一种基于长基线干涉仪的无源测距方法与流程

文档序号:14784788发布日期:2018-06-27 22:03阅读:548来源:国知局
一种基于长基线干涉仪的无源测距方法与流程

本发明涉及一种无源测距定位技术,特别是一种基于长基线干涉仪的无源测距方法。



背景技术:

无源测距技术是指根据目标辐射和反射的信号进行测距的技术,由于角度测量的方法较为成熟,定位问题通常也可以转化为测距问题,因此测距技术在深空探测、无线电监测、航海、航空、航天、测控、电子对抗等领域都有广泛的用途,受到了国内外的重视。由于无法改变信号,根据目标辐射信号进行无源测距定位难度较高,常见的方法可以分为单站定位和多站定位两大类,多站定位方法由于系统相对复杂,且需要形成较长的基线,在一些条件下难以适用,因此单站测距定位技术具有十分重要的研究价值。常见的单站定位方法包括单站二维测角定位、单站运动测角定位、单站测相位差变化率定位等,这些方法需要布置二维测角基线,只适应空间中对已知平面上目标的定位,或需要观测站进行运动。因此迫切需要一种基于静止单站的无源测距定位技术。Hammerquist提交的专利(Hammerquist EL,Oaks T.Phase measurement ranging[P].US patent 1988,4788548.)公开了一种比相测距方法,通过比较三通道相位进行测距,但未能深入研究对基线设计、解相位差模糊等问题;李蔚等(李蔚,郭福成,柳征,姜文利.基于等长基线干涉仪的单脉冲被动定位方法[J].系统工程与电子技术,2015,37(2):266-270.)基于该方法研究了一种参差基线布置方法,可解相位差模糊进行测距。这两篇文献提出的方法要求布置相对较长的相参基线,限制了其工程实用性。



技术实现要素:

本发明的目的在于提供一种基于长基线干涉仪的无源测距方法,该方法通过平行布置相对较短的等长相参实基线对,构成长基线,实基线对之间无相位同步要求。本发明降低了系统实现的难度,拓宽了了干涉仪比相测距的应用范围,具有一定的理论和工程应用价值。

一种基于长基线干涉仪的无源测距方法,包括以下步骤:

步骤1,根据最小无模糊测距距离Rmin、工程的最大实基线长度dmax、测距 精度,进行基线设计,得到基线长度序列{di,d2i},i=1,…,J;

步骤2,按照相位同步要求和步骤1基线设计中得到的基线长度序列进行基线布置,搭建长基线干涉仪无源测距系统,测量得到目标角度和信号波长

步骤3,利用步骤2的长基线干涉仪系统侦收目标信号得到相位差,对相位差进行解模糊,得到无模糊的相位差

步骤4,根据步骤3解模糊结果进行测距,得到目标距离估计

本发明与现有技术相比,具有以下优点:(1)仅需要布置相对较短的相参实基线,降低了系统实现的难度,避免了基线长度过长导致的系统灵敏度损失过大的问题;(2)基线布置灵活,可以适用于山地、存在建筑遮挡等环境下;(3)在等效基线长度相同的条件下,测距精度更高。

下面结合说明书附图对本发明做进一步描述。

附图说明

图1为一种基于长基线干涉仪的无源测距原理示意图。

图2为测距处理流程示意图。

图3为基线设计步骤示意图。

图4为测距误差分布示意图。

图5为测角误差和对测距的影响示意图。

图6为测距误差与角度误差的关系示意图。

图7为相位差误差对定位的影响示意图。

图8为测距误差与相位差测量误差的关系示意图。

图9为基线长度误差对定位的影响示意图。

图10为径向偏离长度误差对定位的影响示意图。

图11为横向偏离长度误差对定位的影响示意图。

图12为测距误差与基线安装距离误差的关系示意图。

图13为不同基线条件下的测距误差对比示意图。

图14为本发明的方法流程图。

具体实施方式

结合图14,一种基于长基线干涉仪的无源测距方法,包括以下步骤:

步骤1,根据最小无模糊测距距离Rmin、工程的最大实基线长度dmax、测距 精度,进行基线设计,得到基线长度序列{di,d2i},i=1,…,J;

步骤2,按照相位同步要求和步骤1基线设计中得到的基线长度序列进行基线布置,搭建长基线干涉仪无源测距系统,测量得到目标角度和信号波长

步骤3,利用步骤2的长基线干涉仪系统侦收目标信号得到相位差,对相位差进行解模糊,得到无模糊的相位差

步骤4,根据步骤3解模糊结果进行测距,得到目标距离估计

本发明提出的长基线干涉仪测距方法基线布置如图1所示,其中,1、2、3、4为接收通道,通道1和2、3和4之间保持相位同步,分别构成实基线1-2、3-4,长度均为d;基线1-2、3-4保持平行,而无需在一条直线上,阵元2、3之间纵向偏离距离为2d1,横向偏离距离为2d2,可避开可能存在的遮挡,基线2-0-3方向与实基线1-2的垂线OO′方向的夹角为α,基线1-0-4与基线2-0-3方向的夹角为β。假设通道1和2相对通道3和4有固定的相位偏差

