具有高吞吐量的离子迁移率谱仪的制作方法

文档序号:15440586发布日期:2018-09-14 22:44阅读:155来源:国知局

本公开涉及离子迁移率谱领域,更具体地,涉及改进离子迁移率谱,以便与液相和气相色谱、多维气相色谱和质谱结合。



背景技术:

离子迁移率谱仪(ims)广泛用于依据电离化合物的迁移率,分析电离化合物,电子化合物的迁移率是离子电荷、质量和形状的函数。典型的ims包含用于被分析化合物的软电离的离子源,形成短离子包的离子门(一般是tyndal门),用于静电场中的离子分离的充气漂移管,和测量时间相关信号的收集器。作为独立的分析技术,ims具有一般较低的分辨力(大体在50-100之间)。ims一直主要被视为检测有毒的挥发性化合物的低成本手持式系统和方法,因为它具有通过利用与掺杂蒸气的特定离子分子反应,能够被增强的一般较低的检测极限。最近,ims已与气相色谱(gc)、液相色谱(lc)和质谱(ms)结合,这种情况下,ims带来分析分离的额外维度。然而,归因于tyndal离子门的约~1%的占用比,以及ims和ms之间的气压和离子云大小的失配,简单的结合会在ims中产生极大的信号损失。另外,如果采用扫描ms(例如,四极等),那么存在时间尺度的失配。

在此整体引为参考的us5200614公开通过在选通脉冲之间,俘获离子,改善ims灵敏度。在此整体引为参考的us3902064公开一种利用ims谱仪和下游的质谱仪,以便用离子质量测量补充迁移率测量的组合。young等在论文j.chem.phys.,v.53,no11,pp.4295-4302(在此整体引为参考)公开一种利用ims谱仪和下游的正交加速飞行时间检测器的组合,它通常能够快速记录更高速度和占用比的质量测量的全景(所有质量)谱。在此整体引为参考的us5905258公开两种特征-在ims之前的离子俘获和在ims之后的正交tof的组合,从而利用两种优点-ims和ms的更高占用比。

在此整体引为参考的us6107628公开一种用于在中等气压下,会聚离子流的离子漏斗设备。在此整体引为参考的us6818890公开一种用于在ims之后的离子约束的离子漏斗。在此整体引为参考的论文anal.chem.,2008,v.80,pp.612-623描述把离子漏斗设备用于-在ims之前的离子俘获,和用于在ims之外的离子约束。在在此整体此为参考的anal.chem.,2007,v.79,pp.7845-7852中,也介绍了所谓的沙漏式离子漏斗陷阱的细节。描述的方法介绍了现有技术的最灵敏的ims-ms,所述ims-ms通常仍然存在一些限制。被俘获离子的数目因离子阱和ims漂移管的空间电荷容量而局限于通常在约1ms时间内累积的约1e+7电荷/脉冲。沙漏式门和下游离子漏斗把离子包扩展到大体约(200-400)μs,这减慢ims速度,需要大体约(20-40)ms的较长漂移分离时间,需要构成较长(约1m长)的ims漂移管,和限制ims占用比(约1ms的门饱和对约40ms的循环)、电荷吞吐量和动态范围。

在此整体引为参考的wo2008112351公开一种通过复用与每个ims分离单一阱激发的常规条件相比,在高得多的净频率下工作的离子阱的编码,改善ims动态范围和空间电荷容量的方法。然而,这种方法会导致离子包重叠和数据解释时的混乱。为了匹配ims分离时间,采用的下游正交tos具有约100μs的脉冲周期,从而分辨力有限(约r=5000)。

综上,现有技术的ims和ims-tof在其电荷吞吐量、动态范围、速度和分辨力方面受到限制,限制了它们与快速分离方法的结合。于是,如这里所述,改善ims和ims-tof参数是有益的。



技术实现要素:

发明人认识到通过在ims门,形成短得多,空间均匀并且更宽的离子包,与现有技术的装置和方法相比,能够增大ims的电荷吞吐量和速度。发明人提出一种新颖的俘获门,所述俘获门包括对偶网格,同时在网格之间施加rf信号,从而形成用于在大体约(1~100)mbar的气压下,积聚离子的rf屏障。在一种实现中,离子可被脉冲喷射,从而形成大体约(10-20)μs的包,或者例如利用斜坡dc场,以质量相关方式释放离子。短离子包的形成可能允许减小ims谱仪的大小,和获得一个数量级的更快速度(大体约(1-2)ms循环),更高的吞吐量和动态范围-所有这些对快速提前分离设备,比如gcxgc或lcxce分离的使用,对快速表面分析,对跟踪快速源内反应来说通常都很重要。

为了匹配门速度,最好结合大体约(10-100)torr的较高气压,使用更短(大体约(10-20)cm)的anims漂移管。预期细微的单元栅格(大体约(0.1-1)mm)在这种升高的气压下,形成rf屏障。在一种实现中,从门的一侧引入离子(被携带到气体喷射流中),以致离子会从门上方经过。这种安排一般可消除喷射循环之间的任何遗留物,并且通常允许除去通常没有分析价值,并且可能携带大部分电流的轻离子。

提出一种对于空间电荷吞吐量的备选解决方案,其中ims被布置在具有至少一个rf排斥壁的同轴圆筒之间。随后借助锥形收缩的离子导向器耦接圆筒形ims。发明人认识到与当前的rf激励降低ims分辨力的看法相反,rf激励导致离子传播时间的延迟。由于与离子漏斗相比,在ims之后的时间弥散较小,因此这种安排通常允许快速ims循环,从而提高电荷吞吐量。

在一组实施例中,按照一种实现,ims之前可以是快速分离色谱,比如双gc,或者可以是另一个较慢的分离ims,可选地具有在中间的裂解单元,或者可以是产生离子组成的快速变化的离子源,比如用于快速表面扫描的离子源,或者以低至毫秒的时间尺度,产生化学或离子分子反应的离子源。由于下游的mr-tofms的快速脉动,快速ims-tof循环成为可能。

在一组实施例中,按照一种实现,ims后面是配有正交加速器(oa)的编码快速脉动的多反射(mr)tofms。选择足以记录前面的各个分离级的时间分布的平均脉动速率。在分析编码的信号系列内的强度分布的同时,根据关于不均匀脉冲间隔的信息,色谱分布图(profile)、ims分布图和mr-tof飞行时间被解码。这种质谱仪一般能够跟踪低至大体约(5-10)μs时间尺度的输入变化。为了增大电荷吞吐量,ims触发可被加速,同时通常仍然避免相同质荷比(m/z)的离子之间的时间重叠。在一种实现中,为了支持ims分离的速度,和降低离子包时间弥散,ims出口部分可以配有具有中间部分的离子漏斗,或者通过会聚以堆叠的印刷电路板的形式构成的多极,最好后面是具有轴向场梯度的导电离子导向器。在一组实施例中,按照一种实现,在同轴圆筒之间形成ims分离空间,同时至少一个圆筒形成用于离子径向排斥的rf面。环状离子包的形成通常允许利用锥形rf离子漏斗或rf锥形导向器径向约束离子包,而不存在对开口较宽的离子漏斗来说一般典型的额外时间弥散。

在一种实现中,可选地,位于单一镜面反射之后的质量相关门允许具有关联的m/z和迁移率的离子大体同时地进入mr-tof检测器中,以便选择电荷状态或化合物类别。快速编码脉动改善谱仪灵敏度,提供gc2分布图和ims分布图两者的快速跟踪。ims分离改善mr-tof中的谱解码步骤和精确的质量测量。ims时间充当基于保持时间、迁移率和精确质量的3d坐标标记的高吞吐量识别的附加维度。ims与频繁脉动的mr-tof的快速工作提供多个优点,允许实现下面说明的多种新颖的工作方式和分析方法。快速并且灵敏的ims-mr-tof级联在现实的分析时间内,实现实用的多维分离。新特征的引入-快速ims门和用于ims和mr-tof的嵌入快速编码的和不均匀的脉冲串的引用-能够产生全面并且不被折衷的多维分析的新机会,比如色谱时间尺度下的gcxgc-ims-mrtof或者伪ms-ms,以及mr-tofms的超高分辨力和sub-ppm质量精度。

在一组实施例中,按照一种实现,可以利用裂解单元裂解ims分离的母离子,从而提供全质量伪ms-ms(即,关于所有父离子的同时级联ms分析,而没有在母离子选择时的离子损失)。在一种实现中,考虑到cid单元中的校准的质量相关延迟,利用碎片或片段(fragment)的时间分布的去卷积,可把碎片聚集成族。通过观察片段谱中的分子峰,可以恢复母质量。在一种实现中,预期关于母离子的时间分布的去卷积可把母离子分离提高到通常与常规ms-ms实验中的ms1分辨率力可比的约200-300分辨力。在一些实施例中,cid单元用于软裂解,以便分裂迁移率选择的各组化学背景。

