具有多个检测模式的缺陷检测装置及其方法与流程

文档序号:15115083发布日期:2018-08-07 19:46阅读:192来源:国知局

本发明涉及检测技术,更具体而言,本发明涉及一种用于泡沫镍表面缺陷检测的、具有多个检测模式的缺陷检测装置及其方法。



背景技术:

泡沫镍是通过对镍金属进行一系列物理化学加工后得到的一种新型功能材料,作为车用电池的基材,泡沫镍对电池性能的影响极大。泡沫镍表面呈银灰色的金属光泽,形态类似于金属海绵,质量上要求表面平整、无划伤、无裂纹、无破损、无油污和无氧化。

然而,在泡沫镍制备过程中,由于原料,加工工艺(pvd、电镀、烧结等)等方面因素,导致泡沫镍表面出现污染,压痕,折痕,镍皮,裂纹,划线,漏镀等多种不同类型的缺陷,这些缺陷严重影响最终成品的性能和质量。

目前对泡沫镍表面缺陷的检测和识别主要采用人工检测手段,即在制备过程中操作人员通过肉眼观察传送带上的泡沫镍,凭经验对泡沫镍的缺陷进行人工判决,进而进行相应的手动处理。该方式存在劳动强度大,效率低,主观性强和检错率高。由于质量检测分析滞后,也难以有效在线优化泡沫镍的生产过程。



技术实现要素:

本发明主要解决的技术问题是提供具有多个检测模式的缺陷检测装置及其方法,能够解决现有技术中的问题。

本发明一方面提供了一种具有多个检测模式的缺陷检测装置,用于检测泡沫镍表面缺陷图像。该装置包括:传送装置、直线移动模组和图像采集装置。传送装置,将待测泡沫镍从该缺陷检测装置的一端平铺传送至另一端。直线移动模组,包括固定部分和移动部分,该固定部分固定安装于该缺陷检测装置的主体部分上,该移动部分沿相对于泡沫镍宽度方向移动。图像采集装置,设置于该直线移动模组上,以用于获取泡沫镍的表面图像信息。其中,依据该待测泡沫镍的表面图像信息,确定该图像采集装置处于第一检测模式还是第二检测模式。

本发明另一方面提供了一种具有多个检测模式的缺陷检测方法,用于检测泡沫镍表面缺陷图像。该方法包括:将待测泡沫镍从该缺陷检测装置的一端平铺传送至另一端;将图像采集装置设置于直线移动模组上,以用于获取泡沫镍的表面图像信息,其中,该直线移动模型的移动部分沿相对于泡沫镍宽度方向移动;依据该待测泡沫镍的表面图像信息,确定该图像采集装置处于第一检测模式还是第二检测模式。

本发明的有益效果是:能够自适应地调节图像采集装置的检测模式,有利用节约泡沫镍表面缺陷检测装置的计算资源。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。

图1a、图1b、图1c和图1d分别是无表面缺陷的泡沫镍表面示意图、表面有裂纹缺陷的泡沫镍表面示意图、表面有漏镀缺陷的泡沫镍表面示意图以及表面有污染缺陷的泡沫镍表面示意图;

图2为本发明一实施方式的泡沫镍表面缺陷检测装置的结构示意图;

图3为本发明一实施方式的泡沫镍表面缺陷检测装置另一角度的结构示意图;

图4为本发明一实施方式的泡沫镍表面缺陷检测装置的图像采集装置结构示意图;

图5a为根据本发明一实施方式的部分区域表面图像采集模式和全部区域表面图像采集模式的示意图;

图5b为根据本发明一实施方式的表面图像抽样采集模式的图像区域的示意图;

图5c为根据本发明一实施方式的表面图像连续采集模式采集的图像区域的示意图;

图6为根据本发明一实施方式的泡沫镍表面缺陷检测装置确定检测模式的流程图。

附图标号说明:

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。

在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。

图1a、图1b、图1c和图1d分别是无表面缺陷的泡沫镍表面示意图、表面有裂纹缺陷的泡沫镍表面示意图、表面有漏镀缺陷的泡沫镍表面示意图以及表面有污染缺陷的泡沫镍表面示意图。如图1a、图1b、图1c和图1d所示,泡沫镍表面形态类似于金属海绵。质量上要求泡沫镍表面平整、无划伤、无裂纹、无破损、无油污和无氧化。然而,由于原料,加工工艺(pvd、电镀、烧结等)等方面因素,导致泡沫镍表面出现污染,压痕,折痕,镍皮,裂纹,划线,漏镀等多种不同类型的缺陷,这些缺陷严重影响最终成品的性能和质量。

