半导体芯片以及半导体芯片的检查方法

文档序号:5946642阅读:320来源:国知局
专利名称:半导体芯片以及半导体芯片的检查方法
技术领域
本发明涉及半导体芯片,尤其涉及构建有通信电路的半导体芯片以及半导体芯片的检查方法。
背景技术
如果无线通信装置中的高频率信号的电平过小,则无法确保充足的传输距离,另一方面,如果电平过大,则有可能对其他的通信造成妨碍,从而会违反电波法规。由此,对于这样的构建有无线通信装置用的高频电路的半导体芯片,在该产品出厂时要进行高频信号电平是否在规定范围内的检查。在进行这样的检查的检查装置(例如,参照专利文献I的图16)中,测试装置200以及测试装置300分别与成为检查对象的通信用半导体集成电路100连接。首先,测试装置300向通信用半导体集成电路100供给测试用高频信号。然后,利用测试装置200获取响应该测试用高频信号从通信用半导体集成电路100发送出的高频 的发送信号,并判定其电平是否在规定范围内,从而判断半导体芯片的优劣。但是,如果使无线电频段那样的高频率的信号在通信用半导体集成电路100与各个测试装置200以及300之间传输,则易受连接通信用半导体集成电路100以及测试装置200 (300)彼此的接点处所产生的电容或者接触电阻的影响,从而产生传输信号电平的损耗。由此,产生了难以测量出准确的信号电平,检查结果的可靠性降低这一问题。另外,若欲通过与通信用半导体集成电路100外部连接的测试装置200准确地检测由该通信用半导体集成电路100输出的高频率的发送信号的电平,则需要装载价格高昂的分析器,从而存在导致成本高这一问题。专利文献I :日本特开2008-228038号公报

发明内容
本申请发明为解决上述那样的问题而提出,目的在于提供一种半导体芯片及其检查方法,能够使用高精度且廉价的检查装置检查构建有通信电路的半导体芯片。本发明的半导体芯片是一种包含承当通信电路的多个功能块的半导体芯片,该半导体芯片具有测试信号供给电路,其根据检查指令向所述多个功能块中的I个功能块供给测试用频率信号;以及外部输出电路,其检测所述I个功能块生成的信号的信号强度,并向外部输出表不该信号强度的强度信号。另外,本发明的半导体芯片的检查方法是利用检查装置检查半导体芯片的半导体芯片的检查方法,该半导体芯片构建有承当通信电路的多个功能块;测试信号供给电路,其向所述多个功能块中的I个功能块供给测试用频率信号;以及外部输出电路,其检测所述I个功能块生成的信号的信号强度,并向外部输出表示该信号强度的强度信号,所述方法具有向半导体芯片供给所述测试用频率信号的第I步骤;以及基于由所述半导体芯片输出的所述强度信号来判定所述I个功能块的特性是否在规定范围内的第2步骤。在本发明中,在检查构建于半导体芯片中的承当通信电路的多个功能块中的I个功能块时,向所述I个功能块供给从外部输入的测试用频率信号来代替本来应输入的信号,并使表示该功能块生成的信号的信号强度的直流电平的强度信号从半导体芯片向外部输出。检查装置向上述半导体芯片供给测试用频率信号,并且基于响应该测试用频率信号的供给而从半导体芯片输出的上述强度信号来判定功能块的特性是否在规定范围内。由此,在半导体芯片以及检查装置间的传输线路上、尤其是在连接点上容易产生电平损耗的高频率的信号不会从半导体芯片侧向外部输出,因此可以进行高精度的检查。另外,由于不需要价格高昂的分析器,所以可以实现成本降低。


图I是表示在本发明的半导体芯片I上连接检查装置2来对构建于该半导体芯片I中的通信电路进行检查以及调整时的系统构成的框图。图2是表示信号强度检测电路15、403的内部构成的一个例子的电路图。

图3是表示由控制部22实施的检查控制流程的一个例子的流程图。图4是表示图I所示的构成的变形例的框图。图5是表示通过检查装置2直接对形成有多个半导体芯片I的半导体晶片3进行各半导体芯片I的检查以及调整时的系统构成的图。图6是表示在本发明的半导体芯片I上连接检查装置2来对构建于该半导体芯片I中的低噪声放大电路301以及混频器302进行检查以及调整时的系统构成的框图。图7是表示在图6所示的构成中,由控制部42实施的检查控制流程的一个例子的流程图。图8是表示在本发明的半导体芯片I上连接检查装置2来对构建于该半导体芯片I中的中间频率滤波器304进行检查以及调整时的系统构成的框图。图9是表示在图8所示的构成中,由控制部42实施的检查控制流程的一个例子的流程图。其中,附图标记说明如下I...半导体芯片;2.检查装置;11、21、402、404、405.输入切换开关;15,403...信号强度检测电路;18,401...增益调整值存储电路;20 > 40 > 40a...高频信号源;22,42...控制部;200、400. 检查辅助电路。
具体实施例方式本发明在构建有承当通信电路的多个功能块的半导体芯片内设置测试信号供给电路,其向作为检查对象的I个功能块供给测试用频率信号;以及外部输出电路,其检测上述功能块生成的信号的信号强度并向外部输出表示该信号强度的强度信号。[实施例]
图I是表示在本发明的半导体芯片I上连接检查装置2来对构建于该半导体芯片I中的无线通信电路进行检查以及调整时的系统构成的框图。在半导体芯片I中,除了无线通信电路之外,还构建有在检查以及调整该无线通信电路时使用的检查辅助电路(包括测试信号供给电路和外部输出电路)。另外,图I强调表示了在无线通信电路中承担发送动作的发送部100和在检查以及调整该发送部100时使用的检查辅助电路200。发送部100包括局部振荡电路9、调制电路10以及高频放大电路14,检查辅助电路200包括输入切换开关11、信号强度检测电路15以及增益调整值存储电路18。发送部100的局部振荡电路9生成高频的局部振荡信号fQ并将其供给给调制电路10。调制电路10将利用应发送的信息信号调制局部振荡信号fQ而得到的调制信号MS供给给检查辅助电路200的输入切换开关11。当经由半导体芯片I的外部端子即端子110 从外部输入的检查指令信号TES为逻辑电平I时,输入切换开关11向高频放大电路14供给经由端子101从外部输入的测试用高频信号TS。另一方面,当检查指令信号TES为逻辑电平0时,输入切换开关11向高频放大电路14供给由调制电路10供给的调制信号MS。即,当进行半导体芯片I的检查时,向端子110固定供给逻辑电平I的检查指令信号TES,另一方面,在通常使用半导体芯片I时,向端子110固定供给逻辑电平0的检查指令信号TES。高频放大电路14生成以对规定的初始增益实施了与增益调整信号GS对应的调整后的增益,对由输入切换开关11供给的调制信号MS或者测试用高频信号TS放大后的信号来作为发送信号TRS。