在另一组实施例中,按照实施例,首次无所谓的扫描离子损失地提出ims与频繁脉动的mr-tof的级联,以便测量差分离子迁移率。精确的质量测量允许跟踪各个化合物的迁移率。在一种实现中,多次变更场强,以得出离子迁移率的差异,最好在离子迁移率和差分离子迁移率的分析空间中,显示数据。最好,利用轻质气体获得迁移率的显著变化,而不存在离子裂解。最好,如下所述延伸和折叠ims长度。

在一种实现中,提供一种使gcxgc分析的高速与约50ms宽的波峰匹配的快速离子迁移率谱仪(ims)。所述快速ims顺序包括:离子源,所述离子源充满气压大体约为1mbar~1bar的气体;由前端盖电极,之后的前网格和之后的后网格形成的离子门;所述网格平行,并且隔开与网格单元大小相当的距离;连接在所述网格之间的射频(rf)发生器;连接到所述前端盖电极和所述网格的开关或可调整dc信号;充满气压大体约为(1~100)mbar的气体的离子漂移空间;和离子检测器。

在一种实现中,对偶rf网格门可保存ims占用比,产生短离子包(约10μs),这种方式提高ims速度、电荷吞吐量和动态范围。最好,所述离子源的轴可大体平行于所述网格地取向。最好,所述设备还包括在所述离子源和所述离子门之间的至少一个rf离子导向器,其中所述rf离子导向器包括下述之一:(i)离子漏斗;(ii)具有轴向场的多极离子导向器。最好,所述设备还包括前面的液相色谱仪,或者毛细管电泳,或者气相色谱仪,或者双极气相色谱仪。最好,所述离子源可包括下述之一:(i)esi,apci(i)光电离源;(ii)具有掺杂剂的光-化学电离源;(iii)具有质子传递反应的化学电离源;(iv)具有电子吸附电离的化学电离源;(v)具有借助辉光放电的条件产物的被分析物电离的辉光放电源。最好,所述离子源具有切换电离模式,或者切换离子极性的装置。最好,所述离子源可具有裂解装置,和按色谱分离的时间尺度切换所述裂解的装置。为了提高离子检测器的速度,可利用增大的静电场,或者利用射频离子漏斗,空间约束离子包。

薄煎饼形状,并且直径较大(大体约(50-200)mm)离子云的形成会降低空间电荷对ims性能的影响。最小的包宽度(大体约(10-100)μs)允许ims的频繁工作。两种手段都可提高ims的空间电荷吞吐量和工作速度。为了避免由气流引起的离子选通的失真,使离子源沿着门定向,和/或采用离子导向器把离子输送到位于远处的离子门。

在一种实现中,提供一种离子迁移率谱仪,包括:(a)两组同轴电极,外电极和内电极;(b)在所述每组电极内,借助电阻链,连接所述电极,以便提供轴向dc梯度;(c)在至少一组电极内,所述电极被连接到交替的射频供给源,以便实现径向离子排斥;和(d)偏置两组电极之间的dc电位分布,以致形成径向dc场,从而推动离子撞击所述rf屏障。最好,所述设备还包括下述至少一种离子输送装置:(i)同轴射频离子导向器;(ii)在所述迁移率谱仪前面的同轴射频离子阱;(iii)具有轴向dc场的锥形离子导向器或离子漏斗;和(iv)具有轴向dc场,并且具有提供径向dc排斥的一组内部锥形电极的锥形同轴离子导向器;所述装置位于所述迁移率谱仪的上游或下游。

实施例利用新颖的实现-rf激发不影响ims分辨力,而是导致时间延迟。rf场可用于径向离子约束,如果在低rf振幅和高rf振幅的区域之间提供有效的离子混合,或者通过把离子软推送到rf屏障上,以致它们都经历大体相同的时间延迟的话。成环状离子包的离子约束允许避免对现有的宽开口离子漏斗来说典型的时间弥散,这种方式增强ims分辨力和工作速度。注意,同轴ims可采用rf网格门或其它同轴离子阱,比如rf离子隧道和漏斗,具有径向喷射的环状rf阱,和具有边缘脉冲喷射的多极阵列。

在另一种实现中,提供一种离子迁移率谱仪,它包括具有分布式轴向dc场的射频离子导向器的阵列,所述阵列被空间排列成二维平面阵列,或者同轴卷绕的二维阵列,或者包含多个平面层的三维阵列。最好,所述阵列包含具有导电片段的印刷电路板,所述片段或者由深槽隔离,或者由抗静电材料隔离。可以并行使用离子通道的阵列,以提高ims电荷吞吐量,或者从而增大ims的长度和分辨力。

在另一种实现中,提供一种快速离子迁移率谱分析方法,所述方法依次包括以下步骤:在约1mbar~1bar气压下工作的离子源内,产生离子;在间距小的平行网格之间,形成局部rf场,同时利用dc场,向着rf场吸引离子,所述dc场足够小,从而避免离子穿透所述rf场的势垒,这种方式导致离子局限在网格单元周围的局部rf阱中;借助所述rf场的区域中的dc场的脉动开关,推动离子穿过所述rf场,从而形成短离子包;在约(1~100)mbar的气压下,依据离子在静电场内的迁移率,分离离子;和在检测器上检测时间相关信号。

最好,可以大体平行于所述网格平面地把离子引入rf场区中。最好,所述方法还包括在所述电离步骤和所述选通步骤之间的离子输送步骤;利用离子的射频约束辅助所述输送步骤,以便采用气压之间的差异,和避免在迁移率分离阶段内的显著气体运动。最好,所述方法还包括利用气相色谱分离法,或者利用双级气相色谱分离,液相色谱或电泳法的被分析物分离步骤。最好,所述电离步骤可包括以下中的一个步骤:光电离;借助掺杂剂的光化学电离;借助质子传递反应的化学电离;借助电子吸附电离的化学电离;利用辉光放电的条件产物的被分析物电离,电喷射电离;大气压光-化学电离;大气压化学电离;和基质辅助激光解吸电离。最好,所述方法还包括切换电离方法的步骤或者切换离子极性的步骤。最好,所述方法还包括按所述色谱分离的时间尺度,开启和关闭的离子裂解步骤。

在另一种实现中,提供一种用于匹配gcxgc或ce分析的时间尺度的快速ims和mr-tof的级联。这种设备包括:气态离子源;连接到rf信号的对偶网格门或环形离子阱,用于在1~100mbar的气压下,累积离子的脉动或质量相关输送;在所述rf网格门之后的离子迁移率漂移空间;具有正交加速器的多反射飞行时间质谱仪;提供具有编码的不均匀时间间隔的频繁启动信号,以便以通常高于1khz的平均频率触发ims门,和以通常超过100khz的平均频率,触发所述正交加速器的信号发生器,其中脉冲串持续时间与ims分离时间相当;和具有与所述脉冲串的持续时间匹配的采集周期,还考虑到编码脉冲时间间隔,以及信号序列内的强度分布,提供ims-ms谱解码的数据系统。预期脉冲编码的mr-tof无离子损失地与快速ims的速度匹配。最好,所述锥形ims部分可包含离子漏斗;或者具有中央伸缩部分的离子漏斗;或者由多极pcb部分形成的多极集合;或者还包括在轴上的至少一个电极以便借助dc场实现径向排斥的收敛离子漏斗。

ims与频繁的编码脉动的mr-tof的级联允许在约1khz以上的ims循环和频繁ims脉冲的显著缩短,这种方式提高级联的电荷吞吐量。利用宽孔或同轴离子门和宽孔或同轴ims单元也提高电荷吞吐量,并且按照估计,使级联的吞吐量提高到约1e+10离子/秒,从而匹配现代离子源发出的离子流。

在另一种实现中,提供一种按gcxgc时间尺度的ims-mr-tof分析方法。所述方法包括以下步骤:利用在对偶网格之前或者在环形离子阱之内的rf场的离子累积;利用间隔不均匀,并且平均频率超过约1khz的重复脉冲串编码的脉动或质量相关离子喷射;随后在约(1~100)mbar气压下的离子迁移率分离;在所述离子迁移率分离步骤之后的离子流的空间聚焦;利用间隔不均匀,并且平均频率超过约100khz的重复脉冲串编码的脉动正交离子加速;多反射静电场内的离子m/z的飞行时间分析;和考虑到编码的不均匀脉冲时间间隔,解码关于离子迁移时间、离子质量和离子强度的信息,以及解码关于信号系列内的强度分布的信息的步骤。

最好,所述谱解码步骤可采用多维算法来分析mr-tof中的色谱时间、离子迁移时间和飞行时间的多维空间中的数据群集,以便说明在其色谱峰和离子迁移率峰期间的任何特定m/z核素的所有离子信号,同时分析各个质量组成的时间分布。最好,所述方法还包括在离子迁移率分离步骤和飞行时间分析步骤之间的离子裂解或离子去聚类(软裂解)步骤。最好,所述方法还包括关于迁移时间的精确指定和关于产物离子之间的时间相关性的去卷积步骤。最好,所述方法还考虑离子迁移率谱仪的出口和质谱检测器之间的时延的质荷比相依性。最好,所述方法还包括测量元素谱中的质谱峰的质心,并把分布数据转换成不分离谱的步骤。最好,所述方法还包括在去卷积、解码和求平均值步骤之前,按带有实验室时间戳的数据记录格式,记录检测器信号的步骤。最好,所述方法还包括在所述多反射静电场内的一个离子反射的空间位置处在时间窗内,传送离子的步骤,其中利用当前传送的迁移时间调整所述传送时间窗,以便实现迁移率-质量关联离子选择。最好,所述方法还包括在所述选通步骤,推动离子穿过所述rf屏障的dc场的缓慢斜坡变化下的离子序列倒置步骤。