根据本发明的一实施方式,提出了一种具有多个检测模式的缺陷检测装置,以用于检测泡沫镍表面缺陷图像。该装置包括传送装置、直线移动模组、和图像采集装置。传送装置,将待测泡沫镍从缺陷检测装置的一端平铺传送至另一端。直线移动模组,包括固定部分和移动部分,固定部分固定于缺陷检测装置的主体部分上,移动部分沿相对于泡沫镍宽度方向移动。图像采集装置,设置于直线移动模组上,以用于获取泡沫镍的表面图像信息。在此实施方式中,依据泡沫镍的表面图像信息,确定图像采集装置处于第一检测模式还是第二检测模式。

根据本发明的另一实施方式,提出了一种具有多个检测模式的缺陷检测方法,用于检测泡沫镍表面缺陷图像。该方法包括:将待测泡沫镍从该缺陷检测装置的一端平铺传送至另一端;将图像采集装置设置于直线移动模组上,以用于获取泡沫镍的表面图像信息,其中,该直线移动模型的移动部分沿相对于泡沫镍宽度方向移动;依据该待测泡沫镍的表面图像信息,确定该图像采集装置处于第一检测模式还是第二检测模式。

请参照图2至图3,图2为本发明一实施方式的泡沫镍表面缺陷检测装置的结构示意图;图3为本发明一实施方式的泡沫镍表面缺陷检测装置另一角度的结构示意图。

如图2和图3所示,本发明提出一种泡沫镍表面缺陷检测装置200,包括机架210、设于机架210的检测台220及电控系统,在本发明实施例中,检测台220设于机架210的中间位置,并水平设置,机架210的下部围成一箱体(即,泡沫镍表面缺陷检测装置200的主体部分),电控系统安装于箱体内。根据本发明的一实施方式,电控系统可为工业计算机系统或者工业plc控制系统。

泡沫镍表面缺陷检测装置200还包括:传送装置,设于机架210的左右两侧,将待检测的泡沫镍230从检测台220的一端平铺传送至另一端,并且传送装置可以防止泡沫镍传送过程中出现偏差。具体地,在本发明实施例中,传送装置包括送卷装置241及收卷装置242,设置于机架210的两侧,泡沫镍230两端绕设于送卷装置241及收卷装置242,泡沫镍230中部平铺于检测台220并从送卷装置241移动到收卷装置242。其中,送卷装置241包括张紧机构,收卷装置242位于收卷基座243上。

在一个示例中,成卷的泡沫镍230首先固定在纠偏调整平台280的滚轴上,抽出一端穿过压紧机构,固定在收卷装置242的轴上,并利用送卷装置241的张紧机构将泡沫镍绷紧,从而消除泡沫镍在平铺展开状态后存在的松弛现象,防止图像不清或者重影,以利于图像获取装置获取高清的图像信息。泡沫镍230在收卷装置242的直流电机的驱动下将泡沫镍卷起来,从而带动泡沫镍自左向右直线运动。防跑偏系统由纠偏传感器281和纠偏调整平台280组成,防止发生意外的工况而产生故障。一旦由纠偏传感器281检测到泡沫镍230偏移,纠偏调整平台280在直流电机的驱动下做水平方向的移动,保证泡沫镍能呈直线运动。

泡沫镍具有多种产品规格,并且泡沫镍的规格多与泡沫镍的厚度和宽度相关。此外,泡沫镍的产品规格与泡沫镍的表面图像信息相关联。例如,不同厚度的泡沫镍对应不同的透光度,从而会在泡沫镍表面图像上得到体现。在一个实施方式中,不同规格的泡沫镍对应不同的检测模式。不同的检测模式对应不同的收卷速度。例如,具有第一规格的泡沫镍对应于第一检测模式,具有第二规格的泡沫镍对应于第二检测模式,其中,第一检测模式具有第一收卷速度,第二检测模式具有第二收卷速度,第一收卷速度不同于第二收卷速度。此外,在另一实施方式中,不同的检测模式对应不同的光照强度。例如,第一检测模式对应第一光照强度,第二检测模式对应第二光照强度。其中,第一光照强度不同于第二光照强度。具体来说,泡沫镍厚度越厚,光照强度越强。