高频放大电路14经由线路L向检查辅助电路200的信号强度检测电路15供给该发送信号TRS,并经由端子102向外部输出该发送信号TRS。此外,在半导体芯片I的非检查时即通常使用时,在该端子102上连接无线发送接收用的天线(未图示)。即,此时由高频放大电路14生成的发送信号TRS经由与端子102连接的天线被无线发送。信号强度检测电路15检测由高频放大电路14供给的发送信号TRS或者经由端子102从外部输入的测试用高频信号TS的信号强度,并经由端子103向外部输出表示该信号强度的强度信号SS。图2(a)或者图2(b)是表示信号强度检测电路15的一个例子的电路图。在图2(a)所示的电路中,上述测试用高频信号TS或者发送信号TRS经由电容器Cl供给给作为MOS (Metal Oxide Semiconductor :金属氧化物半导体)型的FET (Field-Effect Transistor :场效应晶体管)的晶体管Ql的栅极端子。在晶体管Ql的栅极端子上连接有其一端接地的电阻Rl的另一端。在晶体管Ql的漏极端子上施加有电源电压VDD,在其源极端子上连接电流源VI。此外,在晶体管Ql的源极端子上连接有其一端接地的电容器C2的另一端,从该晶体管Ql的源极端子输出强度信号SS。S卩,在图2(a)所示的电路构成中,通过使用了 FET的源极跟随器电路对测试用高频信号TS或者发送信号TRS进行半波整流,从而生成与发送信号TRS或者测试用高频信号TS的峰值电平对应的直流电压。然后,输出该直流电压作为表示发送信号TRS或者测试用高频信号TS的信号强度的强度信号SS。在图2(b)所示的电路中,上述测试用高频信号TS或者发送信号TRS被供给给二极管Dl的阳极端子。在二极管Dl的阴极端子上连接有均为一端接地的电阻R2以及电容器C3各自的另一端。强度信号SS从二极管Dl的阴极端子输出。即在图2(b)所示的电路构成中,通过基于二极管的半波整流电路对测试用高频信号TS或者发送信号TRS进行半波整流,从而生成与发送信号TRS或者测试用高频信号TS的峰值电平对应的直流电压。然后,输出该直流电压作为表示发送信号TRS或者测试用高频信号TS的信号强度的强度信号SS。检查辅助电路200的增益调整值存储电路18存储经由端子104从外部输入的写入增益调整值数据GDW,并向高频放大电路14供给增益调整信号GS,该增益调整信号GS具有与该写入增益调整值数据GDW所表示的增益调整值对应的电平。此外,在通常使用半导体芯片I时,上述端子101、103以及104的每一个为不与外部连接的空端子状态。检查装置2的高频信号源20生成具有上述的局部振荡信号fQ的规格上的频率的测试用高频信号TS,并将其供给给输入切换开关21。当由控制部22供给了逻辑电平0的检查模式信号MOD时,输入切换开关21经由端子23输出上述的测试用高频信号TS,另一方面,当供给了逻辑电平I的检查模式信号MOD时,经由端子24输出该测试用高频信号TS。 此外,上述端子23与半导体芯片I的端子101连接。另外,上述端子24与半导体芯片I的端子102连接。直流电压测量器25当经由端子26从外部输入了强度信号SS时,测量该强度信号SS的直流电压,并将该电压值作为信号强度值TG供给给控制部22。此外,上述端子26与半导体芯片I的端子103连接。增益调整值写入部27生成将由控制部22供给的增益调整值数据GD所表示的增益调整值变换为写入增益调整值存储电路18中的电平后的数据作为写入增益调整值数据GDW,并经由端子28输出该写入增益调整值数据GDW。此外,端子28与半导体芯片I的端子104连接。以下,对基于图I所示的检查装置2的半导体芯片I的检查以及调整动作进行说明。当进行半导体芯片I的检查以及调整时,首先,向半导体芯片I的端子110固定供给逻辑电平I的检查指令信号TES。由此,经由端子101向高频放大电路14供给从外部输入的信号来取代由发送部100的调制电路10发送出的调制信号MS。在该状态下,检查装置2的控制部22按照图3所示的检查控制流程来对构建于半导体芯片I中的发送部100的发送输出进行检查以及调整控制。在图3中,首先,控制部22向输入切换开关21供给逻辑电平I的检查模式信号MOD (步骤SI)。通过执行步骤SI,输入切换开关21经由端子24向半导体芯片I的端子102供给由高频信号源20生成的测试用高频信号TS。由此,构建于半导体芯片I中的信号强度检测电路15检测经由端子102从外部输入的测试用高频信号TS的信号强度,并经由端子103向检查装置2的端子26供给表示该信号强度的强度信号SS。此时,检查装置2的直流电压测量器25测量输入到端子26中的强度信号SS的直流电压,并将该电压值作为信号强度值TG供给给控制部22。此外,半导体芯片I的端子102如上所述是原本用于连接高频放大电路14与发送天线(未图示)的天线端子。即,在检查半导体芯片I时,使用该天线端子即端子102作为用于输入测试用高频信号TS的端子,从而实现要设置于半导体芯片I上的外部端子的数量的减少。然后,控制部22取得由直流电压测量器25供给的信号强度值TG,并将其作为测量值A存储到内置寄存器(未图示)中(步骤S2)。通过执行上述步骤SI以及S2,构建于该半导体芯片I中的信号强度检测电路15检测由检查装置2发送至半导体芯片I的测试用高频信号TS的信号强度。然后,该检测结果被供给给检查装置2侧,并作为测量值A被存储于内置寄存器中。然后,控制部22向输入切换开关21供给逻辑电平0的检查模式信号MOD (步骤S3)。通过执行步骤S3,输入切换开关21经由端子23向半导体芯片I的端子101供给由高频信号源20生成的测试用高频信号TS。由此,半导体芯片I的输入切换开关11向高频放大电路14供给经由端子101从外部输入的测试用高频信号TS。高频放大电路14向信号强度检测电路15供给放大该测试用高频信号TS而得到的发送信号TRS。信号强度检测电路15检测该发送信号TRS的信号强度,并经由端子103向检查装置2的端子26供给表示信号强度的强度信号SS。此时,检查装置2的直流电压测量器25测量输入到端子26中的强度信号SS的直流电压,并将该电压值作为信号强度值TG供给给控制部22。然后,控制部22获取由直流电压测量器25供给的信号强度值TG,并将其作为测量值B存储于内置寄存器(未图示)中(步骤S4)。通过执行上述步骤S3以及S4,高频放大电路14响应从检查装置2侧经由端子101供给给半导体芯片I的测试用高频信号TS来输出发送信号TRS。然后,通过构建于该半导体芯片I中的信号强度检测电路15检测该发送信号TRS的信号强度,并且其检测结果作为测量值B存储到内置于检查装置2的控制部22中的寄存器中。