在另一种实现中,差分离子迁移率测量方法包括以下步骤:(a)在沿着迁移率谱仪的第一场强值下,在所述迁移率谱仪中分离离子;(b)在沿着迁移率谱仪的第二场强值下,在所述迁移率谱仪中分离离子;(c)对于几个场强,重复所述步骤,其中所述场强足以变更离子迁移率,其中迁移率谱仪充满诸如氦或氢之类的轻质气体,以致避免在对可检测的迁移率变化来说足够的较大场强下的离子裂解;(d)在整个迁移率分离循环期间,利用具有正交加速器的多反射质谱仪,获得质谱;其中用不规则的脉冲串触发所述正交加速器,以致脉冲周期远远小于所述质谱仪中的离子飞行时间,其中在脉冲串中,任意一对脉冲之间的时间间隔是唯一的;和(e)在离子迁移率和差分离子迁移率的至少两个维度内,分析结果。

在另一种实现中,提供一种在多个分析维度内的综合分析方法(即,在分离或分析时,不失去被分析物或信号),包括在具有频繁编码脉动的多反射质谱仪中的质谱分析,和下述中的至少三个分析维度内的同时分析:(i)气相色谱-gc1或者液相色谱-lc;(ii)第二个并且时间上嵌套的气相色谱-gc2或者毛细管电泳-ce;(iii)多模或切换极性软电离,比如esi,apci,appi,pi,ci或gd;(iv)快速切换源内裂解is-cid;(v)离子迁移率分离-ims;(vi)在ims之后的离子裂解;(vii)整数质量的飞行时间质量测量-m/z;(viii)提取质量亏损和元素组成的精确质量测量-dm;和(ix)通过交变充满轻质气体-氦或氢的常规迁移率谱仪中的场强而获得的差分离子迁移率。

最好,利用具有不均匀间隔的编码脉冲串,脉动所述多维分析的各级,其中脉冲之间的平均间隔小于上游分离级的峰形,其中按保存实验室时间信息的数据记录格式,记录信号,其中为相加时间与在前分离的峰宽相当的合计谱,计算主要的质量组成;其中随后利用与所述频繁脉冲之间的平均时间间隔相当的时间分辨率,重构前面的分离的时间分布。

按照本发明的另一个方面,提供一种级联分析方法,包括以下步骤:(a)在同轴阱中俘获离子;(b)从所述阱当中的脉动或质量相关离子释放;(c)在具有dc轴向场的同轴离子迁移空间中分离离子;(d)在所述圆筒形迁移率分离空间的一侧,提供射频场径向排斥;和(e)朝着所述射频屏障,提供离子的径向dc排斥。最好,为了减小电容影响,所述方法还包括用气压大体约(1-10)torr的气体,充填所述迁移率谱仪,以至少部分抑制射频运动的步骤;和利用通常低于约1mhz,并且从0到峰值的振幅通常低于或约为200v的rf频率的步骤。

按照另一种实现,提供一种级联分析方法,包括以下步骤:(a)在离子源中,电离被分析物分子的混合物;(b)利用迁移率或差分迁移率谱仪,过滤离子流,以致每次通过一个分离的离子分数;(c)使所述分离的离子分数去聚类或者裂解;和(d)在具有编码的频繁脉动的多反射飞行时间质谱仪中,分析所述去聚类或裂解的离子流。最好,所述迁移率或差分迁移率过滤步骤包括下述中的一个步骤:(i)在具有与横向可调dc偏压结合的横向不对称射频场的窄电极隙中的离子差分迁移率分离(faims);(ii)利用横向气态流中的轴向dc场的离子迁移率分离(dma);(iii)轴向dc场和轴向气态流内的横向调制静电场中的离子迁移率分离(tm-ims);(iv)在利用tyndal门,形成短离子包的情况下,在轴向dc场内的大气或接近大气的线性迁移单元中的离子迁移率分离(ims);(v)行波离子迁移率分离(t-wave);(vi)通过移动均匀轴向场的各个片段的离子迁移率分离(谐波ims);和(vii)轴向气体喷射流与dc场相对的迁移率分离。所述一组方法是作为离子迁移率和质谱仪的高吞吐量级联的低成本备选方案提出的,适用于各种电离方法,包括常规方法和样品制备最少的样品处理快速的原位电离方法。所述方法利用以下实现:(a)利用mr-tof内的频繁编码脉动的高效率,补偿在离子迁移率过滤时的离子损失;(b)同时,迁移率过滤和离子去聚类或裂解的组合不会显著改善信号-化学背景比,否则这会限制mr-tof中的频繁脉动的效率;(c)离子迁移率过滤允许减少界面内的离子损失,所述界面通常具有免受污染影响的装置,所述装置现在可以随同关联的离子损失一起被消除;和(d)在中等样品复杂度的情况下,前面的色谱分离可用迁移率分离替换,从而加速整个分析,使分离更加可再现,和降低样品注入流率,从而节省样品。例如,lc可用dma分析仪替换,可按小10-100倍的流率注入样品,从而延长相同强度信号的持续时间。

附图说明

现在参考附图,举例说明只是出于举例说明的目的给出的本发明的各个实施例以及安排,附图中:

图1描述在ims出口,具有沙漏式离子阱和离子漏斗的现有ims;

图2描述其间具有rf场的对偶网格门的实施例,和具有同轴ims的实施例;

图3表示按照一种实现的离子俘获内的等场强线;

图4a描述按照一种实现的离子俘获门中的有效rf电位的分布图;

图4b描述按照一种实现的在穿过所述门的离子通道的某一级的dc电位分布图;

图5表示按照一种实现的具有双模式离子源和双重漂移单元的ims的实施例;

图6表示按照一种实现具有正交加速器的快速编码脉动的gcxgc-ims-mrtof的实施例;

图7表示按照一种实现的图6的设备的框图和时间图;

图8表示按照一种实现的具有用于关联迁移率和m/z离子选择的mrtof中的定时选择的ims-mrtof设备的框图和时间图;

图9表示按照一种实现的具有光电离源的gcxgc-tof中的油异构体的全面分离的例子;

图10表示按照一种实现的由于组合的gc和ms分离而获得的高分辨力的例子,其中按时间分离同量异位素(isobar),质量分辨率由质量精度限定;

图11表示按照一种实现的布置在具有rf阻滞壁和径向dc梯度的同轴圆筒之间的例证迁移率单元;

图12表示按照一种实现的布置在具有轴向dc梯度的rf通道的阵列内的例证离子迁移率单元;

图13表示按照一种实现的ims单元长度的延伸的实际例子;和

图14表示按照一种实现的低成本级联迁移率-质谱分析方法的方框图。

具体实施方式

参见图1,现有技术(anal.chem.,2008,v.80,pp.612-623,在此整体引为参考)的级联离子迁移率谱(ims)-飞行时间质谱仪(tofms)11包含以下顺序组合的组件:离子源12,连接到具有叠加的轴向dc梯度的rf信号的漏斗形离子漏斗13,包含在漏斗板之间,连接到切换的dc信号,以便实现离子选通的3个网格14、15和16;填充气压约(1~10)mbar的气体的离子漂移管17,和用于会聚离子流的第二个离子漏斗18,气压约(10-100)mtorr的差动泵浦四极离子导向器19,和具有正交加速的差动泵浦单反向飞行时间质谱仪20。泵浦用白色箭头表示。rf和dc电源中的一些用方框表示。电喷射(esi)离子源用esi滴流的示意图表示,离子源之后的气体喷射流用浅色锥体表示。

操作中,液相色谱仪(lc)在约1小时时间内,分离被分析物分子,而lc峰的典型宽度约为(5~20)s。esi离子源12电离被分析物分子,同时生成m+或mh+离子。离子由气体喷射流,经喷嘴输送到第一离子漏斗13区域中,从而由离子漏斗13约束。由于网格15和16之间的弱(几伏)dc偏压,门把离子累积在网格15之前。定期向网格14和16施加提取脉冲,以驱动离子通过网格门。在注入静电漂移管17中之前,离子流被空间会聚。离子随后在漂移管17中,借助迁移率被分离,由第二离子漏斗17空间约束,经导向器19传送,随后由tof20分析。

为了达到约(30~50)的分辨力,需要一般1m长度的漂移管和一般(约(20-50)ms)的ims漂移时间,因为离子包的典型宽度一般约为(200-400)us。离子包宽度可由几个因素限制,包括:(a)由ims漂移管中的空间电荷引起的离子包扩散;(b)在第二离子漏斗18之内和在四极离子导向器19内的离子包扩散;和(c)tof的缓慢(100μs)的脉动周期。如果使用前面的液相色谱(lc),那么这种分离速度是足够的,不过,这种分离速度不足以供更快速的分离方法,比如gcxgc或lcxce使用。ims11的dc门能够保存和喷射高达1e+7离子/脉冲,从而网格门在1ms充填时间内变得饱和。从而,ims的占用比仅仅为2-5%。由于沙漏式门中以及漂移管中的空间电荷影响,预期更高的离子负荷会影响ims分离的分辨力。