泡沫镍表面缺陷检测装置200还包括直线移动模组250,分别设于机架210上,并位于平铺在检测台220上的泡沫镍230的正面及背面两侧。如图3所示,本发明实施例的直线移动模组250包括两个,安装于检测台220上方和检测台220的下方,由于检测台220水平设置,检测台220平铺泡沫镍230后,两个直线移动模组250位于泡沫镍230的上表面及下表面。然而,需要指出的是,直线移动模组250的个数并不限于两个,其他数目的直线移动模组250也能实现本发明。根据本发明的实施方式,直线移动模组的数目可以为一个。也就是说,仅在泡沫镍230的上表面或下表面设置一个直线移动模组即可。

直线移动模组250包括固定部分和移动部分,固定部分固定安装于机架210,移动部分相对固定部分直线移动,如采用常用的线性滑轨模组或者直线电机等。也就是说,固定部分固定安装于泡沫镍表面缺陷检测装置200的主体部分上,移动部分沿相对于泡沫镍宽度方向移动。

优选地,本发明实施例中直线移动模组250由直线电机驱动控制;直线电机结构紧凑、加速度高、响应速度快,位移精度高,以适应本发明泡沫镍检测所需的高精度位置定位控制。

泡沫镍表面缺陷检测装置200还包括图像采集装置260,设置于直线移动模组250上,用于获取泡沫镍的表面图像信息。具体来说,上下两个图像采集装置260分别设于检测台220正面及背面的直线移动模组250上,并且上下两个图像采集装置260的位置是互相错开的。图像采集装置260在直线移动模组250上相对于泡沫镍230的宽度方向移动,以获取泡沫镍230的正面及背面图像信息。然而,需要指出的是,图像采集装置260的个数并不限于两个,其他数目的图像采集装置260也能实现本发明。根据本发明的实施方式,图像采集装置260的数目可以为一个。也就是说,仅在泡沫镍230的上表面或下表面设置一个图像采集装置260即可。

在此实施方式中,图像采集装置260为两个图像采集装置,分别安装于检测台220上方的直线移动模组250和检测台220下方的直线移动模组250。上方的图像采集装置260获取泡沫镍正面的图像信息,下方的图像采集装置260获取泡沫镍背面的图像信息。由于直线移动模组250的作用,图像采集装置260能在泡沫镍的宽度方向直线移动。通过调节图像采集装置的运动,可以在待测泡沫镍具有不同宽度的情况下,有效获取泡沫镍宽度方向的全部图像。此外,通过调节图像采集装置的运动,可以获取待测泡沫镍的部分宽度范围的图像。进一步,安装于直线移动模组250的上下两侧的图像采集装置不在同一垂直平面上,以避免在获取泡沫镍正面及背面图像信息时相互干扰。

根据本发明的一实施方式,上方的图像采集装置260和下方的图像采集装置260分别包括多个相机,即上方的图像采集装置260和下方的图像采集装置260的相机数目分别大于等于2。例如,如图2及图3所示,分别包括两个相机。在图2及图3中,这些相机分别位于泡沫镍的正上方和正下方,以及这些相机为高速相机,以适应高速度与高分辨率摄像的需求。在一个实施方式中,这些相机获取的图像尺寸相同。然而,根据本发明的另一实施方式,这些相机获取的图像尺寸也可以不相同。

图像采集装置260还包括平面光源270,分别设于检测台220的正面及背面,并与位于检测台220另一面的图像采集装置260的相对设置,平面光源270跨越泡沫镍230的宽度,检测台220在平面光源270与图像采集装置260相对处镂空。

结合图2和图3,本发明实施例中的平面光源270包括设于检测台上方的平面光源270及设于检测台下方的平面光源270,检测台上方的平面光源270从检测台220的镂空位置与检测台下方的图像采集装置260相对,检测台220下方的平面光源270从检测台的镂空位置与检测台上方的图像采集装置260相对。平面光源270在检测台的长度大于泡沫镍的宽度,即平面光源270跨越泡沫镍230的宽度,使得平面光源270为各自相对的图像采集装置260从泡沫镍230的另一侧提供足够宽度的对射光源,完成图像采集装置260在泡沫镍正反两面图像信息的获取。

