一种用于在运行期间更换蓄电池单元的方法

文档序号:5939549阅读:149来源:国知局
专利名称:一种用于在运行期间更换蓄电池单元的方法
技术领域
本发明涉及一种用于在运行期间更换蓄电池的蓄电池单元的方法。
背景技术
在未来不仅在固定的应用中而且在如混合动力和电动车辆的车辆中更多地使用蓄电池系统。为了可以满足对于相应的应用给出的对电压和可提供的功率的要求,将多个蓄电池单元串联连接。因为由这样的蓄电池提供的电流必须流过所有的蓄电池单元并且蓄电池单元仅可以导通有限的电流,所以经常附加地将蓄电池单元并联连接,以便提高最大电流。这可以或者通过在蓄电池单元壳体之内设置更多的单元包(Zellwickeln)或者通过外部连接蓄电池单元来实现。在图1中示出常见的电驱动系统的原理电路图,电驱动系统应用在诸如电动车辆和混合动力车辆中或者也应用在静态应用(例如风力发电装置的转动叶片调节)中。蓄电池110连接至直流中间电路,该直流中间电路由电容器111来缓冲保护。脉冲逆变器112连接至该直流电压中间电路,该脉冲逆变器经由两个可接通的半导体阀和两个二极管在三个输出端上分别提供相对彼此相移的正弦电压,以用于驱动电驱动电机113。电容器111的电容必须足够大,以便使直流中间电路中的电压稳定一时间段,在该时间段中接通可接通的半导体阀中的一个。在一个实际应用如电动车辆中产生位于mF的范围内的高电容。图2在详细的方框电路图中示出了图1中的蓄电池110。多个蓄电池单元连接,并可选地附加地并联连接,以便达到对于各应用所期望的高输出电压和蓄电池电容量。在蓄电池单元的正极与正蓄电池端子114之间连接有充电和分隔装置116。可选地,可以附加地在蓄电池单元的负极与蓄电池负端子115之间连接分隔装置117。充电和分隔装置116以及分隔装置117各包括接触器118和119,其被设置以便用于将蓄电池单元与蓄电池端子分开,从而无电压地连接蓄电池端子。否则,由于串联的蓄电池单元的高直流电压对于维护人员或类似人员产生了巨大的潜在危险。在充电和分隔装置116中附加地设有充电接触器120和与充电接触器120串联连接的充电电阻121。如果蓄电池连接到直流电压中间电路,那么充电电阻121限制电容器111的放电电流。为此首先断开接触器118并且仅闭合充电接触器120。如果在蓄电池正端子114上的电压到达蓄电池单元的电压,那么闭合接触器119,并且必要时断开充电接触器120。问题是,在实际应用中需要高的蓄电池电压,因此必须将多个数量的蓄电池单元串联连接,然而同时随着串联连接的蓄电池单元的数量的增高,整个装置发生故障的危险将提高,因为由于串联连接,单个故障的蓄电池单元可以已经阻止电流通过。因为如上所述的蓄电池系统应用在安全相关的应用中,所以相应地对蓄电池系统的可靠性和可用性提出了高要求。人们把可靠性理解为系统在预定的时间中正确地工作的能力。可用性是在预定的时间点在可运转的状态下找到可修理的系统的概率
发明内容
因此依据本发明提出了一种用于驱动具有多个串联连接的蓄电池模块的蓄电池的方法,其中,每个蓄电池模块包括耦合单元和至少一个连接在所述耦合单元的第一输入端与第二输入端之间的蓄电池单元。所述方法具有至少以下步骤:检测故障的蓄电池单元和包含所述故障的蓄电池单元的蓄电池模块;通过将相应的控制信号输出给所检测的蓄电池模块的所述耦合单元来解耦所述故障的蓄电池单元;在输出侧桥接所述所检测的蓄电池模块;将可运转的蓄电池单元耦合到所述检测的蓄电池模块;以及通过结束将所述相应的控制信号输出给所述所检测的蓄电池模块的所述耦合单元来结束在所述所检测的蓄电池模块的输出侧的桥接。本发明具有的优点在于,能够检测到故障的蓄电池单元并且将其与蓄电池的蓄电池单元的串联连接解耦,从而剩余的可运转的蓄电池单元能够继续作为蓄电池提供输出电压。随后能够将可运转的蓄电池单元耦合到具有故障的蓄电池单元的蓄电池模块并且结束蓄电池模块的解耦。本发明实现了,即使蓄电池单元有实际或即将到来的故障,也可继续驱动蓄电池以及由蓄电池供电或支持的装置并且实现了在运行中对蓄电池进行修理,由此显著地提高了可靠性和可用性。所述方法可以具有移除所述解耦的故障的蓄电池单元的附加的步骤。依据本发明的方法的该变型提供的优点在于,能够任意地经常地更换故障的蓄电池单元而不必提高蓄电池的容量。