本发明的快速门和快速ims

现在参见图2,图中表示了ims的实施例21,它包括以下顺序组合的组件:离子源22;由前端盖电极24、具有rf电位的前网格25和具有dc偏压的后网格26形成的离子门23;由dc偏置保护环形成,以产生通常均匀的约(10~100)v/cm静电场,并且充满气压约(1~100)mbar的气体的漂移管27;和离子检测器28-连接到放大器和信号记录器的收集电极。为了减小收集器的时间常数rc和电容c,电极可由细微网格形成。为了确保完全离子收集,网格背面是具有抑止dc电位的电极。相同的收集器网格有助于沿漂移管27,形成~1m/s均匀的逆流气流27f。一些关键的电源被表示成示意性的方框。

最好,ims之前可以是双级气相色谱(gcxgc),以便快速分离被分析物混合物。色谱峰的典型宽度通常约为50ms。在gcxgc中的分离之后,源22通常在约(100-1000)mbar气压下,电离半挥发性的被分析物分子。在一种实现中,用可选的离子漏斗29聚集离子,以在门和迁移单元27c中,获得通常最佳的气压。气流可把离子输送到通常在约(10-100)mbar区域中工作的离子门23区域中。在一种实现中,通常使气流平行于前网格25,并在前网格25之上定向,从而把网格保持在流动完全的区域中。施加于前端盖电极24的dc偏压通常可把离子从气体喷射流推向网格,如用箭头所示。最好,在前端盖电极24和前网格25之间插入具有轻微dc梯度的rf通道(未图示),以避免在利用弱dc场,从流体抽取离子的样品时,由气流引起的气体搅动。

在一种实现中,后网格26使前网格25与漂移管27的强(通常约(10-100v/cm))静电场隔开。在一种实现中,施加于前网格25的rf信号可在间隔小的前网格25和后网格26之间形成通常的强rf场,从而在网格附近迟滞离子。长效的吸引dc场和短效的排斥rf屏障的平衡在前网格25附近形成离子俘获区。对脉动离子喷射来说,向前端盖电极24(或者rf通道的前网格),和/或后网格26施加脉动dc偏压。另一方面,对质量相关离子释放来说,dc偏压是斜坡平滑的。

参见图3,在网格之间的距离约1mm,每个网格中的线粗约0.1mm,线之间的距离约0.5mm,并且rf信号的振幅约100v的情况下,对于一个选择的例证门,表示了离子门23内的等场强线。等场强e的线用数字表示。rf场的有效电位已知正比于e2q/mω2,其中q和m是离子电荷和质量,ω是rf频率。从而,较高的场强对应于较高的电位,离子从较高场强的区域变得迟滞。另外注意rf电位是质量相关的。可以看出,在线周围形成迟滞rf壁32,在线之间的中间,也形成鞍状屏障33,鞍状屏障33阻止离子在足够小的dc场下,穿过rf屏障。还形成rf俘获区34,其中rf信号被消除(rf场的四极原点),前端盖电极24的dc场和后网格26的dc场能够被平衡。图表示在离线中心的各个x距离的垂直e2(y)分布图。在图上示出了俘获门的上述区域32-34。

图4a描述在借助施加于后网格26的约50v脉冲的分级喷射,约10mbar的气压,和漂移管27的约100v/cmdc场下,在门之后的离子流的模拟时间分布。注意,离子包可以短至约10μs,这可用在喷射步骤之前,离子在俘获区34中的精确定位来解释。图4b描述具有正比于(m/z)^2/3的模拟横截面,并在后网格26上的dc电位0.2v/us地变动的斜坡dc喷射下,各个m/z离子的时间分布。由于rf屏障的有效电位是质量相关的,因此小m/z离子会首先通过,这产生质量反演(在所有其它区域中,较小的离子更快地通过)。在一种特别的方法中,反演被布置成以致具有特定质量和迁移率之比的离子同时到达检测器,从而只分析特定化学类别(例如,芳香族化合物,而排除线性分子)的离子。

网格的多种其它安排也是可行的。形成网格的各组平行线可在横向方向对齐或者偏移半步。为了避免两个线组的平行对齐,第二个网格可以是单元细微得多的正方形单元网格。第一个网格可以是具有正方形、矩形或六边形的粗单元的网格。也可对第二个网格施加rf信号,这对漂移区中的离子运动的影响可忽略不计。利用网格之间的较小迟滞dc偏压,可以辅助离子俘获级。喷射dc场可被施加于前端盖电极,或者任何网格。

现在参见图2,高电荷吞吐量ims的另一种实现21c包含布置在同轴圆筒之间的迁移单元27c,同时在迁移单元27c的入口侧和出口侧,利用锥形rf漏斗或锥形离子导向器29c和29e。在同轴迁移单元27c中,至少一个圆筒壁充当rf排斥面,另一个圆筒壁提供静电径向排斥,以致离子被软推到屏障上。应刚好足以对抗离子扩散地选择径向场。更强的场会引起更强的rf激发和时间弥散。在图2中图解所示的实施例中,迁移单元由环形成。所述环应由切向轨保持在一起,并用销或者用胶附接。通过在迁移单元27c的边缘之间,施加电压梯度,布置轴向梯度场。在每组电极内(一组电极对应于外圆筒,另一组电极对应于内圆筒),借助电阻链,互连所述环形电极,从而形成均匀场梯度。向一组电极,例如向外部环形电极施加相位交替的rf信号,从而形成从外壁排斥离子的rf屏障。为了保持离子接近于rf屏障,在内部一组电极的dc电位被正偏置。另一方面,内圆筒也被供给交变的rf,从而产生rf离子通道。在后一情况下,气压应低于0.1-1mbar,以在离子流的中央部分和径向部分之间,提供有效的离子混合。另一方面,可用短片段形成rf屏障,以布置多极rf场和轴向dc场。可以柔性抗静电塑料上的印刷导电条的形式,形成这种电极段,或者可以通过塑料中的小孔附接、焊接或胶接的压印托架的形式,形成这种电极段。

操作中,离子由dc梯度向着入口锥形rf漏斗29c驱动,随后在锥形rf漏斗29c出口,被会聚成环状云。周期地,使轴向dc梯度和门的rf屏障之间的均衡发生脉动,或者调整dc梯度,以允许短脉冲或者质量相关离子串。环形离子包由dc径向场推向径向rf屏障,并沿着径向rf屏障行进,同时受迁移单元27c内的轴向dc场驱动。可选地,在ims单元的出口,离子被约束在向着电容较小的小型收集器的出口锥形同轴离子漏斗内。

实施例27c利用一种新颖实现。据信由于离子加热,rf场影响ims中的分辨率力。根据离子光学模拟,显然rf场一般不影响分辨力,而是与被rf激发的离子的径向部分相比,在不被rf场激发的离子的轴向部分之间引入时延。从而,利用这两个部分的有效大量混合,或者通过把所有离子暴露在近似相同的rf激发下,可以恢复ims分辨力。这种实现允许采用借助rf场的离子径向约束,而不影响圆筒形和锥形离子导向器中的ims分辨力。

由于离子受径向rf屏障和dc径向排斥约束,因此可在无离子损失,并且无在rf离子导向器中经常发生的额外时间弥散的情况下,操作圆筒形迁移单元。如果向两个圆筒施加rf约束,那么具有径向约束的ims在适中的环厚度下仍可工作。由于与常规的离子漏斗相比,锥形漏斗不会引入额外的时间弥散,因此在保持相同水平的ims分辨力的同时,可以更快速地操作ims单元。从而,尽管与开口较宽的管状单元相比,同轴ims单元的总电荷容量变小,不过归因于更快的单元工作,在同轴ims单元中,空间电荷吞吐量得到恢复。

再次参见图2,实施例21c最好在通常约(1~10)mbar的较高气压下工作,以提供rf离子运动的部分抑制。这允许利用在通常约(0.5-1)mhz的范围中的低得多的rf频率,和通常约为(50~200)vo-p的小得多的rf振幅。该组合通常解决rf驱动电极的大电容的问题。在一种实现中,如果利用对较低气压下的离子导向器范围来说典型的通常约为(3-5)mhz和通常约为(1000-2000)vo-p的常规rf参数,那么约1nf的量级的电容将变成实际实现ims的路上的强大障碍。

另外注意,尽管宽孔ims21需要具有宽发射面的新颖rf网格门,不过,同轴ims单元21c可以有效地与其它各种射频阱,比如具有径向喷射的环形离子阱,离子隧道或离子漏斗一起工作。

