一种氧指数测定仪的制作方法

文档序号:5924853阅读:219来源:国知局
专利名称:一种氧指数测定仪的制作方法
技术领域
本实用新型涉及对材料燃烧所需氧指数进行測定的技术领域,特别是ー种氧指数測定仪。
技术背景 氧指数测定仪可以测定多种材料如塑料、橡胶、纺织织物、木材、泡沫材料和其它聚合物材料的氧指数。氧指数(LOI)是指在规定的条件下,材料在氧氮混合气流中进行有焰燃烧所需的最低氧浓度。以氧所占的体积百分数的数值来表示。根据国家标准GB/T2406. 2-2009《塑料用氧指数法測定燃烧行为》其测试原理是指定尺寸的试样垂直支撑在一个规定尺寸的透明燃烧筒内,其内有一定浓度自下向上按规定流速流动的氧和氮的混合气体,用点火器点燃试样上端,试样燃烧时开始计吋,并观察试样燃烧情況,火焰熄灭时记录燃烧时间和燃烧长度,通过和国家标准中规定的数值相比较确定实验結果。实际测试中,首先根据试样在空气中燃烧情况估计ー个初始氧浓度,然后根据实验结果通过“升-降法”原理,逐步找到试样燃烧所需最低氧浓度。目前,氧指数测定是主要是采用以下两种方法进行的方法一通过反馈控制氧气和氮气的流量来改变氧浓度。LOI =X 100%公式中LOI为氧指数,O2示氧气流量L/min, N2表示氮气流量L/min。測定原理參见说明书附图4. 1,氧气和氮气分别经过开关阀、减压阀、手动调节阀或带流量反馈的自动调节阀、玻璃转子气体流量计,进入气体混合装置,经混合后导入燃烧筒,测试时操作人员根据试样估计ー个氧浓度,然后通过双手同时不断调节两个手动调节阀,或者通过计算机自动控制控制两个自动调节阀,并观察转子流量计上的刻度,直到达到设定的氧浓度值所需氧氮气的流量,然后再点燃燃烧筒内的试样,试样燃烧时同时按下计时器,记录燃烧时间,或者熄灭后记录燃烧长度。然后和国家标准中的规定数值相比较,然后根据实验结果通过“升-降法”原理,逐步找到试样燃烧所需最低氧浓度。最后根据国家标准中规定的计算方法,人工通过查表、校验、数学统计等步骤得到最后的氧指数。方法ニ 通过最终混合氧气浓度的反馈手动调节氧氮气流量改变氧浓度。測定原理參见说明书附图4. 2,氧气和氮气分别经过开关阀、减压阀、手动调节阀、玻璃转子气体流量计,进入气体混合装置,经混合后导入燃烧筒,在混合装置里安装氧浓度传感器,实时监测混合筒内的氧浓度,测试时操作人员根据试样估计ー个氧浓度,然后通过双手同时不断调节两个手动调节阀,并观察氧传感器的显示值和转子流量计上的刻度,直到达到设定的氧浓度值,并切保证氧氮气的总流量在国家规定范围内,然后再点燃燃烧筒内的试样,试样燃烧时同时按下计时器,记录燃烧时间,或者熄灭后记录燃烧长度。然后和国家标准中的规定数值相比较,然后根据实验结果通过“升-降法”原理,逐步找到试样燃烧所需最低氧浓度。最后根据国家标准中规定的计算方法,人工通过查表、校验、数学统计等步骤得到最后的氧指数。这两种测试方法存在的不足是方法一中通过调节氧氮气流量的方法来确定混合气体氧浓度,忽略了氧氮气的纯度,这种计算方法假定的是初始氧氮气是纯氧和纯氮。当实验人员使用的不是纯氧和纯氮时,按此方法得到的混合气体的氧浓度和期望值差距较大。方法ニ中通过手动调节氧氮流量,控制精度低,需要双手同时操作,同时人眼还要观察氧浓度值和流量值,难度大,整个过程操作复杂,劳动强度大,气体和试样浪费严重。同时,这两种方法还存在着共同缺点忽略了混合气体温度对测试结果的影响,混合气体的温度不能稳定在国家标准规定的范围内。而且实验过程需要经验丰富的操作人员才可以操作,设备不能引导用户自动进行实验,而且对于后期数值计算复杂,需要人工进行计算,对操作人员要求较高。