根据本发明一实施方式,依据待测泡沫镍的表面图像信息,确定图像采集装置260处于第一检测模式还是第二检测模式。第一检测模式和第二检测模式自部分区域表面图像采集模式和全部区域表面图像采集模式中选择,并且第一检测模式和第二检测模式不同。例如,第一检测模式为部分区域表面图像采集模式,以及第二检测模式为全部区域表面图像采集模式。或者,第一检测模式为全部区域表面图像采集模式,以及第二检测模式为部分区域表面图像采集模式。根据本发明的实施方式,第一检测模式和第二检测模式不可以同时为部分区域表面图像采集模式,或者不可以同时为全部区域表面图像采集模式。然而,本发明并非限于此。根据本发明的实施方式,通过设置不同的部分区域(例如,部分区域的位置和大小的不同),部分区域表面图像采集模式可以进一步分为多个子模式,第一检测模式和第二检测模式可以同时为部分区域表面图像采集模式中的不同子模式,例如,第一子模式和第二子模式,第一子模式和第二子模式的表面图像采集的区域的位置和大小互不相同。

根据本发明另一实施方式,第一检测模式和第二检测模式自表面图像抽样采集模式和表面图像连续采集模式中选择,并且第一检测模式和第二检测模式不同。例如,第一检测模式为表面图像抽样采集模式,以及第二检测模式为表面图像连续采集模式。或者,第一检测模式为表面图像连续采集模式,以及第二检测模式为表面图像抽样采集模式。根据本发明的实施方式,第一检测模式和第二检测模式不可以同时为表面图像抽样采集模式,或者不可以同时为表面图像连续采集模式。

根据本发明的实施方式,通过设置时间上相邻的泡沫镍图像之间的距离,表面图像抽样采集模式可以进一步分为多个子模式,第一检测模式和第二检测模式可以同时为表面图像抽样采集模式中的不同子模式,例如,表面图像抽样采集模式的第一子模式和第二子模式,第一子模式和第二子模式的时间上相邻的泡沫镍图像之间的距离互不相同。

根据本发明的实施方式,通过设置时间上相邻的泡沫镍图像之间的重叠区域,表面图像连续采集模式可以进一步分为多个子模式,第一检测模式和第二检测模式可以同时为表面图像连续采集模式中的不同子模式,例如,表面图像连续采集模式的第一子模式和第二子模式,第一子模式和第二子模式的时间上相邻的泡沫镍图像之间的重叠区域互不相同。

泡沫镍表面缺陷检测装置的传送装置、直线移动模组250、图像采集装置260、平面光源270均与电控系统电连接,以完成检测过程的自动控制。需要说明的是,根据本发明的一实施方式,泡沫镍表面缺陷检测装置具有多个检测模式。例如,具有检测模式a和检测模式b。当泡沫镍表面缺陷检测装置处于检测模式a时,仅一个计算机处理器处理泡沫镍表面图像信息;当泡沫镍表面缺陷检测装置处于检测模式b时,多个计算机处理器处理泡沫镍表面图像信息。然而,本发明并非限于此,计算机处理器可由执行本发明定义功能的数字信号处理器、或微处理器代替。

在一个实施例中,为方便识别泡沫镍表面缺陷,平面光源270为有色光,例如,红光,蓝光,或绿光等其他颜色的光。若检测到图像采集装置260获取的图像信息中的像素的色度信息与上述有色光的色度信息一致,则该像素处对应的泡沫镍表面存在缺陷。例如,若检测到图像采集装置260获取的图像信息中的像素的色度值等于上述有色光对应的色度值,则该像素处对应的泡沫镍表面存在缺陷。

泡沫镍表面缺陷检测装置200还包括设于机架的报警装置290,该报警装置290与电控系统电连接。该报警装置290可以是报警灯或者语音报警器,用于提醒设备操作者检测装置异常或者检测的结果异常。

请参考图4,图4为本发明一实施方式的泡沫镍表面缺陷检测装置的图像采集装置结构示意图。如图4所示,本发明一实施例的图像采集装置包括:设置在泡沫镍顶部的相机402和环形光源404、与相机402和环形光源相对设置的平面光源,以用于获取泡沫镍的表面图像信息。需要说明的是,环形光源404与相对设置的平面光源分时点亮,分别获取两次泡沫镍的图像。第一次点亮环形光源404,相机402获取一次泡沫镍表面的图像;第二次点亮平面光源,相机402再获取一次泡沫镍表面的图像。相机402与固定相机402的支架封闭在不透光的防尘罩内,用来防止灰尘或其它异物等对摄像机或光源造成干扰或破坏,保障相机获取高质量的图像。