数值例子和ims参数

要明白,本例中提及的数字是近似的,受保护的主题的范围不应局限于这里说明的具体例子。再次参见图2,在一个数值例子中,前网格25和后网格26之间的距离为0.5mm,前网格25由间隔1mm的并行50um导线形成。门的开口区域的直径为50mm。前网格25上的rf信号频率为8mhz,振幅为100v。前端盖电极与前网格25的距离为10mm,具有2-10v的电位。在漂移长度l=30cm,漂移单元两端电压为3kv的情况下,漂移区中的场强为100v/cm。利用机械泵,在漂移区和门区域中,维持约10mbar的气压,其中跨30cm的3000v预计不会导致电击穿。在这样的气压下,较小的离子(被分析物在gc中被分离)的平均离子迁移率在100cm2/v*s范围中。平均离子漂移速度为100m/s,即,显著低于热气体速度。平均漂移时间为3ms。检测器为连接到具有1mohm阻抗的电位计的30-50mm圆盘(设想通过增大在ims出口的静电场的离子聚集)。预期的检测器电容为10pf,电位计的时间常数为10us。

我们来估计这种ims是否能够达到50~100的目标分辨力r=t/dt,同时充分利用1na的输入离子电流。首先,初始包宽dt0<10us不限制在t=3ms下,最高到300的r。其次,按照einstein方程,扩散极限r~c*sqrt(u/kt)=60*sqrt[u(kv)]允许u=3kv下的r~100。为了利用离子包空间电荷维持相同的分辨力极限,空间电荷场必须小于0.5v/cm,即,至少比外部场小200倍(考虑到前端和后端两者的扩展)。在2e+5电荷/cm2的最大电荷密度下,得到这种场,整个5cm大小的离子包局限于6e+6电荷/单一迁移率的离子包。在3ms周期下,这对应于2e+9离子/秒·单一迁移成分,可能匹配与在多数软电离源,比如光化学电离、电晕放电和辉光放电离子源中产生的离子电流匹配的1na电流通过量。尽管如此,最好仍然利用额外的滤质器,除去轻溶剂或基质离子。这种过滤器可被安排成具有位于ims门的上游的相同对偶rf网格。利用来自源的气体喷射流,可以吹掉被迟滞的离子。通过利用气流均衡dc场和rf场,或者借助速率10-100khz的脉动离子输入,相同的过滤器可用于控制注入电流的大小。

归因于在离子收集时的较小时间弥散,可以更快速地操作圆筒形ims单元21c(比如说每1ms一次),这允许利用更频繁的门脉动,和在ims单元中利用更高的场强,以改善抗空间电荷效应性。

ims的动态范围在高端由最大信号限制(由每个脉冲,每个组成的6e+6离子的空间电荷极限限定),在低端由检测器放大器噪声限制。在100khz带宽下,放大器的jonson噪声约30uv(匹配ims峰宽,并且滤出门的rf信号)。10us峰值时间下的6e+6电荷(1pc)的最大信号对应于1mohm阻抗下的1ua电流和1v信号。从而,单个ims发射(shot)的动态范围局限于约10000,假定检测阈值为s/n=3。

按照上面的估计,预期ims21按3ms周期工作,在gcxgc-ims实验中提供足够的时间分辨力,其中在gcxgc之后的峰宽预计约50ms。

参见图5,离子迁移率谱仪的实施例51包括gc或gcxgc分离器52,具有多种电离模式,并且切换电离的极性的组合离子源53。最好在ims扫描之间进行这种切换。离子源53在100mbar~1bar的气压下工作。电离可以采用气路系统58,帮助样品和掺杂物蒸气输送,和调节电离区中的气压。最好,离子源53后面是离子漏斗界面54,由机械泵55泵浦到约10mbar气压。ims仪器还包括在离子门的两侧工作的2个漂移单元56和57,每个漂移单元具有自己的收集器56c和57c,收集器56c和57c最好连接到单个采集系统58(具有至少16比特垂直分辨力的0.5-1mhzadc)。

由于gc采用洁净气体,并输送低挥发性被分析物,因此gcxgc-ims的机械设计应满足几个重要考虑事项。离子源和ims组件必须被加热,最好到250-300℃,以避免被分析物分子吸附到壁上。ims应利用洁净材料,比如无孔金属、陶瓷和玻璃,以避免烟雾。在一些较冷的区域中,可把vespel和kapton用于绝缘,把vespel或石墨用于密封。真空密封应是金属对金属式密封,比如conflat和swagelock,以避免使材料脱气。漂移单元可以是内部涂覆有高阻抗防静电材料,比如氧化锡或者photonics提供的导电玻璃的陶瓷管。另一方面,一组金属端盖(例如,环形)电极可由陶瓷球分离,并由金属棒夹住。最好,电极窗应超过门开口的大小至少一个板厚。在一个数值例子中,门开口直径为25mm,4个漂移电极是具有75mm的窗口的环,漂移区长100mm。最好,一连串的电阻器位于真空区之外,以避免脱气。最好,离子源区域在接地电位附近,而使漂移管的背面浮动,收集器信号经电容器到来。最好,漂移单元被覆盖物环绕,以便(a)防止由离子源区中的气流引起的气体搅动,和(b)在漂移单元中提供缓慢(1m/s)的层流,以便防止离子源烟气进入漂移区。为了避免对收集器的压电效应,机械泵应是振动脱耦的,例如,利用波纹管,并应利用滤油器隔离,以避免油烟。从经济方面考虑,可以利用小型机械泵,以允许用于cgxgc的ims检测器的台式装配。

gcxgc-ims的多模离子源

现在参见图5,离子源53可以选自:(i)光电离(pi)源;(ii)具有掺杂物蒸气的光化学(pci)电离源53pi;(iii)借助质子传递反应的化学电离(ci)源;(iv)借助电子吸附电离的负化学电离(nci)源;(v)具有借助辉光放电的条件产物的被分析物电离的辉光放电(gd)源53gd。通过引起电晕放电或者几ua(受电阻器限制)辉光放电,提供化学电离(ci)。诸如氨、丙酮或氨基苯之类的掺杂物会产生准分子mh+离子,借助质子传递反应电离被分析物分子。在nci源中,可在负电晕偏压下形成m-h-或m-离子。借助氙气或氩气uv灯,利用苯或环己烷的初步电离,布置光化学电离(pi)53pi。随后在电荷传递(电子隧穿)反应中,使被分析物蒸气电离,从而主要形成分子m+离子。如在同时待审的申请,序列号61/375,095中所述,在辉光放电(gd)源53gd中,使辉光放电产物处于某种状态,以使电子和大部分离子漂移到输送管的壁,而具有约20ev激发的长寿命亚稳态氦或氩原子在单独的“反应器”体积中电离被分析物蒸气,从而形成具有适量碎片的分子m+离子。这些裂解离子的组成与利用电子冲击形成的类似,即,可用于nist确认,不过,gd电离更软,从而为在ei谱中,分子离子强度微不足道的大多数被分析物分子提供分子离子。通过颠倒电离电晕放电的电位,诸如ci之类的离子源的电离极性可被切换。诸如pci和gd之类的离子源能够同时生成两种极性的离子,借助公共反应室53r,可被组合在一个源内。通过调整气流(用白箭头表示),或者开关电晕放电,或者开关uv灯,可以切换电离模式。根据ci、nci、pi和gd源的所述性质,预期快速切换多种电离模式的gcxgc-ims51可提供几个重要的分析性质,比如:(i)粗略与离子迁移性相关的被分析物质量的表征;(ii)携带诸如电离电位,质子或电子亲和力,和极性基团的存在之类信息的电离的额外选择性;(iii)电离各种被分析物类别的能力;和(iv)通过选择性电离,增大特异性。这种能力可被视为额外的分析维度。

预期gcxgc-ims仪器是表征复杂混合物,和检测超痕量的有用工具。已知gcxgc按类别分离化合物(参见在网站上的www.leco.com的应用笔记)。在一些样品,比如柴油或原油中,多种异构体在保留时间rt1和rt2的二维(2d)空间中,形成特征图。通常,目标化合物,比如卤代有毒化合物在2d空间中,与大部分的基质化合物被分开。预期与常规的直接ims分析相比,即时ims谱复杂度要低得多。从而可以获得关于分子离子的迁移率的信息。预期离子迁移率变成3dgcxgc-ims分析的第三个分析维度。具有额外的电离选择性的电离模式的随时变更可被视为第四个分析维度。注意3d和4dgcxgc-ims分析的能力仅仅和本发明的足够快速的ims的引入,及其与快速和软电离离子源的组合一起出现。

具有频繁脉动mr-tof的快速ims

在一组实施例和方法中,按照一种实现,使加速的ims耦接到在频繁并且编码的脉动注入下工作的高分辨力多反射飞行时间(mr-tof)仪器。频繁编码脉动支持高速的ims分离(解析快速ims分布图),消除ims和ims门中的空间电荷饱和,和提高mr-tof或开放式多反射静电阱(ems)的占用比,如在这里整体引为参考的同时待审的申请wo2011135477a和wo2011107836中所述。为了增强解码步骤,和改善分析的灵敏度和动态范围,也可对ims门应用频繁编码的触发。注意,ims门的编码不是完全必要的。mr-tof能够以sub-ppm质量精度,检测精确的质量,并且能够跟踪各个质量组成。从而,ims门可被频繁脉动,只要质量组成在时间上不重叠,或者除非频繁编码的质谱变得过于密集。几种估计建议ims门脉动的周期通常约为(0.5~1)ms是最佳的。