发明内容本实用新型的目的是针对现有技术存在的不足,提供ー种能够根据最终氧浓度对氧氮气流量进行反馈调节的氧指数测定仪,其调节过程中混合气体的温度相对恒定,且能够自动引导用户进行相应测试步骤,并可对测试数据进行相关处理的氧指数測定仪。为实现上述目的,本实用新型采取的技术方案为ー种氧指数测定仪,包括氧气通道、氮气通道,氧气通道以及氮气通道的出ロ皆连接气体混合筒的入ロ,气体混合筒的出ロ连接燃烧筒;其中,氧气通道的入口与出口之间依次设有氧气流通开关阀和氧气质量流量控制器;氮气通道的入口与出ロ之间依次设有氮气流通开关阀和氮气质量流量控制器;气体混合筒的出口与燃烧筒之间还设有温控仪和氧传感器,温控仪中设有温度传感器;还包括控制器模块和人机接ロ模块;控制器模块控制温控仪对通过温控仪中的气体温度进行调节;同时采集温控仪中温度传感器的检测值以及氧传感器的检测值,并将检测值输出至人机接ロ模块中;人机接ロ模块中包括显示部分、输入部分以及控制部分显示部分的输入端连接控制部分的输出端;输入部分向控制部分输入控制量相关參数值,控制部分根据相关參数值分别计算氧气和氮气的控制量,并将控制量传输至控制器模块中;控制器模块将接收到的氧气和氮气的控制量,分别输出至氧气质量流量控制器和氮气质量流量控制器中。作为ー种改进,氧气通道上氧气流通开关阀与氧气质量流量控制器之间,以及氮气通道上氮气流通开关阀与氮气质量流量控制器之间,均依次设有气体压カ表、气瓶减压阀、过滤筒和稳压阀,稳压阀连接稳压表。具体的,流通开关阀可控制氧气通道或氮气通道的气体流通或断开;本实用新型的控制器模块中还包括模数转换器和数模转换器;控制器模块通过数模转换器将从人机接ロ模块接收到的数字控制量转换成模拟量输出至质量流量控制器中;通过模数转换器将从氧传感器中接收到的检测值转化成数字量输出至人机接ロ模块中。优选的,本实用新型的温控仪中包括换热管和一面与换热管相接触的半导体制冷片;控制器模块向半导体制冷片提供直流电源,并通过控制直流电源的电流输入方向来控制半导体制冷片的正负极翻转,从而实现对换热管中通过的气体进行加温或降温。具体的,半导体制冷片可选用现有技术中的成熟产品,其结构是由两种不同的半导体材料串联而成的电偶,工作原理是利用半导体材料的Peltier效应,当直流电通过两种不同半导体材料串联成的电偶时,在电偶的两端即可分别吸收热量和放出热量,即半导体制冷片在工作时是一面制冷一面加热的,制冷面与加热面的切換可通过改变电源输入的正负极来实现,进而实现由半导体制冷片通过热传导和热交换对换热管及其内部混合气体进行制冷和加热的目的。为实现温控仪的温度控制功能,本实用新型中控制器模块还包括处理器、电源转换器和继电器;处理器控制电源转换器的启动和停止,电源转换器的直流电源输出端通过继电器连接半导体制冷片的电源输入端;处理器通过控制继电器触点的通断控制半导体制冷片电源正负极的翻转。具体的,处理器对电源转换器的工作状态也通过继电器来实现,继电器的触点串接在交流电源输入端与电源转换器的交流电源输入接ロ之间。用于连接半导体制冷片和电源转换器直流输出端的继电器为2个转换型(Z型)继电器,两个继电器的动触点分别连接半导体制冷片的正极和负极,每个继电器的两个静触点分别连接电源转换器的两个电源输出端,本实用新型中2个电源输出端分别为+12V和0V。作为ー种改进,温控仪中半导体制冷片的另一面上有散热器和风扇。可有助于制冷时半导体制冷片的散热,提高制冷的效率。散热器和风扇皆可采用现有成熟产品,散热器为利用热传导原理进行散热。