由于四个阵元构成菱形,阵元1和4与阵元2和3的连线中心重合,构成了虚拟阵元0,通过虚拟阵元可构成1-0-4、2-0-3两条虚拟测距基线。根据文献(李蔚,郭福成,柳征,姜文利.基于等长基线干涉仪的单脉冲被动定位方法[J].系统工程与电子技术,2015,37(2):266-270.)中公式(10)的比相测距方法可得

其中,均为无模糊相位差。对式、式相减,得到

则距离估计为

其中,因此,只需要测量θ和无模糊即可测距,对 的模糊,可布置多组参差基线进行解模糊。从上面的推导过程可以看出,无 需通道1和4之间、2和3之间保持相位同步,即使存在相位偏差也不影响,较长的基线1-0-4、2-0-3之间的相参要求可通过两组较短的基线1-2、3-4的相参实现,其处理流程与传统方法类似,如图2所示。

上述方法通过两组相对较短的基线,可以等价实现较长的相参基线,由式可知,等效的基线长度D为

与d、d1、d2和目标角度θ有关。根据基本的单站测距定位技术可以知道,要实现高精度测距,至少需要满足等效基线长度较大、目标位于测距精度较高的区域这两个条件,从等效基线长度公式可以看出,要使等效基线长度较长,可以使d1较小、d2较大,此时,在θ取为较宽的角度范围内,等效基线长度近似为 上述推导过程同时采用远场假设和近场假设,这同于基本的长基线干涉仪测距定位方法,可忽略几何近似误差的影响,因此在测距误差推导时仍然认为上述测距公式是准确的。

1、误差分析

考虑存在相位差测量误差、测角误差、基线长度测量误差条件下的测距误差,对测距公式求微分得到

式中,δ为微分算子,记各参数的测量误差满足零均值高斯分布,方差分别为σ2R、σ2θ、其中,相位差的测量误差相互独立,可以得到

由于因此从式可以看出,测角误差对测距误差的影响与R、tanθ成正比,角度越大、距离越远测距误差越大;由于因此从式可以看出,相位差测量误差对测距误差的影响与R2成正比,与等效基线长度成反比。从角度和相位差的影响个可以看出,该体制的测距范围相对较近、测距视角有限,因此应尽量减少相位差的测量误差、测角误差,同时增加基线长度,且等效基线长度增加一倍,等效于角度误差较小为1/2或相位差测量误差减小为1/4,因此增加基线长度是相对较为有效的方法。

解模糊要求和方法

当即

此时,必然不产生模糊,称为最小无模糊测距距离,化简得到

式为不产生模糊的充分条件。

等效的基线长度为与d、d1、d2和目标角度θ有关。在d1较小时,近似为为便于分析,假定d1=0,此时有

当时,将产生模糊,需要设法解该相位差模糊,这是产生模糊的充分条件。由可知,等效基线长度越长,越容易产生模糊,模糊范围越大,因此模糊和测距精度之间存在矛盾。

为了解的模糊,需要配置多组分离式基线对,由于与等效基线长度的平方成正比,采用参差解模糊方法,构成的等效基线长度序列为{Di},i=2,…,其中D1为最短基线对的等效基线长度。

考虑相位差对解模糊的影响,模糊数通过式确定

式中,分别为两级基线的四通道模糊相位差。则无模糊相位差为

取整项的误差为因此有

假定各基线对相位差误差相等,即有得解模糊条件为

式中,为四通道相位差测量误差。

3、解模糊基线设计方法

由式可以知道,等效基线长度与实基线长度和横向偏离距离等有关,通过调整实基线长度和横向偏离距离可以实现达到满足测距精度要求的等效基线长度, 从式可以看出,在实基线长度相对较小时,增加实基线长度有利于提高等效基线长度,且存在横向偏离距离时,需要四个通道构成一组基线对,因此首先需要尽可能增加实基线长度,在此基础上再增加横向偏离长度。当横向偏离距离相对较长时,可能出现场地无法安装等限制,需要适当调整纵向偏离距离,由于纵向偏离距离越大,对测距精度的影响越大,因此尽可能根据场地减小纵向偏离长度。增加实基线长度、增加横向偏离距离、调整纵向和横向偏离距离进行基线设计的步骤示意图如图3所示,每个虚线框表示解模糊设计的一步,具体步骤为:

(1)确定实基线长度d的取值范围。由最小无模糊测距距离决定d取值的最小值由工程可实现的最大实基线长度决定dmax,dmin<d<dmax;

(2)记I=0,J=0,i=0,d取dmin,d1=dmin,d21=0,根据式计算得到D1=d1;

(3)i=i+1,根据式计算di,d2i对应的测距精度。当di,d2i对应的测距精度满足测距精度要求时,完成设计基线长度序列设计,记I=i,进入(7);当di,d2i对应的测距精度无法满足要求时,需要延长基线,进入(4);

(4)根据式,计算可解模糊的基线长度Di+1,由解方程得到对应的di′。当di<dmax,di′<dmax时,取di+1=di′,d2i=0,进入(3);当di≤dmax,di′>dmax时,需要延长基线,进入(5);