然后,控制部22计算从存储于内置寄存器中的测量值B减去测量值A后的值,即供给给半导体芯片I的测试用高频信号TS的信号强度、与高频放大电路14响应该测试用高频信号TS而发送出的发送信号TRS的信号强度之差,并将其作为高频放大电路14的实际增益值AP存储于内置寄存器(步骤S5)中。然后,控制部22进行实际增益值AP是否在规定范围内的判定(步骤S6)。当在该步骤S6中判定为实际增益值AP不在规定范围内时,控制部22进行实际增益值AP是否在可调整的范围内的判定(步骤S7)。当在步骤S7中判定为实际增益值AP不在可调整的范围内时,控制部22在显示器29上显示表示该半导体芯片I为不合格品的检查结果(步骤S8)。另一方面,当在步骤S7中判定为实际增益值AP在可调整的范围内时,控制部22例 如从按各增益值预先建立对应地存储有与该增益值对应的增益调整值的存储器(未图示)中读出与上述的实际增益值AP对应的增益调整值,并向增益调整值写入部27供给表示该增益调整值的增益调整值数据GD(步骤S9)。例如,在该存储器中,对每一个比上述的规定范围内的上限值大的增益值,建立对应地存储有具有该增益值越大则越大幅度降低增益的负极性的值的增益调整值。另外,对每一个比上述的规定范围内的下限值小的增益值,建立对应地存储有具有该增益值越小则越大幅度增加增益的正极性的值的增益调整值。通过执行步骤S9,增益调整值写入部27经由端子28向半导体芯片I的端子104供给将增益调整值数据GD所表示的增益调整值变换成可以写入增益调整值存储电路18的电平后的写入增益调整值数据GDW。增益调整存储电路18存储经由端子104输入的写入增益调整值数据GDW,并向高频放大电路14供给具有与该写入增益调整值数据GDW所表示的增益调整值对应的电平的增益调整信号GS。高频放大电路14的放大增益根据该增益调整信号GS被调整。例如,当增益调整信号GS所表示的增益调整电平为正极性的电平时,高频放大电路14的增益被调整为在上述的初始增益上加上该增益调整电平后的增益。另外,当增益调整信号GS所表示的增益调整电平为负极性的电平时,高频放大电路14的增益被调整为从上述初始增益中减去该增益调整电平后的增益。在执行上述步骤S8或者S9后,或者当在上述步骤S6中判定为实际增益值AP在规定范围内时,控制部22结束图3所示的检查以及调整控制。通过以上那样的动作,当高频放大电路14的实际增益值不在规定范围内时,对该高频放大电路14实施使该增益处于规定的范围内的增益调整。即实施使高频放大电路14的特性处于规定范围内的调整。此时,当实际增益值以不可能调整的程度偏离规定范围时,显示该半导体芯片I为不合格品的意思。这样,图I所示的半导体芯片I根据检查指令,首先在构建于半导体芯片I中的各功能块(9、10、14)内,将应输入到成为检查对象的高频放大电路14中的信号切换成从外部供给的测试用高频率信号。然后,利用构建于半导体芯片I内的信号强度检测电路15检测高频放大电路14响应该测试用高频率信号生成的发送信号TRS的信号强度,并向外部输出 表示该信号强度的直流电平的强度信号SS。此时,检查装置2基于由半导体芯片I向外部输出的强度信号SS来判定高频放大电路14的实际增益值(AP)是否在规定范围内(S6),即判定高频放大电路14的特性是否在规定范围内。由此,由于在高频放大电路14中生成的高频率的发送信号TRS本身不被发送到检查装置2侧,所以不会产生这样的高频率信号在包含连接半导体芯片I以及检查装置2彼此的连接点的传输线路上传输时所产生的电平损耗。因此,根据图I所示的构成,与向检查装置侧发送高频的发送信号,并使用装载于该检查装置中的分析器分析发送信号来判定高频放大电路14的特性的优劣的情况相比,可以进行如上述那样不存在传输线路上的电平损耗的程度的高精度的检查。另外,不需要价格高昂的分析器,因此可以实现成本降低。此外,图I所示的构成基于为生成发送信号TRS而供给给高频放大电路14的测试用高频信号TS的信号强度(测量值A)、与发送信号TRS的信号强度(测量值B)的差值(AP)来判定高频放大电路14的特性是否在规定范围内。此时,检查装置2为了通过构建于半导体芯片I中的信号强度检测电路15检测发送信号TRS的信号强度,经由包含端子23以及端子101的第I传输线路向高频放大电路14供给测试用高频信号TS。另外,检查装置2为了通过构建于半导体芯片I中的信号强度检测电路15检测测试用高频信号TS的信号强度,经由包含端子24以及端子102的第2传输线路向信号强度检测电路15供给该测试用高频信号TS。因此,如上所述,若求出测试用高频信号TS的信号强度与发送信号TRS的信号强度的差值(AP),则在第I传输线路(包含端子24以及端子102)上产生的测试用高频信号TS的损耗量与在第2传输线路(包含端子23以及端子101)上产生的测试用高频信号TS的损耗量会相抵消。由此,经由连接半导体芯片I以及检查装置2彼此的连接点即外部端子传输作为高频率信号的测试用高频信号TS时所产生的电平损耗被排除,因此得以进行高精度的检查以及调整。另外,在图I所示的实施例中,将用于切换测试用高频信号TS的供给目的地(信号强度检测电路15或者高频放大电路14)的输入切换开关21设置于检查装置2中,也可以如图4所示那样,将其设置在半导体芯片I的检查辅助电路200内。此外,在图4所示的构成中,经由端子30向半导体芯片I的端子105供给由控制部22发送出的检查模式信号MOD,并根据经由该端子105供给给的检查模式信号MOD来进行构建于半导体芯片I内的输入切换开关21的切换控制。另外,在图4所示的构成中,直接经由端子23向由半导体芯片I的端子101供给由检查装置2的高频信号源20生成的测试用高频信号TS。由此,测试用高频信号TS经由输入切换开关11被分别供给给高频放大电路14以及输入切换开关21。输入切换开关21当被供给逻辑电平I的检查模式信号MOD时,向信号强度检测电路15供给经由输入切换开关11供给的测试用高频信号TS,另一方面,当被供给逻辑电平0的检查模式信号MOD时,向信号强度检测电路15供给高频放大电路14发送出的发送信号TRS。然而,与上述的图4所示的构成相比,图I所示的构成未在半导体芯片I内设置输入切换开关21,因此缩短了测试用高频信号TS被供给到信号强度检测电路15之前的传输线路,并且降低了经由该输入切换开关21而导致的传输延迟以及损耗。另外,根据本发明还可以在半导体晶片的阶段对各半导体芯片进行高精度的检查以及调整。图5是表示在半导体晶片3的阶段,进行各半导体芯片I的检查以及调整时的系 统构成的图,该半导体晶片3形成有分别具有如图I所示的构成的多个半导体芯片I。在图5中,探针卡4具备接触针S1以及52,其分别与用于供给装载于检查装置2的电源电路GG生成的电源电压的电源线以及接地线连接;以及接触针53 56,其分别与检查装置2的端子23、24、26以及28连接。