温控仪中的换热管优选为热传导性能和抗氧化性能均较好的紫铜管制作,其入口和出口分别与气体混合筒和氧传感器相连;半导体制冷片与换热器相接触的一面上涂有导热硅脂,半导体制冷片的另一面上设有散热器及风扇相连,皆可提高制热的效率。温度传感器设在换热管的出ロ处,控制器模块采集温度传感器的数值,然后传输至人机接ロ模块的控制部分,再与设定温度值进行比较,根据比较结果判断是否需要改变半导体制冷片的正负极来降温或升温,以实现恒温效果。温度设定值优选为23±2°C。优选的,本实用新型的温控仪中,半导体制冷片的数量为2个,每个半导体制冷片上分別设有ー组散热器和风扇,更好的实现降温时的散热效果。本实用新型中,换热管采用紫铜材料制成。换热管为螺旋形状,半导体制冷片的ー面与螺旋状换热管的全长均有接触。本实用新型中,质量流量控制器、氧传感器均可选用现有的成熟产品;控制器模块向质量流量控制器的控制输入端输出0 5V的电压,并可通过改变此电压值,使得质量流量控制器的输出端输出与输入电压值呈线性对应关系的流量值,同时质量流量控制器控制内部气体流量与输出的流量值相等;氧传感器采用电化学式氧传感器,可采用现有产品管式氧传感器,也可将氧传感器本体置于三通管的其中一个管ロ端部,另外两个管ロ分别连接气体混合筒和燃烧筒,氧传感器检测管内通过的氧气浓度,输出与氧气浓度相对应的电压信号至控制器模块中,然后通过模数转换器转换成数字信号传输至人机接ロ模块的控制部分,用于显示部分的显示,以及对质量流量控制器的反馈控制。人机接ロ模块中的输入部分采用现有成熟键盘产品,显示部分采用现有成熟显示器产品。在应用中,人机接ロ模块的控制部分软件根据现有成熟软件编程技术实现,程序流程包括测试开始时显示部分显示测试步骤,首先要求输入氧气瓶内氧气纯度、氮气瓶内氮气纯度和初始设定氧浓度,操作人员根据试样在空气中燃烧的情况输入一个初始氧浓度;上位机根据以上三个初始值计算氧氮气所需流量的数字信号,并将数字信号发给控制器模块,然后通过数模转换器将数字量转化成模拟量分别发给两个质量流量控制器,控制氧气和氮气的流量;同时氧传感器实时检测氧浓度,并输出电压信号至控制器模块,通过模数转换器将电压信号转换成数字量,并传给人机接ロ模块的控制部分,控制部分通过逻辑运算得到实时的氧浓度,并将得到的实时氧浓度和设定氧浓度进行对比,根据对比结果结合本领域内应用成熟的“模糊控制”算法对输出的控制量进行调整,如当实际浓度高于设定浓度吋,则降低氧气流量,当实际浓度低于设定浓度吋,则升高氧气流量,直到实时氧浓度和设定氧浓度相等;此时操作人员使用点火器点燃试样,同时记录燃烧时间,控制部分的软件中可包括计时子程序,从而实现控制部分可通过燃烧时间自动判断燃烧结果的功能,进而能够通过燃烧结果引导用户进行下一歩操作;最后控制部分采样记录多次试验数值,井根据国家标准的统计学方法进行校验和数据处理,计算出最终氧指数,并保存以供输出。[0027]具体的,人机接ロ模块中,输入部分的初始值与氧浓度的关系为
「っハ axVo+bx(100-VN)L0=----(I);
a+b其中,C0为氧浓度设定值;V。为氧气初始浓度(钢瓶上氧气的纯度)为氮气初始浓度(钢瓶上氮气的浓度);此三个数值即为输入部分向控制部分输入的相关參数值;一単位混合气体中氧气的体积a为a=ご=:;:;;一単位混合气体中氮气的体积b为b=¥g_ :上;其中a+b = I ;混合气体的流量为
p 2S=H ( - ) Xv(2)