优选地,所述检测故障的蓄电池单元的步骤包含确定所述蓄电池单元的老化状态的步骤以及将所述确定的老化状态与预定的最大老化状态进行比较的步骤。在此,如果蓄电池单元的老化状态大于所述预定的最大老化状态,那么将所述蓄电池单元视为是故障的。依据本发明的方法的该变型具有的优点在于,能够在早期识别到受故障威胁的蓄电池单元并且在故障之前已经采取用于所述方法的、免中断地继续运行的措施。通常,在本发明的范围中也认为“故障的蓄电池单元”是已经老化超过一定老化程度的蓄电池单元。所述确定蓄电池单元的老化状态的步骤能够包括确定蓄电池电流、蓄电池单元电压和蓄电池单元温度的特别的步骤。蓄电池单元的这些特征参数允许了对蓄电池单元的老化状态的分析,对此在现有技术中已知多种能够在本发明的所述方法的范围中应用的方法。特别优选地,同时执行所述解耦所述故障的蓄电池单元的步骤和在输出侧桥接所述所检测的蓄电池模块的步骤。如果在所述桥接步骤之前执行所述解耦步骤,那么对于该时间段就中断了蓄电池中的电流通过。在相反的顺序下,故障的蓄电池单元将短时地短路,这可能导致所述蓄电池单元或同一蓄电池模块的另外的蓄电池单元的进一步损坏。在依据本发明的方法的优选实施形式中,所检测的蓄电池模块的所述耦合单元执行所述在输出侧桥接所检测的蓄电池模块的步骤。因为所述耦合单元也实施解耦所述故障的蓄电池单元的步骤,所以通过这种方式能够特别简单地确保同时地并且通过控制信号发起地执行两个步骤。为了保护维护人员,特别优选地,在所述解耦所述故障的蓄电池单元的步骤中双极地解耦所述故障的蓄电池单元,从而在所述故障的蓄电池单元或所涉及的蓄电池模块的蓄电池单元的两极中的任一极都不存在剩余的蓄电池单元的高电压。从所述解耦所述故障的蓄电池单元的步骤到所述结束在输出侧的桥接的步骤以减小了的输入电压驱动连接到所述蓄电池的装置。具有减小的功率的运行考虑的情况是,在所提到的时间段期间仅可使用蓄电池的减小了的输出电压并且因此也仅可使用相应地减小了的最大输出功率。本发明的第二方面涉及一种具有控制单元和多个串联连接的蓄电池模块的蓄电池,其中每个蓄电池模块包括耦合单元和至少一个连接在所述耦合单元的第一输入端与第二输入端之间的蓄电池单元。依据本发明,所述控制单元被构造为实施依据第一发明方面所述的方法。本发明的另一方面介绍了一种机动车,其具有用于驱动所述机动车的电驱动电机和与所述电驱动电机连接的依据第二发明方面所述的蓄电池。特别优选地,在此所述蓄电池单元为锂离子蓄电池单元。锂离子蓄电池单元具有在给定的体积中的高单元电压和高能量含量的优点。


根据附图和随后的说明对本发明的实施例进一步阐明,其中,相同的附图标记表示相同或功能上类似的构件。其中:图1示出了根据现有技术的电驱动系统;图2示出了根据现有技术的蓄电池的方框电路图;图3示出了用于蓄电池中的耦合单元的第一实施形式,通过该蓄电池能够执行依据本发明的方法;图4示出了耦合单元的第一实施形式的可能的电路技术上的实现;图5A和5B示出了具有耦合单元的第一实施形式的蓄电池模块的两种实施形式;图6示出了用于蓄电池中的耦合单元的第二实施形式,通过该蓄电池能够执行依据本发明的方法;图7示出了耦合单元的第二实施形式的可能的电路技术上的实现;图8示出了具有耦合单元的第二实施形式的蓄电池模块的实施形式;图9示出了一种蓄电池,通过该蓄电池能够执行依据本发明的方法;以及图10示出了依据本发明的方法的实施变型的流程图。
具体实施例方式图3示出了用于在蓄电池中使用的耦合单元30的第一实施形式,通过该蓄电池能够执行依据本发明的方法。耦合单元30具有两个输入端31和32以及输出端33并且被构造为将输入端31或32之一与输出端33连接并且将其中另一个解耦。图4示出了耦合单元30的第一实施形式的可能的电路技术上的实现,其中设有第一和第二开关35与36。每个开关连接在输入端31或32中之一与输出端33之间。该实施形式提供的优点在于,两个输入端31、32都能够与输出端33解耦,从而输出端33是高阻的,这例如在维修或维护的情况下能够是有用的。此外,能够将开关35、36简单地实现为半导体开关,如MOSFET或IGBT。半导体开关具有有利的价格和高开关速度的优点,从而耦合单元30能够在短时间内对控制信号或控制信号的变化进行反应。图5A和5B示出了具有耦合单元30的第一实施例的蓄电池模块40的两种实施形式。