接触针S1以及52分别与半导体芯片I的电源焊盘以及接地焊盘(未图示)的表面接触。由此,通过装载于检查装置2的电源电路GG来进行向半导体芯片I的电源供给。另外,接触针53 56分别与半导体芯片I的焊盘即端子101 104的各个表面接触。这里,如图5所示,当使接触针 56直接与形成于半导体晶片3上的半导体芯片I的端子接触时,伴随由该接触电阻引起的阻抗或者由接触针较长引起的电感成分的对高频信号的影响即损耗会变大。但是,本发明形成为使用设置在该半导体芯片I内的信号强度检测电路15检测半导体芯片I内生成的高频信号(TRS)的信号强度,表示该信号强度的直流信号经由接触针5被供给到检查装置2侧。由此,不经由接触针5进行高频信号的传输,因此可以进行准确的测量。此外,基于测试用高频信号TS的信号强度、与根据该测试用高频信号TS生成的高频信号(TRS)的信号强度的差值(AP)来进行高频信号(TRS)的信号强度是否在规定范围内的判定以及高频放大电路14的增益调整。由此,为了检测测试用高频信号TS的信号强度经由接触针54传输的测试用高频信号TS的损耗的量、与为了生成高频信号(TRS)经由接触针53传输的测试用高频信号TS的损耗的量被相抵消。由此,经由连接半导体芯片I以及检查装置2之间的接触针5来传输高频信号时所产生的信号电平的损耗的量被排除,因此可以进行高精度的检查以及调整。此外,上述实施例说明了对构建于半导体芯片I中的无线通信电路的发送部100进行检查以及调整时的动作,也可以同样地应用于接收部。图6是表示对构建于半导体芯片I中的无线通信电路内的接收部进行检查以及调整时的检查装置2的构成与半导体芯片I的内部构成的框图。此外,图6强调表示了在无线通信电路内承当接收发送动作的接收部300以及在检查以及调整该接收部300时所使用的检查辅助电路400。接收部300具有低噪声放大电路301、混频器302、局部振荡电路303、中间频率滤波器304、中间频率放大器305以及解调电路306。另外,检查辅助电路400具有增益调整值存储电路401、输入切换开关402以及信号强度检测电路403。低噪声放大电路301向混频器302以及输入切换开关402供给以对规定的初始增益实施了与增益调整信号GCl对应的调整后的增益来放大经由端子106输入的测试用高频信号TSl后的信号作为放大高频信号R。此外,在通常使用半导体芯片I时,在该端子106上连接无线发送接收用的天线(未图示)。即,此时低噪声放大电路301放大由与端子106连接的天线供给的高频的接收信号。混频器302通过在上述放大高频信号R中混合由局部振荡电路303供给的局部振荡信号fQ来生成中间频段的信号,并将以对规定的初始增益实施了与增益调整信号GC2对应的调整后的增益来放大该信号后的信号作为中间频率信号IF供给给中间频率滤波器304以及输入切换开关402。中间频率滤波器304通过对中间频 率信号IF实施仅使以规定的中心频率为中心的规定频段的成分通过的频率选择处理来提取除去了不需要的频段成分的中间频率信号IFX,并将其供给给中间频率放大器305。中间频率放大器305向解调电路306供给放大中间频率信号IFX后的放大中间频率信号。解调电路306通过对上述放大中间频率信号实施解调处理来复原无线发送后的信息数据。即,在通常使用半导体芯片I时,通过无线发送接收用的天线接收到的接收信号经由端子106供给给接收部300,从而获得信息数据。检查辅助电路400的增益调整值存储电路401存储经由端子107从外部输入的写入增益调整值数据GDW,并分别生成增益调整信号GCl以及GC2,该增益调整信号GCl以及GC2具有与该写入增益调整值数据GDW所表示的增益调整值对应的电平。增益调整值存储电路401分别向低噪声放大电路301供给该增益调整信号GCl,向混频器302供给增益调整信号GC2。输入切换开关402基于经由端子108从外部输入的检查模式信号MD1,在经由端子106从外部输入的测试用高频信号TS1、上述的放大高频信号R以及中间频率信号IF中选择一个,并将其供给给信号强度检测电路403。例如,当检查模式信号MDl表示
时,输入切换开关402向信号强度检测电路403供给上述测试用高频信号TS1,当检查模式信号MDl表示
时,输入切换开关402向信号强度检测电路403供给上述的放大高频信号R。另外,当检查模式信号MDl表示[10]时,输入切换开关402向信号强度检测电路403供给上述的中间频率信号IF。信号强度检测电路403检测由输入切换开关402供给的测试用高频信号TSl、放大高频信号R或者中间频率信号IF的信号强度,并经由端子109向外部输出表示该信号强度的强度信号SS。检查装置2的高频信号源40生成具有规格上的无线发送频率的测试用高频信号TS1,并经由端子43将其输出。此外,端子43与半导体芯片I的端子106连接。直流电压测量器45当经由端子46从外部输入了由半导体芯片I的端子109发送出的强度信号SS时,测量该强度信号SS的直流电压,并将该电压值作为信号强度值TGl供给给控制部42。增益调整值写入部47生成将由控制部42供给的增益调整值数据GT所表示的增益调整值变换成写入增益调整值存储电路401的电平后的数据作为写入增益调整值数据GDW1,并经由端子48将其输出。此外,端子48与半导体芯片I的端子107连接。控制部42生成上述检查模式信号MDl,并经由端子50将其输出。此外,端子50与半导体芯片I的端子108连接。以下,对图6所示的检查装置2的半导体芯片I的检查以及调整动作进行说明。检查装置2的控制部42按照图7所示的检查控制流程对构建于半导体芯片I中的接收部300的放大部(301、302)进行检查以及调整控制。在图7中,首先控制部42向输入切换开关402供给表示
的检查模式信号MDl (步骤Sll)。通过执行步骤SI I,输入切换开关402向信号强度检测电路403供给由检查装置2的高频信号源40供给的测试用高频信号TS1。信号强度检测电路403检测该测试用高频信号TSl的信号强度,并将表示该信号强度的强度信号SS经由端子109供给给检查 装置2的端子46。由此,检查装置2的直流电压测量器45测量输入到端子46中的强度信号SS的直流电压,并将该电压值作为信号强度值TGl供给给控制部42。然后,控制部42获取由直流电压测量器45供给的信号强度值TG1,并将其作为测量值A存储于内置寄存器(未图示)中(步骤S12)。通过执行上述步骤Sll以及S12,利用构建于该半导体芯片I中的信号强度检测电路403检测由检查装置2发送至半导体芯片I中的测试用高频信号TSl的信号强度。然后,其检测结果被供给至检查装置2侧,并作为测量值A存储于内置寄存器中。然后,控制部42向输入切换开关402供给表示
