子是源极区,而第三源极/ 漏极端子是漏极区。
14.如权利要求I的传感器,其中,传感器被配置为通过使电流在漂移区的在沟道区之间延伸的部分流动来使电流在第三源极/漏极端子与第一和第二源极/漏极端子中的每个源极/漏极端子之间流动,以及至少一个端子被配置和布置为响应于施加至所述至少一个端子的偏置来调制漂移区中电流流经部分的宽度。
15.如权利要求I的传感器,还包括控制器,所述控制器被配置为对栅极施加电压,以控制栅极来偏置沟道区,以创建反型层。
16.如权利要求I的传感器,其中第一、第二和第三端子被配置为响应于第三端子处的电压大于第一和第二端子处的电压,使电流从第三端子向第一和第二端子中的每个端子流动,以及响应于第三端子处的电压小于第一和第二端子处的电压,使电流从第一和第二端子中的每个端子向第三端子流动。
17.—种磁传感器,包括两个η+端子,每个η+端子包括半导体衬底中的η+掺杂区;衬底中的η阱电子库端子;两个P阱区,在η+端子与η阱电子库端子之间,每个P阱区被配置为抑制在η阱电子库与η+端子之间的电流流动;分别针对每个P阱区的P+阱接触区,位于衬底上表面并与相应的P阱区连接;轻η型惨杂材料,在衬底中并在P讲区之间延伸;栅极氧化物,在衬底上并且位于轻η型掺杂材料和每个P阱区的上部沟道区的上方;以及栅电极,在栅极氧化物和沟道区的上方,栅电极被配置为响应于施加至栅电极的电压来控制沟道区处的电荷密度,以在沟道区中创建反型层来使在η阱电子库端子与η+端子之间的电流经由轻η型掺杂材料在沟道区之间的部分流动。
18.—种用于操作场效应磁传感器的方法,所述场效应磁传感器具有半导体衬底中的第一、第二和第三源极/漏极端子,所述方法包括处于导通状态时,偏置与第一和第二源极/漏极区直接相邻的沟道区,以在沟道区中创建反型层,并传送在第一和第二源极/漏极区中的每个源极/漏极区与位于沟道区之间的漂移区之间以及漂移区与第三源极/漏极端子之间的电流,电流流动对磁场作出响应,以使得在第三源极/漏极端子与第一和第二源极/漏极端子之一之间传送的电流量大于在第三源极/漏极端子与第一和第二源极/漏极端子中的另一个源极/漏极端子之间传送的电流量;以及处于截止状态时,使用沟道区来减弱第三源极/漏极端子与第一和第二源极/漏极区中的每个源极/漏极区之间的电流流动。
19.如权利要求18的方法,还包括对至少一个端子施加偏置,以调制漂移区中的电流路径的宽度,从而将漂移区中的电流流动限制到所述电流路径。
20.如权利要求18的方法,还包括相对于第三端子选择性地偏置第一和第二端子,以控制第三端子与第一和第二端子中每个端子之间的电流流动方向。
全文摘要
根据本发明的场效应磁传感器促进了高灵敏的磁场检测。根据一个或多个示例实施例,通过使用针对第一和第二端子中的每个端子的独立沟道区中的反型层来控制在第一和第二源极/漏极端子与第三源极/漏极端子之间的相应的电流流动。响应于磁场,使得在第三源极/漏极端子与第一和第二源极/漏极端子之一之间传送的电流量大于在第三源极/漏极端子与第一和第二源极/漏极端子中的另一个源极/漏极端子之间传送的电流量。
文档编号G01R33/02GK102608547SQ20111042950
公开日2012年7月25日 申请日期2011年12月20日 优先权日2010年12月21日
发明者吉尔贝托·库拉托拉, 安科·黑林格, 维克多·齐伦 申请人:Nxp股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1