参见图6,本发明的ims-mr-tof的例证实施例61包括以下顺序组合的组件:上面说明的多模离子源62(53),上面说明的离子门63(23),充满气压约为(1~100)mbar的气体的离子漂移管64,用于会聚离子流的锥形ims部分65,差动泵浦离子导向器66,具有平均频率通常约为(100-200)khz的快速编码脉动的正交加速器67;mr-tof分析器68;和数据系统69,其提供串持续时间与ims分离时间相当的用于触发离子门63和正交加速器67的编码启动信号,还考虑到编码脉冲时间间隔,并根据与各个质量组成对应的编码信号族的时间分布,提供ims-ms谱解码。为了快速离子跃迁起见,所述锥形ims部分65可包含具有中央伸缩部分的离子漏斗(因为归因于沿着离子漏斗表面行进的离子,会发生主延迟,从而发生时间弥散),或者由多极部分形成的具有轴向dc梯度的多极集合65m,所述多极部分最好由pcb堆叠制成。最好,离子导向器66也由具有轴向dc梯度的多极形成,所述多极由pcb堆叠,或者电阻材料棒,比如填充碳化硅或碳的电阻器66m形成。另一方面,利用插入隔离的圆筒中的片状金属托架,形成分段的多极离子导向器。不管锥形ims部分65中的轴向dc场,在具有额外时间弥散的离子流的轴向远端部分和径向远端部分之间,仍然出现时间差,估计通常约为(30-50)μs。为了维持高于50的ims分辨力,ims漂移时间那么应被增大到约为(2-5)ms。在实施例中,与图5的独立ims相比,可取的是使ims长度和电压加倍。最好,如图2中所示,采用同轴圆筒形ims单元21c。锥形离子漏斗或锥形离子导向器不会引起额外的时间弥散,因为所有离子暴露在rf屏障之下,不存在会行进得更快的离子流的中央部分。最好,mr-tof分析器68是平面mr-tof,或者是在同时待审的申请,序列号61/552,934中描述的圆筒形mr-tof。mr-tof中的预期飞行时间约为(1-2)ms。最好,imf-tof61之前是快速色谱仪-lcxce、gc或gcxgc。另一方面,ims单元替换色谱仪,以便实现吞吐量更高的分析。

操作中,gcxgc分离被分析物分子,并依次洗提(elute)它们,其中gc2峰持续时间约为50ms。由于最强调设备定时,选择了该例子。注意在利用gc或ce的情况下,色谱峰宽约0.5-1秒,在lc的情况下,宽约3-10秒。离子源62,ci,pi或者软gd(或者在lc和ce的情况下的esi、apci、appi)电离分子,主要形成m+或mh+离子。离子源62在约(100~1000)mbar的气压下工作,而ims在约(10-100)mbar的气压下工作。在一种实现中,可利用装备有烟雾过滤器的机械泵,提供差动泵浦。差动泵浦可在级之间形成气流。最好,使气体喷射流平行于门63定向,并且具有从门起的偏移量,以避免气体搅动。前端盖电极的dc偏压向着网格驱动离子。网格之间的rf信号在网格附近迟滞离子。离子变得被保存在位于网格之前的局部阱中。周期地,向前端盖电极或者向后网格施加dc脉冲或dc斜坡信号,以提取窄(约5-10μs)离子包。离子包在漂移区64中,依据迁移率被分离(通常在约(2-5)ms迁移漂移时间内),会聚在锥形ims部分65中,快速通过离子导向器66(受轴向场驱动),进入脉动提取区中,被脉动加速到圆筒形mr-tof分析器68中,以便进行质量分离。可以利用有机溶剂的蒸气,增强ims分离,以借助离子聚类反应的差异进行分离。

参见图7,在伴随以时间图的框图层面,表示了级联61(71)。级联71的谱仪包括:离子源72;由形成ims脉冲串(即,导致从离子阱73进入ims漂移管74中的离子注入)的第一发生器78触发的离子阱(这里,对偶rf网格或者环形rf阱);后面是锥形部分,然后是具有轴向梯度的离子导向器(未图示)的离子迁移率谱仪漂移管(ims)74;由形成正交加速器(oa)脉冲串的第二发生器79触发的正交加速器75;mr-tof分析器76;和具有谱解码器77的数据系统。可选地,如在下一节中所述,在ims漂移管74和正交加速器75之间插入cid裂解单元80。

快速2-d编码:参见图7的时间图,ims-tof仪器61的快速操作是主要关心之事,因为gcxgc形成很窄(~50ms)gc2峰。另外注意,预期的ims分离时间通常约为(2-5)ms,并且预期的mr-tof飞行时间通常约为(1-2)ms(即,与gc2峰相比,短10~25倍)。从而,级联各级之间的时间尺度足够接近,足以避免ims和hrt的具有顺序扫描的常规级联操作。

为了在顺序分离级的时间尺度接近的情况下,配合紧迫的总体计时要求,提出一种新方法,其中用具有不均匀(!)时间间隔的重叠的编码脉冲串,触发级联各级,其中串持续时间匹配数据采集周期,其中选择脉冲之间的平均时间间隔短到足以恢复上游分析级的时间分布。这里,用平均时间间隔约500μs-足以恢复约50μsgc2分布的第一脉冲串(视情况被编码),驱动ims门73,用平均时间间隔约(5-10)μs,足以恢复具有预期的约(30-40)μs峰宽的ims分布的时间编码第二脉冲串,驱动正交加速器75。第一发生器78和第二发生器79提供具有不均匀时间间隔的脉冲,两个发生器都被同步,以适应于获得的光谱的通常约为(2-4)ms的长度。

为了清楚起见,我们研究一个特殊的数值例子(同样地,本例中使用的数字是近似值):第一发生器78(驱动ims门)的脉冲时间被定义为t(n)=n*t1+t2*n*(n-1);其中t1=360us,时间增量t2为超过ims峰宽的40us;索引n为0~8的整数;t(8)=4ms,即,与下一个串的t(0)一致;相邻脉冲之间的间隔以40us的增量,从360ms变化到640ms。第二发生器79(驱动oa)的时间串为t(i)=i*t1+t2*i*(j-1);其中t1=10us;时间增量t2=10ns超过mr-tof中的峰宽;索引i和j为0~341的整数;t(341)=3,989.7us,并且t(342)=4ms,即,与下一个循环的t(0)一致;相邻脉冲之间的间隔以10ns的增量,从10us变化到13,42us,唯一的例外是最后一对脉冲。

可按各种方式,优化脉冲串的相互对齐。在一种方法中,可在第二发生器79的每第m次启动,触发第一发生器78。在另一种方法中,串可被有意偏移,以致改善ims分布的分辨力。在另一个实施例中,在第二个时间串内,相对于索引i改变索引j(不过对整个分析来说是固定的),以致交替较短和较长的脉冲间隔,这种方式使脉冲发生器负荷的缓慢并且微小变化降至最小。可以持续几个串循环,比如8ms或12ms,合计在mr-tof检测器的信号,以致跟随在gc2之后的50ms峰形。另一方面,按所谓的数据记录格式,记录信号,从而保存时间信息,同时在解码和数据分析阶段,允许求信号的积分。串表述设想相邻串之间的信号超越(即,一些信号继续来自于先前的脉冲串)。在设想超越,并且考虑到ims漂移时间和mr-tof飞行时间之间的强相关性的情况下,可以利用更短的脉冲串(比如说2ms)。应根据所需的色谱分析速度和谱复杂度,选择脉冲之间的间隔和串持续时间。另外注意,ims门的编码不是完全必需的。mr-tof能够以sub-ppm质量精度检测精确的质量,并且能够跟踪各个质量组成。从而,ims门可被频繁脉动,只要质量组成在时间上不重叠,或者除非频繁编码的质谱变得过于密集。几种估计建议ims门脉动的周期为0.5~1ms是最佳的。

解码原理:如在同时待审的申请wo2011135477中所述,预期每个m/z成分形成一组至少几个与连续的oa触发对应的mr-tof峰。归因于ims启动的多样性,所述组会扩散在多个ims启动之间,这帮助形成代表性的峰群(在上面的数值例子中,预期30-40个峰)。随后,由于oa串中的独特间隔,峰之间的时间间隔允许解释实际的oa激发时间和mr-tof中的飞行时间。oa激发时间与ims分离时间相关。随后匹配峰群(对应于各个ims启动)中的亚群之间的距离和ims时间间隔,以分配第一发生器的脉冲数,并这样计算ims时间。随后依据飞行时间,确认迁移漂移时间(考虑到它们的弱相关性)。整个谱被解码,以恢复多个群,及它们的重叠。在最简单的解码算法中,重叠被丢弃。在更高级并且更快的译解程序中,针对峰质心和峰强度的一致性,分析各个群,这避免确定各个群之间的重叠的费时过程。最好利用多核pc板或多核嵌入式处理器,提高处理速度。信号群内和信号群之间的强度分布可用于恢复gc2和ims分布。