的检查模式信号MDl (步骤S13)。通过执行步骤S13,输入切换开关402向信号强度检测电路403供给由低噪声放大电路301供给的放大高频信号R。信号强度检测电路403检测该放大高频信号R的信号强度,并将表示该信号强度的强度信号SS经由端子109供给给检查装置2的端子46。由此,检查装置2的直流电压测量器45测量输入到端子46中的强度信号SS的直流电压,并将该电压值作为信号强度值TGl供给给控制部42。然后,控制部42获取由直流电压测量器45供给的信号强度值TG1,并将其作为测量值B存储于内置寄存器(未图示)中(步骤S14)。通过执行上述步骤S13以及S14,利用信号强度检测电路403检测响应测试用高频信号TSl由低噪声放大电路301发送出的放大高频信号R的信号强度,并将该检测结果作为测量值B存储于检查装置2的内置寄存器中。然后,控制部42向输入切换开关402供给表示[10]的检查模式信号MDl (步骤S15)。通过执行步骤S15,输入切换开关402向信号强度检测电路403供给由混频器302供给的中间频率信号IF。信号强度检测电路403检测该中间频率信号IF的信号强度,并将表示该信号强度的强度信号SS经由端子109供给给检查装置2的端子46。由此,检查装置2的直流电压测量器45测量输入到端子46中的强度信号SS的直流电压,并将该电压值作为信号强度值TGl供给给控制部42。然后,控制部42获取由直流电压测量器45供给的信号强度值TG1,并将其作为测量值C存储于内置寄存器(未图示)中(步骤S16)。通过执行上述步骤S15以及S16,利用信号强度检测电路403检测响应测试用高频信号TS1、经由低噪声放大电路301由混频器302发送出的中间频率信号IF的信号强度,并将其检测结果作为测量值C存储于检查装置2的内置寄存器中。
然后,控制部42计算从存储于内置寄存器中的测量值B中减去测量值A后的值,即,计算测试用高频信号TSl的信号强度、与低噪声放大电路301响应该测试用高频信号TSl发送出的放大高频信号R的信号强度的差,并将该差作为低噪声放大电路301的实际增益值APl存储于内置寄存器中(步骤S17)。然后,控制部42进行实际增益值APl是否在规定范围内的判定(步骤S18)。当在该步骤S18中判定为实际增益值APl不在规定范围内时,当控制部42判定为实际增益值APl不在规定范围内时,控制部42进行实际增益值APl是否在可调整的范围内的判定(步骤S19)。当在步骤S19中判定为实际增益值APl不在可调整的范围内时,控制部42在显示器49上显示表示该半导体芯片I为不合格品的检查结果(步骤S20)。另一方面,当在步骤S19中判定为实际增益值APl在可调整的范围内时,控制部42从按各增益值预先建立对应地存储有与该增益值对应的增益调整值的存储器(未图示)中读出与上述的实际增益值APl对应的增益调整值,并向增益调整值写入部47供给表示该增益调整值的增益调整值数据GT (步骤S21)。通过执行步骤S21,增益调整值写入部47经由端子48向半导体芯片I的 端子107供给将增益调整值数据GT所表示的增益调整值变换为写入增益调整值存储电路18的电平后的写入增益调整值数据GDWl。此时,半导体芯片I的增益调整存储电路401存储经由端子107输入的写入增益调整值数据GDWl,并将具有与该写入增益调整值数据GDWl所表示的增益调整值对应的电平的增益调整信号GCl供给给低噪声放大电路301。低噪声放大电路301的放大增益根据该增益调整信号GCl被调整。在执行了步骤S20或者S21后或者当在上述步骤S18中判定为实际增益值APl在规定范围内时,控制部42计算从存储于内置寄存器的测量值C中减去测量值B后的值,即计算由混频器302发送出的中间频率信号IF的信号强度、与输入该混频器302的放大高频信号R的信号强度的差,并将该差作为实际增益值AP2存储于内置寄存器中(步骤S22)。然后,控制部42进行实际增益值AP2是否在规定范围内的判定(步骤S23)。当在该步骤S23中判定为实际增益值AP2不在规定范围内时,控制部42进行实际增益值AP2是否在可调整的范围内的判定(步骤S24)。当在步骤S24中判定为实际增益值AP2不在可调整的范围内时,控制部42在显示器49上显示表示该半导体芯片I为不合格品的检查结果(步骤S25)。另一方面,当在步骤S24中判定为实际增益值AP2在可调整的范围内时,控制部42从按各增益值预先建立对应地存储有与该增益值对应的增益调整值的存储器(未图示)中读出与上述的实际增益值AP2对应的增益调整值,并将表示该增益调整值的增益调整值数据GT供给给增益调整值写入部47 (步骤S26)。通过执行步骤S26,增益调整值写入部47经由端子48向半导体芯片I的端子107供给将增益调整值数据GT所表示的增益调整值变换为写入增益调整值存储电路18的电平后的写入增益调整值数据GDW2。此时,半导体芯片I的增益调整存储电路401存储经由端子107输入的写入增益调整值数据GDW2,并将具有与该写入增益调整值数据GDW2所表示的增益调整值对应的电平的增益调整信号GC2供给给混频器302。混频器302的放大增益根据该增益调整信号GC2被调整。在执行步骤S25或者S26后或者当在上述步骤S23中判定为实际增益值AP2在规定范围内时,控制部42结束图7所示的检查以及调整控制。当通过上述的检查以及调整,低噪声放大电路301以及混频器302的实际增益值不在规定范围内时,对低噪声放大电路301以及混频器302实施使其增益处于规定的范围内的增益调整。此时,当实际增益值以不可能调整的程度偏离规定范围时,显示该半导体芯片I为不合格品的意思。如上所述,图6所示的构成,在构建于半导体芯片I中的承当接收部的各功能块(301,302,304 306)之中,将低噪声放大电路301以及混频器302作为检查对象。这里,为了取得低噪声放大电路301以及混频器302各自的实际增益值,首先,利用构建于该半导体芯片I内的信号强度检测电路403检测各个输入以及输出信号的信号强度,并将表示该信号强度的直流电平的强度信号SS发送给检查装置2。然后,在检查装置2中,基于该强度信号SS,分别求出低噪声放大电路301以及混频器302的实际增益值来判定该实际增益值是否在规定范围内,即判定低噪声放大电路301以及混频器302各自的特性是否在规定范围内。由此,低噪声放大电路301以及混频器302分别生成的高频率信号本身未被发送到检查装置2侧,因此不会产生当这样的高频率信号在包含连接半导体芯片I以及检查装置2彼此的连接点的传输线路上传输时所引起的电平损耗。