此外,图像采集装置260通过安装板401,安装于直线移动模组250;具体地,安装板401安装于直线移动模组250的移动部分,移动部分的直线运动带动安装板移动,从而带动整个图像采集装置线性移动。相机402,固定于安装板401。远心镜头403,连接于相机402前端,朝向该检测台220的镂空处。环形光源404,与远心镜头403前端间隔并固定于安装板401。环形光源404能消除阴影,便于泡沫镍230的近距离图像拍摄。调焦机构405,连接安装板401与直线移动模组250,调整安装板401在直线移动模组250上的位置,调焦机构405能对图像采集装置整体进行手动调整,改变镜头与检测台镂空处泡沫镍的距离。

请参见图5a。图5a为根据本发明一实施方式的部分区域表面图像采集模式和全部区域表面图像采集模式的示意图。在图5a中,假设矩形为待测泡沫镍,以及矩形区域为全部区域表面图像采集模式的采集区域。在全部区域表面图像采集模式中,采集区域为待测泡沫镍的全覆盖区域。也就是说,全部区域表面图像采集模式是对待测泡沫镍的所有区域进行检测,即采集待测泡沫镍的宽度d1范围内的泡沫镍图像。

点填充区域为部分区域表面图像采集模式的采集区域。与全部区域表面图像采集模式相比,部分区域表面图像采集模式的区别在于,仅采集部分待测泡沫镍的表面图像。在此实施方式中,部分区域表面图像采集模式的采集区域的宽度为d2,宽度d2小于待测泡沫镍的宽度d1。需要说明的是,宽度d2为固定宽度。在部分区域表面图像采集模式中,该宽度可以预先设定,也可以依据泡沫镍表面缺陷图像的分布而确定该宽度的大小。即,该宽度为泡沫镍表面缺陷图像的分布区域的宽。此外,部分区域表面图像采集模式的采集区域的位置可以预先设定,也可以依据泡沫镍表面缺陷图像的分布而确定位置的范围。例如,部分区域表面图像采集模式的采集区域的位置为泡沫镍表面缺陷图像的分布区域。

根据本发明的一实施方式,在部分区域表面图像采集模式中,图像采集装置的位置的移动范围依据表面缺陷出现的概率而被确定,或者图像采集装置的位置的移动范围依据随机数而被确定。依据表面缺陷出现的概率而确定图像采集装置的位置的移动范围时,有利于重点检测表面缺陷概率高的位置对应的区域。依据随机数而确定图像采集装置的位置的移动范围时,有利于对整个泡沫镍进行缺陷的抽样检测。

根据本发明的另一实施方式,在部分区域表面采集模式中,图像采集装置在固定泡沫镍宽度范围(例如,宽度d2的范围)内移动。然而,本发明并非限于此,根据本发明的又一实施方式,在部分区域表面采集模式中,图像采集装置到达目的位置之后,图像采集装置可以保持静止,即直线移动模组的速度为0。

请参见图5b和图5c。图5b为根据本发明一实施方式的表面图像抽样采集模式的图像区域的示意图;图5c为根据本发明一实施方式的表面图像连续采集模式采集的图像区域的示意图。

当采用表面图像抽样采集模式时,图像采集装置获取的泡沫镍图像502a、泡沫镍图像504a、泡沫镍图像506a在待测泡沫镍500上的位置如图5b所示,并且泡沫镍图像502a、泡沫镍图像504a、泡沫镍图像506a为时间上相邻的泡沫镍图像。由图5b可知,泡沫镍图像502a、泡沫镍图像504a、泡沫镍图像506a的图像区域不重叠。因此,表面图像抽样采集模式仅是对待测泡沫镍进行抽样检测,并不会对待测泡沫镍的所有区域是否存在缺陷均进行检测。其中,若待测泡沫镍从左端向右端传送,则时间上相邻的泡沫镍图像左右之间的距离d3由待测泡沫镍的传送速度以及图像采集装置中相机的帧率来决定;若图像采集装置安装于直线移动模组上,并且直线移动模组由上至下移动,则泡沫镍图像的上下方向的位置由直线移动模组的位置而决定。