预期结果:预期提出的具有不均匀时间间隔的重叠快速编码脉冲串的方法会显著改善具有级联各级的相当时间尺度的级联分析的时间分辨力和灵敏度。快速编码脉动通过消除ims和ims门的空间电荷饱和,提高ims级的占用比,并通过oa的频繁脉动,提高mr-tof占用比。谱解码会同时恢复(a)gc2的时间分布,(b)迁移率分布,和(c)mr-tof中的飞行时间,从而,恢复mr-tof校准之后的m/z。如果利用数据记录系统,那么会以ims门脉动的约500us分辨力,跟踪50ms宽的gc2分布,以oa脉冲的约5-10us跟踪分辨力,跟踪30-40us宽的ims分布。

多维群集:由于预期在任意单个gc或gcxgc峰内,几次获得ims和m/z信息,因此谱解码应利用重复谱的益处-改善m/z和迁移率测量的统计和精度,并利用弱信号的验证。更具体地,通过考虑到随机重叠的噪声信号,解码算法可以选出伪正m/z峰。不过,这种伪正峰不会在相同的m/z下,出现在一行中的几个谱中。从而,弱信号的重复用于其验证。数学上,解码应采用在由气相色谱的保持时间、迁移时间和峰系列之间的编码时间间隔形成的多维空间中,检测群集的算法。

改进的质量精度:ims分离即刻使质谱稀疏得多,归因于:(a)在特定ims时间的较窄m/z范围的准入(迁移率与m/z部分相关);和(b)在任何特定ims时间的细微同量异位素的部分分离。从而,依据离子迁移率的质谱峰的部分时间分离改善质谱法的检测阈值和质量精度。

不分离谱:由于质心确定的扩散远远小于峰宽度,因此最好把解码的质谱转换成所谓的不分离格式,其中用其实验室时间(以便恢复gc和ims时间信息)、tof质心和峰面积,表示质谱峰。然后,任何合计的光谱仍然允许质量分辨力比分布谱中的分辨力高10倍的细微同量异位素的分离。

记录数据系统:最好,记录数据系统采用数据记录格式,而不是长光谱的相加。例如,信号波形的非零片段可被记录成[实验室时间戳,第一非零分箱的飞行时间,非零强度的序列],以便显著压缩数据,从而可借助现代快速总线,比如pxi或多通路pcie,传送未相加的数据流。随后最好用多核视频板,分析数据流。数据记录格式减小数据大小,加速信号分析,帮助保存gc2和ims分布的时间信息,同时当在数据分析阶段,信号被求平均(例如,利用滑动平均)时,改善质谱中的离子统计。

ims和快速脉动的mr-tof的级联是真实协作的。前面的ims分离简化即刻质谱内容,并使质谱非常稀疏,密度低,尽管频谱复用强烈。结果,谱解码变得高度可靠,mr-tof的脉冲频率可被增加到传播通过oa的时间极限,例如3μs。利用现代的脉冲发生器,比如高达约3mhz频率地工作的behlke开关,可支持这种频繁脉动。这又改善mr-tof灵敏度,和改善数据剖析的时间分辨率,即,跟踪输入的离子通量的时间变化。由于ims中的同量异位素分离,出现另一个优点。本质上,接近的同量异位素具有不同的元素成分,可在ims中被分离,如在多部ims出版物中证明的一样,其中不同的化合物类别在ims-ms空间中,形成隔离的趋势线。结果,可从非常接近的同量异位素中清除质量峰,可用好得多的精度定义其质量。mr-tof中,确定质量峰质心的典型sub-ppm质量精度对应于由质心棒(stick)构成的质谱中的几百万的有效分辨率。从而,双重分离的总有效分辨率可为百万量级,而利用mr-tof时的典型分辨率约为100000。

mr-tof的快速工作解决了现有ims分析的多个问题。首先,oa的快速(平均10us)脉动允许记录前面的ims的清晰的时间分布,而这又极大地改善了ims电荷吞吐量。精确并且时间解析的分布允许与ims分辨率相比,精确得多地测量离子迁移率,这又预期可根据多维标记,改善复杂样品的表征,如下详细所述。其次,快速oa脉动允许把较大的即刻离子通量分布到多个离子包。相反,在现有技术中,ims内的离子通量的时间集中导致分析器空间电荷饱和的问题,对检测器的动态范围造成压力。第三,ims-mr-tof级联的快速循环使ims-ms与确实较快的分离方法,比如gcxgc和ce兼容,或允许在表面成像实验时的快速数据剖析。第四,快速ims-mr-tof循环允许改变实验设定,如下在图11中所述,关于无离子损失地布置差分迁移率测量的例子,详细阐述这个优点。第五,快速mr-tof工作允许下面说明的确实的并行级联。

全质量伪ms-ms

再次参见图7,实施例71还包括在ims漂移管74和正交加速器75之间的裂解单元80。裂解可以采用现有的裂解方法,比如碰撞诱导解离(cid)、表面诱导解离(sid)、光诱导解离(pid)、电子转移解离(etd)、电子捕获解离(ecd)、和利用激发的ridberg原子或臭氧的裂解。时间图保持不变,利用编码频繁脉动(约200khz),操作oa,以便跟踪在单元80之后的离子流的快速变化。于是,预期级联71按快速色谱分离的时间尺度,提供全质量伪ms-ms。换句话说,级联提供关于所有母离子的大规模并行ms-ms分析,而不损失强度和时间,同时以gcxgc分离的速度进行所述分析。对于碎片离子,预期也可以mr-tof的sub-ppm质量精度和100k分辨率,实现这种ms-ms。

在这种组合中,ims用于母离子的较粗(分辨率~50-100),但是快速的分离,而mr-tof用于碎片谱的更快采集。可选地,在中等离子流的情况下,第一发生器的编码可被关闭。最好,裂解单元(通常rf装置)具备用于离子累积和脉动提取的装置,持续提取的离子束的持续时间,使oa脉冲串同步。同时待审的专利申请wo2011135477描述对这种光谱解码的算法。简单地说,该算法搜索按照编码时间间隔隔开的mr-tof峰系列,随后分配系列之间的重叠,可以丢弃或考虑这样的重叠。另一方面,可以针对峰强度和质心的一致性,分析所述系列,这允许可在多核pc或多核电路板上高度并行的更快解码。然后,每个峰系列允许分配对应oa启动时间和该组成的m/z。以约100hz的速率记录相加的光谱,这允许恢复gcxgc分离的通常约(30-50)ms分布。总的说来,编码允许压缩时间尺度,获得gcxgc分析的约10ms时间分辨率,和ims分析的约10μs分辨率,尽管相当慢的ims和mr-tof装置中的嵌套分析具有通常约(0.5-2)ms的飞行时间。

母离子分离-为了估计母离子分离的真实分辨率,必须考虑几个因素:(a)尽管预期ims的分辨率通常约50-100,不过,具有快速编码脉动的时间分辨率(通常约5-10μs)的详细ims分布的恢复会允许更精确地恢复ims峰质心。于是,母离子的分离能力预期高于200-(1-2ms/5-10us步骤),匹配具有母离子的依次选择的常规ms-ms中的母离子选择的分辨率;(b)依据ims时间的一致,可利用所谓的去卷积程序收集碎片离子族。该程序必须考虑可在单独的在先实验中校准的裂解单元内的质量相关延迟;(c)尽管ims依据母离子的迁移率,分离母离子,不过,碎片谱仍然具有分子峰,即,关于实际的母质量的信息被恢复。从而,变得重要的是ims进行的及时分离不同的母离子;和(d)在利用高分辨率mr-tof时,在多种情况下,通过依据元素成分或者数据库中的肽碎片的预测,排除交叉,来自不同母离子的碎片离子可依据其精确质量,被分成多个组。ims-mr-tof级联的极其快速的工作允许在ims注入之间,改变裂解能量,从而重构裂解路径,或者依据现有文献记录的各个化合物的裂解与裂解能量的依存关系,识别各个化合物。

化学背景的减少

同量异位素的时间分离:诸如esi、appi和apci之类的离子源不可避免产生处于通常低于约(0.1-1)μm浓度的阻止检测的水平,即,与高浓度化合物的峰值相比,1e-4~1e-5水平的化学背景。按照作者的研究,所述背景由含c、h、o和n化合物的聚类形成。对于在200-300之下的m/z范围,可很好地识别这样的系列,并外推到更高的m/z范围。按照这种外推,在m/z~500-600下,从化学背景中质量分离微小的被分析物峰需要约1百万分辨率,而在m/z~1000下,需要约1千万分辨率。然而,诸如61和71之类级联中的ims中的上述时间分离可帮助在时间方面分离接近的同量异位素,以致化学背景的即刻组成会稀疏得多,r~100k的mr-tof能够在500-600amu质量范围中,从化学背景中解析微小的被分析物峰。通过查看现有ims实验中的典型模式线,谱稀疏性的增益被评估为r/10~10。