因此,根据图6所示的构成,与向检查装置侧发送高频信号,利用装载于该检查装置中的分析器分析发送信号来判定低噪声放大电路301以及混频器302各自的特性是否在规定范围内那样的构成相比,可以进行如上述那样不存在传输线路上的电平损耗的程度的高精度的检查。另外,不需要价格高昂的分析器,因此可以实现成本降低。此外,图6所示的构成求出为使放大部(301、302)动作而供给给半导体芯片I的测试用高频信号TSl的信号强度(测量值A)、与响应该测试用高频信号TSl由放大部(301、302)输出的信号(R、IF)的信号强度(测量值B、C)的差值作为实际增益值(AP1、AP2)。然后,基于该实际增益值(AP1、AP2)来判定放大部(301、302)的特性是否在规定范围内。此时,为了利用构建于半导体芯片I中的信号强度检测电路403检测测试用高频信号TSl的信号强度,检查装置2经由包含端子43以及端子106的传输线路将该测试用高频信号TSl供给给信号强度检测电路403。另外,为了利用构建于半导体芯片I中的信号强度检测电路403检测由放大部(301、302)输出的信号(R、IF)的信号强度,检查装置2经由包含端子43以及端子106的传输线路将该测试用高频信号TSl供给给信号强度检测电路403。由此,若求出测试用高频信号TSl的信号强度、与由放大部(301、302)输出的信号(R、IF)的信号强度的差值,则包含端子43以及端子106的传输线路上产生的测试用高频信号TSl的损耗量会相抵消。由此,经由连接半导体芯片I以及检查装置2之间的传输线路、尤其经由作为连接点的端子传输高频信号时所产生的信号电平的损耗量被排除,因此可以进行高精度的检查以及调整。此外,对于图6所示的构成而言,检查构建于半导体芯片I中的低噪声放大电路301以及混频器302各自的放大增益,但是也可以检查中间频率滤波器304的频率特性。图8是表示对接收部300的中间频率滤波器进行检查以及调整时的检查装置2的构成和半导体芯片I的内部构成的框图。此外,在图8中,构建于半导体芯片I中的接收部300与图6所示的构成同样,具有低噪声放大电路301、混频器302、局部振荡电路303、中间频率放大器305以及解调电路306。但图8所示的构成采用了频率特性可变的中间频率滤波器304a作为中间频率滤波器。检查辅助电路400具有信号强度检测电路403、输入切换开关404以及405、频率特性调整值存储电路406。输入切换开关404当经由半导体芯片I的端子110从外部输入的检查指令信号TES为逻辑电平I时,向中间频率滤波器304a以及输入切换开关405供给经由端子111从外部输入的测试用高频信号TS2。另一方面,当该检查指令信号TES为逻辑电平0时,输入切换开关404向中间频率滤波器304a以及输入切换开关405供给由混频器302供给的中间频率信号IF。中间频率滤波器304a通过对由输入切换开关404供给的中间频率信号IF或者测试用高频信号TS2实施仅使以规定的中心频率为中心的规定频段的成分通过的频率选择处理来提取除去了不需要的频段成分的中间频率信号IFX,并将其供给给中间频率放大器305以及输入切换开关405。此外,中间频率滤波器304a根据频率特性调整信号GF来调整频率特性,例如中心频率或者衰减特性等。频率特性调整值存储电路406存储经由端子112从外部输入的写入频率特性调整值数据FDW,并将具有与该写入频率特性调整值数 据FDW所表示的频率特性调整值对应的电平的频率特性调整信号GF供给给中间频率滤波器 304a。输入切换开关405当经由端子113被供给给逻辑电平I的检查模式信号MD2时,向信号强度检测电路403供给经由输入切换开关404供给的测试用高频信号TS2,另一方面,当被供给给逻辑电平0的检查模式信号MD2时,向信号强度检测电路403供给中间频率滤波器304a发送出的中间频率信号IFX。信号强度检测电路403检测由输入切换开关405供给的测试用高频信号TS2或者中间频率信号IFX的信号强度,并经由端子109向外部输出表示该信号强度的强度信号SS。检查装置2的高频信号源40a生成例如如I. OMHzU. IMHzU. 2MHz、…、2MHz那样阶跃性地变化的测试用高频信号TS2,并经由端子51将其输出。端子51与半导体芯片I的端子111连接。直流电压测量器45a当经由端子52从外部输入由半导体芯片I的端子109发送出的强度信号SS时,测量该强度信号SS的直流电压,并将该电压值作为信号强度值TG2供给给控制部42。频率特性调整值写入部47a生成将由控制部42供给的频率特性调整值数据FT所表示的频率特性调整值变换为写入频率特性调整值存储电路406中的电平后的数据作为写入频率特性调整值数据FDW,并经由端子53将其输出。此外,端子53与半导体芯片I的端子112连接。控制部42生成上述的检查模式信号MD2,并经由端子54将其输出。此外,端子54与半导体芯片I的端子113连接。以下,对图8所示的检查装置2的半导体芯片I的检查以及调整动作进行说明。检查装置2的控制部42按照图9所示的检查控制流程来对构建于半导体芯片I中的中间频率滤波器304a的频率特性进行检查以及调整。此外,在进行该检查以及调整时,向半导体芯片I的端子110固定供给逻辑电平I的检查指令信号TES。由此,经由端子111从外部输入的测试用高频信号TS2取代由混频器302发送出的中间频率信号IF来供给给中间频率滤波器304a。在图9中,首先控制部42经由端子54以及半导体芯片I的端子113向构建于半导体芯片I中的输入切换开关405供给表示逻辑电平I的检查模式信号MD2(步骤S31)。通过执行步骤S31,输入切换开关405向信号强度检测电路403供给经由输入切换开关404供给的测试用高频信号TS2。信号强度检测电路403检测该测试用高频信号TS2的信号强度,并将表示该信号强度的强度信号SS经由端子109供给给检查装置2的端子52。由此,检查装置2的直流电压测量器45a测量输入到端子52中的强度信号SS的直流电压,并将该电压值作为信号强度值TG2供给给控制部42。然后,控制部42获取由直流电压测量器45供给的信号强度值TG2,并将其作为测量值A存储于内置寄存器(未图示)中(步骤S32)。执行上述步骤S31以及S32,从而利用构建于该半导体芯片I中的信号强度检测电路403检测出由检查装置2发送到半导体芯片I中的测试用高频信号TS2的信号强度。然后,该检测结果被供给到检查装置2侧,并作为测量值A存储于内置寄存器中。然后,控制部42向输入切换开关405供给表示逻辑电平0的检查模式信号MD2 (步骤S33)。通过执行步骤S33,输入切换开关405向信号强度检测电路403供给由中间频率滤 波器304a发送出的中间频率信号IFX。