2其中V为混合气体的流速,可选择标准中规定的,通过燃烧筒的混合体积流速为V=40mm/s±2mm/s, R为燃烧筒的内径;结合式⑴,则可计算得到氧气的流量为se = S X a = ms X;
V —r白勺^I= S O = I ,Ij 乂 —上述运算由人机接ロ模块的控制部分完成,井根据运算得到的氧气流量和氮气流量,通过现场控制器模块分别控制氧气质量流量控制器和氮气质量流量控制器允许通过的气体量值。有益效果本实用新型通过氧传感器对混合气体的氧浓度进行检測,结合质量流量控制器实现了系统的反馈控制调节氧浓度的检测使用人机接ロ模块、现场控制器模块加传感器的方式实现,检测精度高,响应时间短;人机接ロ模块通过将实时氧浓度和设定氧浓度相比较,不断调节氧、氮气体流量;气体流量的调节采用了人机接ロ模块、现场控制器模块加质量流量控制器的方式实现,质量流量控制器控制精度高,重复性好,保障了装置的寿命。同时本实用新型使用温控仪对混合气体的温度进行恒定控制,减小了因为温度变化对实验结果的影响。此外,本实用新型可将实验步骤融入人机接ロ模块的软件中,从而实现自动引导用户进行试验的功能,无需试验用户经过专业培训。同时可利用软件实现上位机对实验结果的计算、校验等,使得氧指数的试验过程实现了自动化、智能化,提高了测试精度,降低实验劳动强度,也节约了实验材料。

图I所示为本实用新型结构原理示意图;图2所示为本实用新型中温控仪的结构示意图;图3所示为本实用新型中控制模块通过继电器控制温控仪半导体制冷片的电路原理图;图4. I为现有技术中方法一的结构原理示意图;图4. 2为现有技术中方法ニ的结构原理示意图。
具体实施方式
为使本实用新型的内容更加明显易懂,
以下结合附图和具体实施方式
做进ー步说明。结合图1,本实用新型的氧指数测定仪,包括氧气通道01、氮气通道02,氧气通道01以及人机接ロ模块和控制器模块19 ;氮气通道02的出ロ皆连接气体混合筒15的入口,气体混合筒15的出ロ经温控仪16和氧传感器17连接燃烧筒18 ;氧气通道01的入口与出口之间依次设有氧气流通开关阀I、氧气气体压カ表3、氧气气瓶减压阀5、氧气过滤筒7、氧气稳压阀12和氧气质量流量控制器13 ;氧气稳压阀12连接氧气稳压表9 ;氮气通道02的入口与出口之间依次设有氮气流通开关阀、氮气气体压力表3、氮气气瓶减压阀5、氮气过滤筒7、氮气稳压阀12和氮气质量流量控制器13 ;氮气稳压阀12连接氮气稳压表9 ;人机接ロ模块包括显示部分21、输入部分22和控制部分20 ;控制器模块19包括处理器、电源转换器191、数模转换器、模数转换器和继电器。结合图2,本实用新型的温控仪中包括换热管23和一面与换热管23相接触的半导体制冷片24 ;换热管23采用紫铜管等导热性能较好的材料制成,其入口和出ロ分别与气体混合筒15和氧传感器17相连,出ロ处设有温度传感器27 ;半导体制冷片24的数量为2个,每个半导体制冷片24连接ー组散热器25和风扇26,本实施例中,散热器25置于半导体制冷片的上端面上;半导体制冷片24的下端面与换热管23相接触,接触面上涂有导热层,导热层采用硅脂材料。人机接ロ模块中,显示部分21的输入端连接控制部分20的输出端;输入部分22向控制部分20输入控制量相关參数值,控制部分20根据相关參数值分别计算氧气和氮气的控制量,并将控制量传输至控制器模块中;具体的,输入部分输入的相关參数值包括=Q为氧浓度设定值;V。为氧气初始浓度(钢瓶上氧气的纯度);vN为氮气初始浓度(钢瓶上氮气的浓度);其中三个參数值的关系为权利要求1.