多个蓄电池单元11串联连接在耦合单元30的输入端之间。然而本发明并不限于蓄电池单元11的这种串联连接,也能够仅设有单个蓄电池单元11或设有蓄电池单元11的并联连接或混合串并联连接。在图5A的例子中耦合单元30的输出端与第一端子41连接而蓄电池单元11的负极与第二端子42连接。然而,如在图5B中的几乎对称的设置也是可能的,其中蓄电池单元11的正极与第一端子41连接而耦合单元30的输出端与第二端子42连接。图6示出了用于蓄电池中的耦合单元50的第二实施形式,通过该蓄电池能够执行依据本发明的方法。耦合单元50具有两个输入端51和52以及两个输出端53和54。其被构造为,或者将第一输入端51与第一输出端53连接以及将第二输入端52与第二输出端54连接(并且将第一输出端53与第二输出端54解f禹),或者将第一输出端53与第二输出端54连接(并且在此将输入端51和52解耦)。此外,在耦合单元50的确定的实施形式中这还能够被构造为将两个输入端51、52与输出端53、54分隔并且也将第一输出端53与第二输出端54解稱。然而并不设定,将第一输入端51与第二输入端52连接。图7示出了耦合单元50的第二实施形式的可能的电路技术上的实现,其中,设有第一、第二和第三开关55、56和57。第一开关55连接在第一输入端51与第一输出端53之间,第二开关56连接在第二输入端52与第二输出端54之间并且第三开关57连接在第一输出端53与第二输出端54之间。该实施形式同样提供了以下优点,亦即开关55、56和57能够简单地实现为半导体开关,例如MOSFET或IGBT。半导体开关具有有利的价格和高开关速度的优点,从而耦合单元50可以在短时间内对控制信号或控制信号的变化进行反应。图8示出了具有耦合单元50的第二实施形式的蓄电池模块60的实施形式。多个蓄电池单元11串联连接在耦合单元50的输入端之间。蓄电池模块60的该实施形式并不限于蓄电池单元11的这样的串联连接,也可以仅设有一个蓄电池单元11或设有蓄电池单元11的并联连接或混合的串联并联连接。耦合单元50的第一输出端与第一端子61连接,而耦合单元40的第二输出端与第二端子62连接。相对于图5A和5B的蓄电池模块40,蓄电池模块60具有的优点在于,蓄电池单元11能够通过耦合单元50与剩余的蓄电池两侧地解耦,这实现了在连续的运行中无危险的更换,因为蓄电池单元11的电极上都不具有蓄电池的剩余的蓄电池模块的危险的高的总电压。图9示出了蓄电池的一种实施形式,通过该蓄电池能够执行依据本发明的方法。蓄电池具有带有多个蓄电池模块40或60的蓄电池模块组70,其中,优选地每个蓄电池模块40或60包含以相同方式连接的相同数目的蓄电池单元11。通常,蓄电池模块组70能够包含大于I的蓄电池模块40或60的数量。而且,如果安全条例需要这样,则在蓄电池模块组70的电极上附加地设有如在图2中的充电和分隔装置以及分隔装置。当然,这样的分隔装置依据本发明是不必要的,因为蓄电池单元11与蓄电池连接端的解耦能够通过包含在蓄电池模块40或60中的耦合单元30或50来实现。图10示出了依据本发明的方法的实施变型的流程图。所述方法在步骤SO中开始。在步骤SI中确定蓄电池电流和蓄电池单元电压以及可选地确定蓄电池单元温度。在步骤S2中根据这些特征参数计算所测量的蓄电池单元的老化状态,将该老化状态在随后的步骤S3中与预定的最大老化状态进行比较。在步骤S4中确定是否该测量的蓄电池单元的老化状态大于预定的最大老化状态。如果不大于预定的最大老化状态,那么分支到步骤S5,在其中检查是否存在另外的还必须被检查的蓄电池单元。如果存在另外的这样的蓄电池单元,那么分支回到步骤SI并且检查下一个蓄电池单元。否则,该方法以步骤SlO结束。如果在步骤S4中确定了所测量的蓄电池单元的老化状态大于预定的最大老化状态,那么该蓄电池单元被视为故障的并且以步骤S6继续,在其中通过将相应的控制信号输出给包含该故障的蓄电池单元的蓄电池模块的耦合单元来将该故障的蓄电池单元与其余的串联连接的蓄电池单元或蓄电池模块解耦。同时在步骤S6中在输出侧桥接包含该故障的蓄电池单元的蓄电池模块,从而该蓄电池模块电气去激活并且将剩余的蓄电池模块串联成一个唯一组。在步骤S7中将解耦的故障的蓄电池单元移除并且在随后的步骤S8中将可运转的蓄电池单元耦合到具有故障的蓄电池单元的蓄电池模块。在步骤S9中通过结束将相应的控制信号输出给耦合单元来结束在蓄电池模块的输出侧的桥接,并因此将该可运转的蓄电池蓄电池又纳入到该蓄电池的所有蓄电池单元的串联连接中。