信号强度检测电路403检测该中间频率信号IFX的信号强度,并将表示该信号强度的强度信号SS经由端子109供给给检查装置2的端子52。由此,检查装置2的直流电压测量器45a测量输入到端子52中的强度信号SS的直流电压,并将该电压值作为信号强度值TG2供给给控制部42。然后,控制部42获取由直流电压测量器45a供给的信号强度值TG2,并将其作为测量值B存储于内置寄存器中(步骤S34)。执行上述的步骤S33以及S34,从而利用信号强度检测电路403检测出中间频率滤波器304a响应测试用高频信号TS2的供给而发送出的中间频率信号IFX的信号强度,该检测结果作为测量值B被存储于检查装置2的内置寄存器中。然后,控制部42计算从上述测量值B中减去测量值A后的值,即计算供给给半导体芯片I的测试用高频信号TS2的信号强度、与响应该测试用高频信号TS2而由中间频率滤波器304a发送出的中间频率信号IFX的信号强度的差,并将该差作为中间频率滤波器304a中的电平衰减值FP存储于内置存储器(未图示)中(步骤S35)。此时,由检查装置2的高频信号源40a生成的测试用高频信号TS2的频率例如如I. OMHzU. IMHzU. 2MHz、…、2MHz那样阶跃性地变化。由此,在上述步骤S35中,控制部42按测试用高频信号TS2的各频率求出上述的电平衰减值FP,并与各频率建立对应地存储于内置存储器中。然后,控制部42根据存储于内置存储器中的每一个频率的电平衰减值FP所构成的电平衰减序列,测量现阶段的中间频率滤波器304a的实际频率特性QF(步骤S36)。然后,控制部42进行该实际频率特性QF是否在规定的频率特性范围内的判定(步骤S37)。当在该步骤S37中判定为实际频率特性QF不在规定的频率特性范围内时,控制部42进行实际频率特性QF是否在可调整的范围内的判定(步骤S38)。当在步骤S38中判定为实际频率特性QF不在可调整的范围内时,控制部42在显示器49上显示表示该半导体芯片I为不合格品的检查结果(步骤S39)。另一方面,当在步骤S38中判定为实际频率特性QF在可调整的范围内时,控制部22检测实际频率特性QF不在规定频率特性范围内的频率,并向频率特性调整值写入部47a供给频率特性调整值数据FT,该频率特性调整值数据FT表示使该频率的电平处于规定的频率特性范围内的调整值(步骤S40)。通过执行步骤S40,频率特性调整值写入部47a将表示频率特性调整值数据FT所表示的调整值的写入频率特性调整值数据FDW经由端子53供给给构建于半导体芯片I中的频率特性调整值存储电路406。由此,频率特性调整值存储电路406向中间频率滤波器304a供给频率特性调整信号GF,该频率特性调整信号GF具有与写入频率特性调整值数据FDW所表示的调整值对应的电平。由此,中间频率滤波器304a进行根据频率特性调整信号GF的频率特性的调整。在执行上述步骤S39或者S40后,或者当上述步骤S37中判定为实际频率特性QF在规定的频率特性范围内时,控制部42结束图9所示的检查以及调整控制。通过以上那样的动作,当中间频率滤波器304a的实际频率特性不在规定范围内时,对中间频率滤波器304a实施使其实际频率特性在规定的范围内的调整。此时,当实际频率特性以不可调整的程度偏离规定范围时,显示该半导体芯片I为不合格品的意思。这样,对于图8所示的构成而言,在构建于半导体芯片I中的承当通信电路的接收部的各功能块(301、302、304a、305、306)中,以中间频率滤波器304a作为检查对象。这里,利用构建于该半导体芯片I内的信号强度检测电路403检测由中间频率滤波器304a发送 出的中间频率信号IFX的信号强度,并将表示该信号强度的直流电平的强度信号SS发送给检查装置2。然后,在检查装置2中,根据基于该强度信号SS的每一个频率的电平衰减值(FP)的序列,测量现阶段的中间频率滤波器304a的实际频率特性(QF),并进行该实际频率特性(QF)是否在规定范围内的判定。由此,由中间频率滤波器304a发送出的高频率的中间频率信号IFX本身不被发送到检查装置2侧,因此不会产生这样的高频率信号在包含连接半导体芯片I以及检查装置2彼此的连接点的传输线路上传输时所引起的电平损耗。因此,根据图8所示的构成,与将高频率信号发送到检查装置侧,利用装载于该检查装置中的分析器分析该高频率信号来判定中间频率滤波器304的特性是否在规定范围内那样的构成相比,可以进行如上述那样无传输线路上的电平损耗的程度的高精度的检查。另外,不需要价格高昂的分析器,因此可以实现成本降低。另外,图8所示的构成基于为了生成中间频率信号IFX而供给给中间频率滤波器304a的测试用高频信号TS2的信号强度(测量值A)、与中间频率信号IFX的信号强度(测量值B)的差值(FP),来进行中间频率滤波器304a的频率特性是否在规定范围内的判定以及中间频率滤波器304a的频率特性的调整。此时,检查装置2为了在构建于半导体芯片I中的信号强度检测电路403中检测测试用高频信号TS2的信号强度,经由包含端子51以及端子111的传输线路来向信号强度检测电路403供给该测试用高频信号TS2。另外,检查装置2为了利用构建于半导体芯片I中的信号强度检测电路403检测中间频率信号IFX的信号强度,经由包含端子51以及端子111的传输线路来向中间频率滤波器304a供给测试用高频信号TS2。由此,若求出测试用高频信号TS2的信号强度与中间频率信号IFX的信号强度的差值,则在上述的传输线路(包含端子51以及端子111)中产生的测试用高频信号TS2的损耗量会被抵消。由此,经由连接半导体芯片I以及检查装置2之间的传输线路、尤其是经由作为连接点的端子传输中间频率信号时所产生的信号电平的损耗量被排除,因此得以进行高精度的检查以及调整。此外,在上述的实施例中,作为信号强度检测电路(15、403),示出了图2(a)所示那样的源极跟随器电路以及图2(b)所示那样的基于二极管的半波整流电路,也可以是全波整流电路、使用多相位的整流电路等其他电路。另外,上述实施例切换供给给成为检查以及调整对象的功能块(14、301、302、304a)的测试用高频信号(TS、TS1、TS2)以及该功能块的输出信号(TRS、R、IF、IFX),来供给给单一的信号强度检测电路。然而,也可以对供给给成为检查以及调整对象的功能块的测试用高频信号以及输出信号的每一个单独设置信号强度检测电路,利用输入切换开关择一地切换各信号强度检测电路的输出来进行输出。另外,也可以对信号检测电路的输出设置AD转换器,以向检查装置2发送由数字值构成的强度信号SS。此时,在检查装置2侧不需要直流电压测量器45,只要可以进行数字信号的获取以及运算处理即可。另外,也可以设置用于调整信号强度检测电路的检测范围的单元。