一种氧指数测定仪,包括氧气通道、氮气通道,氧气通道以及氮气通道的出口皆连接气体混合筒的入口,气体混合筒的出口连接燃烧筒;其特征是, 氧气通道的入口与出口之间依次设有氧气流通开关阀和氧气质量流量控制器;氮气通道的入口与出口之间依次设有氮气流通开关阀和氮气质量流量控制器; 气体混合筒的出口与燃烧筒之间还设有温控仪和氧传感器,温控仪中设有温度传感器; 还包括控制器模块和人机接口模块; 控制器模块控制温控仪对通过温控仪中的气体温度进行调节;同时采集温控仪中温度传感器的检测值以及氧传感器的检测值,并将检测值输出至人机接口模块中; 人机接口模块中包括显示部分、输入部分以及控制部分显示部分的输入端连接控制部分的输出端;输入部分向控制部分输入控制量相关参数值,控制部分根据相关参数值分别计算氧气和氮气的控制量,并将控制量传输至控制器模块中; 控制器模块将接收到的氧气和氮气的控制量,分别输出至氧气质量流量控制器和氮气质量流量控制器中。
2.根据权利要求I所述的氧指数测定仪,其特征是,氧气通道上氧气流通开关阀与氧气质量流量控制器之间,以及氮气通道上氮气流通开关阀与氮气质量流量控制器之间,均依次设有气体压力表、气瓶减压阀、过滤筒和稳压阀,稳压阀连接稳压表。
3.根据权利要求I或2所述的氧指数测定仪,其特征是,控制器模块中还包括模数转换器和数模转换器;控制器模块通过数模转换器将从人机接口模块接收到的数字控制量转换成模拟量输出至质量流量控制器中;通过模数转换器将从氧传感器中接收到的检测值转化成数字量输出至人机接口模块中。
4.根据权利要求I或2所述的氧指数测定仪,其特征是,温控仪中包括换热管和一面与换热管相接触的半导体制冷片;控制器模块向半导体制冷片提供直流电源,并通过控制直流电源的电流输入方向来控制半导体制冷片的正负极翻转,从而实现对换热管中通过的气体进行加温或降温。
5.根据权利要求4所述的氧指数测定仪,其特征是,控制器模块中还包括处理器、电源转换器和继电器;处理器控制电源转换器的启动和停止,电源转换器的直流电源输出端通过继电器连接半导体制冷片的电源输入端;处理器通过控制继电器触电的通断控制半导体制冷片电源正负极的翻转。
6.根据权利要求4所述的氧指数测定仪,其特征是,温控仪中半导体制冷片的另一面上设有散热器和风扇。
7.根据权利要求4所述的氧指数测定仪,其特征是,半导体制冷片与换热管的接触面上涂有导热层。
8.根据权利要求4所述的氧指数测定仪,其特征是,换热管采用紫铜材料制成。
9.根据权利要求4所述的氧指数测定仪,其特征是,换热管为螺旋形状,半导体制冷片的一面与螺旋状换热管的全长均有接触。
专利摘要本实用新型公开一种氧指数测定仪,其包括氧气通道、氮气通道、控制器模块和人机接口模块;氧气通道以及氮气通道皆连接气体混合筒,后经温控仪和氧传感器连接燃烧筒;氧气通道以及氮气通道上皆设有流通开关阀和质量流量控制器;温控仪中设有温度传感器;控制器模块连接温控仪的控制输入端;同时采集温控仪中温度传感器以及氧传感器的检测值,并将检测值输出至人机接口模块中;人机接口模块中包括显示部分、输入部分以及控制部分,输入部分向控制部分输入控制量相关参数值,控制部分根据相关参数值分别计算氧气和氮气的控制量,后输出至控制器模块中;控制器模块根据接收到的控制量来控制质量流量控制器,达到自动调节控制并提高测定精度的目的。
文档编号G01N31/12GK202362282SQ20112035751
公开日2012年8月1日 申请日期2011年9月22日 优先权日2011年9月22日
发明者张赤斌, 李琦 申请人:东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1