当采用表面图像连续采集模式时,图像采集装置获取的泡沫镍图像502b、泡沫镍图像504b、泡沫镍图像506b在待测泡沫镍500上的位置如图5c所示,并且泡沫镍图像502b、泡沫镍图像504b、泡沫镍图像506b为时间上相邻的泡沫镍图像。由图5c可知,泡沫镍图像502b、泡沫镍图像504b、泡沫镍图像506b的图像区域部分重叠。在图5c中仅示出图像采集装置获取的部分泡沫镍图像。其中,若待测泡沫镍从左端向右端传送,则时间上相邻的泡沫镍图像左右之间的重叠区域由待测泡沫镍的传送速度以及图像采集装置中相机的帧率来决定;若图像采集装置安装于直线移动模组上,并且直线移动模组由上至下移动,则泡沫镍图像的上下方向的位置由直线移动模组的位置而决定。

请参考图6,图6为根据本发明一实施方式的泡沫镍表面缺陷检测装置确定检测模式的流程图。

在步骤s602中,获取泡沫镍表面缺陷图像,并依据泡沫镍缺陷分类模型对泡沫镍表面缺陷图像进行分类。泡沫镍表面缺陷类型包括,污染、折痕、裂纹、漏镀、刮伤、以及空洞等。根据本发明的一实施方式,可以利用各种极限学习机策略构建泡沫镍分类模型,并依据分类模型对泡沫镍进行分类。

在步骤604中,依据分类结果,计算不同类型的泡沫镍表面缺陷图像的缺陷概率。该缺陷概率为获取的泡沫镍表面图像存在表面缺陷的概率。请参考表1,表1为依据泡沫镍分类结果,得到的不同类型的泡沫镍表面缺陷所对应的缺陷概率的示例。

表1

在表1中,可以看出,在此示例中折痕的缺陷概率最高,而污染的缺陷概率最低。

在步骤606中,依据缺陷概率,建立缺陷概率索引列表,以将缺陷概率和对应的检测模式与同一索引号相关联。请参考表2,表2为依据本发明一实施方式的缺陷概率索引列表。

表2

在表2所示的示例中,若刮伤缺陷概率大于0.005及/或折痕缺陷概率大于0.002,则选择索引号为1所对应的第一检测模式,若刮伤缺陷概率小于或等于0.005及/或折痕缺陷概率小于或等于0.002,则选择索引号为2所对应的第二检测模式。也就是说,当图像采集装置处于第一检测模式时,若检测出第一缺陷类型的概率处于第一数值范围及/或第二缺陷类型的概率处于第三数值范围,则图像采集模式切换为该第二检测模式;以及当图像采集装置处于第二检测模式时,若检测出第一缺陷类型的概率处于第二数值范围及/或第二缺陷类型的概率处于第四数值范围,则图像采集模式切换为第一检测模式;其中,第一检测模式不同于第二检测模式,第一数值范围不同于第二数值范围,第三数值范围不同于第四数值范围。在此实施方式中,可以将各种不同类型的缺陷的概率进行组合,并依据组合结果将其对应于不同的检测模式。因此,本发明的实施方式能够通过计算机编程设计,灵活地根据不同类型的缺陷的概率的组合结果,应用不同的检测模式,以适应不同的实际需求。

在步骤608中,依据缺陷概率索引列表,确定图像采集装置处于第一检测模式还是第二检测模式。例如,若如表1所示检测出污染的缺陷概率为0.003,则依据表2所示的索引列表,图像采集装置被设置为第二检测模式。其中,第一检测模式对应于全部区域表面图像采集模式,第二检测模式对应于部分区域表面图像采集模式。

根据本发明的一实施方式,若同一类型的缺陷在第一宽度范围出现的数目超过第一阈值,则说明该类型的缺陷大概率出现于在对应于第一宽度的范围内,因此,需要进一步对此宽度范围的泡沫镍图像进行监控,以分析是否进一步采取相应措施。在此情况下,将图像采集装置设置为部分区域表面图像采集模式,或者将图像采集装置设置为部分区域表面图像采集模式和表面图像连续采集模式。其中,部分区域表面图像采集模式采集待测泡沫镍的第一宽度范围内的泡沫镍图像。进一步地,由于某些泡沫镍表面缺陷的产生与生产工艺相关,因此,同一类型的泡沫镍表面缺陷会批量产生。若将图像采集装置设置为部分区域表面图像采集模式,或者将图像采集装置设置为部分区域表面图像采集模式和表面图像连续采集模式之后,发现该类型的缺陷在第一宽度范围出现的频率超过一阈值,则排除缺陷标志设置为“真”,并进一步发出排除缺陷产生的原因。

以上该仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1