权利要求
1.一种用于驱动具有多个串联连接的蓄电池模块(40、60)的蓄电池的方法,其中每个蓄电池模块(40、60)包括耦合单元(30、50)和至少一个连接在所述耦合单元(30、50)的第一输入端(31、51)与第二输入端(32、52)之间的蓄电池单元(11),所述方法至少具有以下步骤: 检测故障的蓄电池单元(11)和包含所述故障的蓄电池单元(11)的蓄电池模块(40、60); 通过将相应的控制信号输出给所检测的蓄电池模块(40、60)的所述耦合单元(30、50)来解耦所述故障的蓄电池单元(11); 在输出侧桥接所述所检测的蓄电池模块(40、60); 将可运转的蓄电池单元(11)耦合到所述所检测的蓄电池模块(40、60);以及通过结束将所述相应的控制信号输出给所述所检测的蓄电池模块(40、60)的所述耦合单元(30、50)来结束在所述所检测的蓄电池模块(40、60)的输出侧的桥接。
2.根据权利要求1所述的方法,其具有移除所解耦的故障的蓄电池单元(11)的附加的步骤。
3.根据权利要求1或2所述的方法,其中,所述检测故障的蓄电池单元(11)的步骤包含确定所述蓄电池单元(11)的老化状态的步骤以及将所确定的老化状态与预定的最大老化状态进行比较的步骤,其中,如果蓄电池单元的老化状态大于所述预定的最大老化状态,那么所述蓄电池单元是故障的。
4.根据权利要求3所述的方法,其中,所述确定蓄电池单元(11)的老化状态的步骤包括确定蓄电池电流、蓄电池单 元电压和蓄电池单元温度的步骤。
5.根据上述权利要求之一所述的方法,其中,同时执行所述解耦所述故障的蓄电池单元(11)的步骤和所述在输出侧桥接所述所检测的蓄电池模块(40、60)的步骤。
6.根据上述权利要求之一所述的方法,其中,所述所检测的蓄电池模块(40、60)的所述耦合单元(30、50)执行所述在输出侧桥接所述所检测的蓄电池模块(40、60)的步骤。
7.根据上述权利要求之一所述的方法,其中,在所述解耦所述故障的蓄电池单元(11)的步骤中双极地解耦所述故障的蓄电池单元(11)。
8.根据上述权利要求之一所述的方法,其中,从所述解耦所述故障的蓄电池单元(11)的步骤到所述结束在输出侧的桥接的步骤以减小了的输入电压驱动连接到所述蓄电池的>j-U ρ α装直。
9.一种具有控制单元和多个串联连接的蓄电池模块(40、60)的蓄电池,其中每个蓄电池模块(40、60)包括耦合单元(30、50)和至少一个连接在所述耦合单元(30、50)的第一输入端(31、51)与第二输入端(32、52)之间的蓄电池单元(11),其特征在于,所述控制单元被构造为实施依据上述权利要求之一所述的方法。
10.一种机动车,具有用于驱动所述机动车的电驱动电机和与所述电驱动电机连接的、依据权利要求9所述的蓄电池。
全文摘要
本发明提出了一种用于驱动具有多个串联连接的蓄电池模块(40、60)的蓄电池的方法。每个蓄电池模块(40、60)具有耦合单元(30、50)和至少一个连接在所述耦合单元(30、50)的输入端(31、51、32、52)之间的蓄电池单元(11)。在第一步骤中检测故障的蓄电池单元(11)和包含所述故障的蓄电池单元(11)的蓄电池模块(40、60)。接着通过将相应的控制信号输出给所检测的蓄电池模块(40、60)的所述耦合单元(30、50)来将所述故障的蓄电池单元(11)去激活并且在输出侧桥接所述所检测的蓄电池模块(40、60)。在将可运转的蓄电池单元(11)耦合到所述所检测的蓄电池模块(40、60)之后结束在所述所检测的蓄电池模块(40、60)在输出侧的桥接。本发明还涉及一种构造为执行所述方法的蓄电池以及一种具有这种蓄电池的机动车。
文档编号G01R31/36GK103155224SQ201180044947
公开日2013年6月12日 申请日期2011年9月8日 优先权日2010年9月20日
发明者S·布茨曼, H·芬克 申请人:罗伯特·博世有限公司, 三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1