即,进行信号强度检测电路的偏置调整(例如源极跟随器电路的偏置电流调整)、或者通过在输入中插入 可变衰减器来进行输入电平调整。此外,对于衰减器,当用电阻比来设定衰减比时,也可以通过直流测量来进行衰减比的检查。另外,对于调整值存储电路(18、401、406),也可以使用基于静电的非易失性存储器或者使用利用了电流的熔断或者电阻值变化的熔断器。除此以外,也可以使用可以根据激光光线来进行数据存储的存储器。此时,不需要检查装置2的端子(28、48、53)以及半导体芯片I的端子(104、107、112)之间的连接线,不经由这样的连接线以及接触针就可以对半导体芯片I实施基于激光光线的写入(烧入)。另外,在检测高频放大电路14的信号强度时,存在需要连接终端电阻的情况,此时,也可以在检查装置2侧进一步设置输入切换开关,仅在需要时连接终端电阻。此外,也可以在半导体芯片I内设置该输入切换开关用以适当地连接终端电阻。另外,图3、图7、图9所示的检查控制流程如上述那样基于从测量值B中减去测量值A或者从测量值C中减去测量值B后的值(AP、API、AP2、FP),来判定功能块的特性是否在规定范围内,但判定功能块的特性是否在规定范围内的方法不限于如上述那样的方法。例如,也可以求出测量值A以及B(B以及C)的比,并基于该“比”判定功能块的特性是否在规定范围内。该“比”例如可以通过测量值A以及B彼此的除法运算求得,或者通过以对数形式表示各个测量值A以及B的值彼此的差值求得。另外,测试用高频信号(TS、TS1、TS2)的强度不限定于I个系统,也可以是2个系统以上的多个系统。此时,例如也可以在高频信号源(20、40、40a)中依次生成具有2个系统的强度的信号作为测试用高频信号,基于根据具有第I强度的测试用高频信号得到的测量值A、与根据具有第2强度的测试用高频信号得到的测量值A,来判定功能块的输出特性是否在规定范围内。另外,在上述实施例中,承当测试信号供给电路的输入切换开关11是在检查时向高频放大电路14供给测试用频率信号TS来代替调制信号MS的选择器,测试信号供给电路也可以是仅在检查时成为导通状态,强制性地向高频放大电路14供给测试用频率信号TS的通断开关。
权利要求
1.一种半导体芯片,其包括承当通信电路的多个功能块,该半导体芯片的特征在于,具有 测试信号供给电路,其根据检查指令来向所述多个功能块中的I个功能块供给测试用频率信号;以及 外部输出电路,其检测所述I个功能块生成的信号的信号强度,并将表示该信号强度的强度信号向外部输出。
2.根据权利要求I所述的半导体芯片,其特征在于, 所述外部输出电路具有 第I处理部,其将表示所述I个功能块生成的信号的信号强度的第I强度信号向外部输出;以及 第2处理部,其检测所述测试用频率信号的信号强度,并将表示该信号强度的第2强度信号向外部输出。
3.根据权利要求I或2所述的半导体芯片,其特征在于, 所述外部输出电路具有 第I外部端子,其向外部输出所述强度信号;以及 第2外部端子,其从外部输入所述测试用频率信号。
4.根据权利要求3所述的半导体芯片,其特征在于, 还具有第3外部端子,其向外部输出所述I个功能块生成的信号,或者从外部输入所述测试用频率信号, 经由所述第2外部端子从外部输入的所述测试用频率信号供给给所述第I处理部, 经由所述第3外部端子从外部输入的所述测试用频率信号供给给所述第2处理部。
5.根据权利要求2所述的半导体芯片,其特征在于, 经由所述第2外部端子从外部输入的所述测试用频率信号供给给所述第2处理部。
6.根据权利要求I 5中的任意一项所述的半导体芯片,其特征在于, 还具有调整部,该调整部存储经由外部端子供给的调整信号,并根据该调整信号来调整所述第I功能块的特性。
7.根据权利要求I 6中的任意一项所述的半导体芯片,其特征在于, 所述第I功能块为发送用的高频放大电路。
8.根据权利要求I 7中的任意一项所述的半导体芯片,其特征在于, 所述测试信号供给电路在非检查时,向所述高频放大电路供给由调制电路供给的调制信号来代替所述测试用频率信号。
9.根据权利要求I 8中的任意一项所述的半导体芯片,其特征在于, 所述第I功能块为接收用的低噪声放大电路、混频器或者中间频率滤波器。
10.一种半导体芯片的检查方法,其特征在于, 利用检查装置检查半导体芯片,该半导体芯片中构建有承当通信电路的多个功能块;测试信号供给电路,其向所述多个功能块中的I个功能块供给测试用频率信号;以及外部输出电路,其检测所述I个功能块生成的信号的信号强度,并将表示该信号强度的强度信号向外部输出, 该半导体芯片的检查方法具有第I步骤,向所述半导体芯片供给所述测试用频率信号;以及第2步骤,基于由所述半导体芯片输出的所述强度信号来判定所述I个功能块的特性是否在规定范围内。
11.根据权利要求10所述的半导体芯片的检查方法,其特征在于, 所述外部输出电路具有第I处理部,其根据所述测试用频率信号,经由外部端子输出表示所述I个功能块输出的信号的信号强度的第I强度信号;以及第2处理部,其检测所述测试用频率信号的信号强度,并经由外部端子输出表示该信号强度的第2强度信号, 在所述第2步骤中,基于由所述半导体芯片输出的所述第I强度信号与所述第2强度信号的差值来判定所述I个功能块的特性是否在所述规定范围内。
12.根据权利要求10或11所述的半导体芯片的检查方法,其特征在于, 该半导体芯片还具备特性调整部,该特性调整部根据经由外部端子供给的调整信号来调整所述I个功能块的特性, 该检查方法还具有第3步骤,在该第3步骤中,当在所述第2步骤中判定为所述I个功能块的特性不在规定范围内时,基于所述差值来生成所述调整信号,并将该调整信号供给给所述半导体芯片。
13.根据权利要求10 12中的任意一项所述的半导体芯片的检查方法,其特征在于, 所述检查装置在多个所述半导体芯片形成在半导体晶片上的状态下,按各个半导体芯片进行所述I个功能块的检查。
全文摘要
本发明的目的在于提供一种半导体芯片以及半导体芯片的检查方法,可以使用高精度且廉价的检查装置检查构建有处理高频率信号的通信电路的半导体芯片。在构建有承当通信电路的多个功能块的半导体芯片内构建测试信号供给电路,其向作为检查对象的1个功能块供给测试用频率信号;以及外部输出电路,其检测上述功能块生成的信号的信号强度,并将表示该信号强度的强度信号向外部输出。
文档编号G01R31/28GK102790039SQ201210120759
公开日2012年11月21日 申请日期2012年4月23日 优先权日2011年5月18日
发明者太矢隆士 申请人:拉碧斯半导体株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1