一种基于波型转换的TOFD近表面盲区缺陷定位检测方法与流程

文档序号:11946119阅读:639来源:国知局
一种基于波型转换的TOFD近表面盲区缺陷定位检测方法与流程

本发明涉及一种基于波型转换的TOFD近表面盲区缺陷定位检测方法,属于无损检测领域。



背景技术:

超声衍射时差法(Time of Flight Diffraction,TOFD)是一种精确测量缺陷尺寸与深度的无损检测技术。该技术基于惠更斯原理,利用发射纵波遇到缺陷时产生的衍射波对缺陷进行定量和定位。此技术根据衍射波的时间差对缺陷进行定量,其误差小、缺陷检出率高、简便快捷。但TOFD检测中靠近检测面的缺陷衍射波容易与直通波发生混叠,形成近表面盲区,造成缺陷定位困难。

目前,抑制TOFD检测盲区、提高近表面缺陷定位精度的方法主要有参数优化法、图像信号处理法及TOFDW法等。参数优化法通过调整探头频率、角度、探头中心距等参数来提高近表面缺陷的纵向分辨率,实现近表面缺陷的定位,该方法可将近表面盲区减小至4mm左右;TOFD图像信号处理法如滤波、频谱分析、希尔伯特变换等方法,通过对提取的原始A扫描信号进行分解重构计算缺陷位置,盲区范围可减小至3mm,其局限性在于参数选择及操作较为复杂;TOFDW法为二次波检测方法,其利用底面回波对缺陷进行检测,声波的能量相对较弱,且经过底面反射之后,所接收到A扫信号较为复杂,此时盲区范围为2mm左右。本发明提出了一种基于波型转换的TOFD近表面盲区缺陷定位检测方法,可实现距检测面深度2.00mm缺陷的精确定位。



技术实现要素:

本发明的目的是一种基于波型转换的TOFD近表面盲区缺陷定位检测方法。针对近表面缺陷信号易于湮没在直通波信号中,造成缺陷难以识别和定位的问题,利用B扫查图像中的变型波信号,根据不同类型波声程之间的几何关系,构建缺陷端点位置求解模型,实现近表面盲区缺陷端点位置的精确定量。

本发明采用的技术方案是:一种基于波型转换的TOFD近表面盲区缺陷定位检测方法,所述检测方法的测量步骤如下:

(1)根据缺陷位置选择合适的探头频率、探头角度、晶片尺寸,并调整探头中心间距、时间窗口范围、检测灵敏度、脉冲重复频率和扫查增量;

(2)根据步骤(1)中确定的检测参数,对被检工件中的近表面缺陷进行TOFD检测,扫查范围显示完整的直通波、缺陷衍射波、变型波信号,并对B扫查图像进行存储;

(3)由B扫查图像读取数据,A点为变型波声程最短位置,B点为零点位置即检测面,测量变型波最短声程在垂直方向的投影距离,即AB之间距离d′;

(4)将变型波交点C与其声程最短位置A两点相连,测量AC在水平方向的投影距离ΔS;

(5)结合探头中心距2S,纵波声速Cl及横波声速Cs,通过构建变型波定位公式计算得出缺陷端点至检测面距离d。

本发明的有益效果是:该检测方法是对缺陷进行B扫查,读取图像中变型波最短声程在垂直方向的投影距离d′,变型波交点与其声程最短位置间的水平方向投影距离ΔS,结合探头间距2S、纵波声速Cl、横波声速Cs,经过公式计算实现缺陷端点至检测面距离d的精确定量。与现有的减小近表面盲区、提高缺陷定位精度的方法相比,本发明基于变型波对TOFD近表面盲区缺陷进行定位的方法是利用不同类型波声程之间几何关系,通过构建缺陷端点位置求解模型,实现缺陷端点位置的精确定量。在对距离检测面2.00mm的底面开口槽进行定位检测时,结果为1.95mm,误差为0.05mm。本发明基于波型转换的TOFD近表面盲区缺陷定位检测方法精度高,适用性强,具有较好的工程应用价值。

附图说明

图1是B扫查图像变型波定位示意图。

图2是TOFD超声测试系统的连接示意图。

图3是TOFD检测B扫查示意图。

图4是距检测面2.00mm的底面开口槽B扫查图像。

具体实施方式

图1为B扫查图像变型波定位示意图。基于变型波的近表面缺陷定量检测方法中,采用的超声测试系统如图2所示,其中包括TOFD超声检测仪、一对标称频率10MHz的TOFD探头、一对偏转角度为60°的纵波楔块、扫查装置。

下面,采用设置有底面开口槽的碳钢试块作为试验对象对本发明方法进行验证。具体验证过程及结果如下:

试验对象为碳钢试块,该碳钢试块厚度为50.00mm,材料纵波声速5.90km/s。底面开口槽距检测面深度2.00mm。采用TOFD超声检测仪,选用探头标称频率10MHz,晶片尺寸6mm,折射角度为60°的一对TOFD探头和楔块。设置探头中心间距2S=17.00mm,采样频率100MHz,A扫描时间窗口起始位置设置为直通波到达接收探头之前。

图3为TOFD探头对在碳钢试块上进行B扫查的示意图。TOFD探头的起始位置为1-1′,终止位置为3-3′。当探头移动至2-2′位置时,纵波-横波衍射波与横波-纵波衍射波传播时间相等,即为B扫查图像中变型波交点的位置。

图4为距检测面2.00mm的底面开口槽B扫查图像。图中,首先出现的是直通波信号LW。直通波下方出现的是缺陷衍射波信号PP。衍射波信号下方为变型波信号。结合图3的扫查过程,由起始位置1-1′至交点位置2-2′出现的变型波为纵波-横波衍射波PS,由交点位置2-2′至终止位置3-3′出现的变型波为横波-纵波衍射波SP。从图中能够发现纵波-横波衍射波与横波-纵波衍射波关于交点成对称分布。在图像中,测得变型波最短声程在垂直方向投影距离d′为5.50mm,变型波交点与其声程最短位置间的水平方向投影距离ΔS为7.80mm,S为8.50mm,纵波声速Cl为5.90km/s,横波声速Cs为3.20km/s。将上述数据带入公式可得缺陷端点深度为1.95mm,定量误差为0.05mm。可见,利用变型波可实现近表面盲区缺陷端点位置的精确定量,从而满足工程需求。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1