(5)i=i+1,取di=dmax,根据式计算d2i,

(6)根据式计算di=dmax,d2i对应的测距精度。当di=dmax,d2i对应的测距精度满足测距精度要求时,完成设计基线长度序列设计,记J=i,进入(7);当di=dmax,d2i对应的测距精度无法满足要求时,需要延长基线d2i,根据式计算可解模糊的基线长度Di+1,进入(5);

(7)按照基线长度序列{di,d2i}进行基线布置。

当I=1时,在横向位置[0,dmin,2dmin]处布置天线,且三通道保持相位同步;

当I>1,J=0时,在横向位置[0,d1,2d1]、……、[0,dI,2dI]处布置天线,且保持每组内的三通道相位同步,相同位置处不重复布置,省略重复的天线和通道,但保持相位同步要求;

当I>1,J>0时,在横向位置[0,d1,2d1]、……、[0,dI,2dI]处布置天线,且保持每组内的三通道相位同步,相同位置处不重复布置,省略重复的天线和通道,但保持相位同步要求;在横向位置[0,dI+1,dI+1+2d2I+1,2dI+1+2d2I+1]、……、[0,dJ,dJ+2d2J,2dJ+2d2J]处布置天线,且保持每组内的三通道相位同步,相同位置处不重复布置,省略重复的天线和通道,但保持相位同步要求。

4、仿真试验

本发明仅需要布置相对较短的相参实基线,降低了系统实现的难度,避免了基线长度过长导致的系统灵敏度损失过大的问题;且基线布置灵活,可以适用于山地、存在建筑遮挡等环境;在等效基线长度相同的条件下,测距精度更高。下面给出具体的例子,更详细地说明本发明,其中实施例一表明了测距误差的影响因素,并和传统方法进行了对比,体现了本方法测距精度更高的优势;实施例二表明了基线布置的方法,体现了本发明相对传统方法基线布置灵活的优势,并计算了相对传统方法的灵敏度优势:

实施例一:测距误差分析

以图1中0点为坐标零点,沿纵向距离d1且指向实基线1-2的方向为+y轴方向,沿横向距离d2且指向实基线3-4的方向为+x轴方向。仿真条件为:基线长度40m,径向偏离距离d1为1m,横向偏离距离d2为200m,信号频率为2GHz,基线长度误差和偏离距离测量误差均为1cm。

测距误差的理论分布和算法仿真得到的误差分布如图4所示,可见,在同一方向上,距离越远,测距误差越大;目标角度越大,测距误差越大,这与传统方法相同。

(1)角度误差的影响

在没有基线误差、相位差测量误差的条件下,测角误差的影响如图5所示, 典型位置[-100,150]km处测距误差与角度误差的关系如图6所示。可见,测距误差与角度误差成正比,在测角误差为1°以内时,角度误差引起的测距误差约为4km。

(2)相位差误差的影响

在没有基线误差、角度测量误差的条件下相位差测量误差的影响如图7所示,典型位置点[-100,150]km处测距误差与相位差测量误差的关系如图8所示。可见,测距误差与相位差测量误差成正比,在测角误差为10°以内时,[-100,150]km处测距误差约为15km(8.3%R)。

(3)基线安装误差的影响

基线长度和安装距离误差的影响如图9、图10、图11所示,典型位置点[-100,150]km处不同水平下测距误差与基线误差的关系如图12所示。可见,在安装误差为0.01m的条件下,基线长度误差的影响大于横向和纵向偏离误差,其中,径向偏离误差和横向偏离误差的相对大小关系大约以±45°为分界线,超过±45°时,径向偏离误差大于横向偏离误差。但整体上看,基线安装误差对定位的影响较小,不超过200m。

由此可见,对定位误差影响由大到小依次为:相位差测量误差、角度测量误差、基线长度误差、径向偏离误差和横向偏离误差。

(4)与传统方法的对比

图13对比了[100,150]km处本文方法以及实基线长度等于本文方法等效基线长度条件下的测距误差。

由图13可知,本文提出的方法测距精度高于实基线长度等于新方法等效基线长度的传统方法,这是因为新方法得到的四个通道的相位差误差小于传统方法的三通道相位差,在传统方法中,通道0的误差同时影响相位差因此在同样的条件下,传统方法中相位差的误差是本文方法误差的 倍。

实施例二:解模糊基线设计

1)最小无模糊测距距离10km,最长实基线长度20m,150km处测距误差20km,相位差估计误差10°。按照本发明的方法设计得到的基线长度如表1所 示,表中序号为迭代设计的顺序,一共采用了7个通道进行测距。在该基线条件下,可以正确解模糊;

2)最小无模糊测距距离1km,最长实基线长度15m,100km处测距误差20km,相位差估计误差10°。按照本发明的方法设计得到的基线长度如表2所示,表中序号为迭代设计的顺序,一共采用了8个通道进行测距。在该基线条件下,可以正确解模糊。

表1解模糊基线设计示例1

表2解模糊基线设计示例2

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1