去聚类:返回参见图7,cid单元80可用于软裂解,软裂解提供母离子的软加热,以致断开聚合键(通常约(0.1-0.5)ev),而不断开化学稳定化合物的共价键(通常约(5-10)ev)。诸如电喷射、appi和apci之类的离子源形成聚合离子的化学背景。这些聚类扩展到很大的大小,超过常规ms的m/z尺度。离子传递界面内所有离子的同时去聚类无助于清除背景,因为聚类会变得稍小,但是仍然占据整个m/z范围。不过,在ims内选择较窄的m/z范围,随后使选择的离子经历去聚类,那么共价键合的稳定化合物不会在m/z方面发生偏移,而化学背景的聚合则会在m/z方面发生偏移,从而清除频谱本底,以便在痕量浓度下,检测低密集的被分析化合物。

相关门:在一种实现中,本发明的级联谱仪包含在多反射tof内的时间选择门,用于离子的质量-迁移率相关选择。参见图8,级联质谱仪的另一个特定实施例81包含离子源82、由主脉冲发生器88触发的离子阱83、ims84、由第二编码串发生器89触发的正交加速器85、m-tof分析器86、谱解码器87、和在m-tof分析器86中的位于离子镜中的一次离子反射之后的时间门质量选择器90,所述时间门选择器由延迟的串89d触发。操作中,主脉冲发生器88具有与ims分离时间匹配的时度t~2ms。oa串发生器89形成具有不均匀间隔,并且具有主发生器的总持续时间t=tn的一串n个脉冲。延迟的串89d与oa串发生器88同步,不过具有j号脉冲的可变延迟τj-tj,它与时间tj成比例。时间选择门90(例如,一组脉动的双极导线)在m-tof分析器86中,位于一个离子循环之后,能够通过在飞行时间的与离子(m/z)1/2成比例的特定范围中的离子。结果,选择的离子m/z范围变成与ims分离时间tj相关,从而分离特定类别的化合物,或者特定的电荷状态,这种方式减小多电荷被分析物离子(比如利用电喷射离子源的肽)情况下的化学噪声。

多维分离

如上所述,ims与频繁脉动mr-tof的级联允许时间尺度极快的非常灵敏并且高度并行的分析,还与诸如gcxgc和ce之类快速分离色谱法兼容,或者与快速表面成像兼容。从而,所述级联变得实际上适合于采用额外的分离级(也可被称为分析分离的维度)的更高次级联。上面说明的方法介绍了在多个正交分析维度内的综合分析的几个例子。“综合”意味分析是按嵌套时间尺度发生的(即,一个分离不影响另一个分离的定时和分辨率);按时间分离被分析物,并形成依次分离的被分析物或离子流,这不会导致被分析物或被分析物离子的损失;并且是以最大色谱分析速度发生的。“正交”意味分离完全不相关,提供互相补充的信息。预期多维分离可减小(最初以复杂混合物的形式注入的)被分析物核素之间的干扰,争取更小的检测极限,和提高识别特异性和可靠性。

例如,图5描述以下4个正交分析维度中的综合分析:(i)gc1;(ii)gc2;(iii)离子迁移率;和(iv)在切换极性时,利用各种电离方法的电离的特异性。

图6描述以下5个正交分析维度中的综合分析:(i)gc1;(ii)gc2;(iii)ims;(iv)m/z;(v)dm(参见图6的说明)。通过利用多种并且快速切换电离模式(第6个维度)和源内裂解(第7个维度),可以进一步增大维数。

图7描述以下7个正交分析维度中的综合分析的例子:(i)gc1;(ii)gc2;(iii)母离子的ims;(v)母离子的m/z(在cid谱中恢复);(vi)碎片的m/z;和(vii)碎片离子的dm。通过利用多模式电离,可以增大维数。

在一种特殊的方法中,即使不利用ims分离,综合分析仍然包含以下5个正交的分析维度:(i)gc1;(ii)gc2;(iii)m/z;和(iv)dm。第五个分析维度是多模式电离。

这里提出的与快速并且不折衷的mr-tof(即,不损害灵敏度、分辨率和速度)结合的快速ims(不损害离子门和ims的空间电荷容量)的方法预期带来按常规色谱分离的时间尺度,以实用的方式,实现这些多维分离的真实能力。提出的几个级联阶段(具有相当的分离时间尺度)的重叠的快速编码脉动的方法允许性能不受损害,并且吞吐量和速度高的所述多维分析。从而,发明人提出一组多个分析维度内的所述综合分析方法的使之实用,并且被新颖地实现一组解决方案,所述多个分析维度包含以下之中的至少4个维度:(i)气相色谱-gc1;(ii)第二个并且时间嵌套的气相色谱-gc2;(iii)多模式或切换极性软电离,比如pi、ci或gd;(iv)快速切换源内裂解is-cid;(v)离子迁移率分离-ims;(vi)ims之后的离子裂解;(vii)整数质量的质谱测量-m/z;(viii)提取质量亏损和元素组成的精确质量测量-dm。

3-d和4-dam-k-rt标记:关于元素组成(或者至少精确质量),关于离子迁移率,和关于色谱法(lc、ce、gc或gcxgc)中的保持时间指数的组合信息可以充当识别已知化合物的唯一多维标记。所述识别可包括迁移率和保持时间的理论计算步骤。然而,累积实验数据库会更加可靠。相同的级联可用于伪ms-ms实验,伪ms-ms实验预期依据ms-ms谱(或者在利用ei离子源的情况下,ei谱),核实化合物,同时测量化合物迁移率和保持指数,从而填充am-k-rt数据库。在随后的分析中,数据库将用于复杂混合物的高吞吐量识别。

同分异构体:同分异构信息对样品表征(尤其是当异构体是结构同分异构体时),和确定异构体敏感化学反应性来说重要。主要由于采用的设备的吞吐量低和分离容量低,在质谱法中一直很少检测综合的同分异构信息。

参见图9,在利用具有光化学电离的gcxgcmrtof的情况下,介绍柴油样品的异构体的分离。点的数目与nist数据库中的异构体的数目相关。图9表示关于ch2基团不同的特定同源系列的烃的各种元素组成的gcxgc点。多个点依然未被完全分离。预期额外的ims分离会增大分析的分离能力。

参见图10,给出了关于组合分离能力的例子。在单一gc中,分离了(和图9)相同的原油样品,并利用光化学电离使之离子化。利用分辨率约60000的mr-tof,获得质谱。在按保持时间(rt)轴和精确质量(m/z)轴绘制的上图中,可看出利用gc,在时间方面分离了具有1mda差异的两种同分异构化合物。每秒一次地记录,并用0.1秒时间分辨率跟踪质量峰重心。这些重心谱图之和构成图中下面所示的直方图。由于组合分离的缘故,具有整数质量m/z=213和1mda差异的同量异位离子被基线分离。由于峰形为3mda宽,因此如果仅仅查看在下图中所示的ms(无gc分离)的合计分布谱图,那么这是不可能的。

无损faims

参见图11,ims与频繁脉动的mr-tof的快速并且灵敏的级联的优点允许变更ims-tof设定,从而允许实际实现离子迁移率分析的另一种新颖方法-无离子损失的差分离子迁移率。在现有的差分离子迁移分离(faims)中,离子是按空间分离的,在所述空间中,使一个成分通过,而其它成分被拒绝。部分归因于在大气压下的缓慢faims分离,部分归因于由于需要收集期望的离子统计数据而引起的相当大的离子损失,实验要用数分钟扫描faims谱。本发明提出组合在不同电场强度下的多个ims实验,以致揭示在强电场下的离子迁移率(通常对应于在气体动力学速度或者更快速度下的离子运动)的差异。最好,随后用轻质气体,比如氦或氮,填充ims单元,以致快速离子运动(高于气体动力学速度)不会导致离子裂解。特别地,预期测量可同样不存在离子损失,即,以高度并行的方式,同时提供迁移率和差分迁移率测量。

再次参见图11,最好,ims单元被延长到约1-3m长,以致在高离子速度(1000-3000m/s)下,维持至少1ms的离子迁移时间,这是利用频繁脉动的mr-tof,精确跟踪ims分布所需的。为了提供实用的解决方案,提出了新颖的延长的ims单元112。沿着mr-tof室113折叠ims单元,借助弯曲的射频导向器115,耦接多个笔直的ims片段114。图表116中所示的模拟确认弯曲部分不会引入由rf通道弯曲引起的任何额外时间弥散。最好,多个弯曲的通道可被排列成rf离子导向器的阵列,以致维持ims的完全空间电荷吞吐量。新的ims谱仪显著不同于其中使直而长的ims室(有时1-2m长)垂直于质谱仪室定向,从而占据较大实验室面积的现有布置。

参见图12,延长的ims单元可被布置在2维或3维折叠的射频离子导向器内。这种布置利用了前面提及的rf延迟效应的识别。为清楚起见,与现有观点相反,rf场并不在时间方面扩展ims峰,而是与具有较低或零rf场的其它ims区域相比,延迟离子传播。从而,可在不损害ims分辨率的情况下构成rf离子导向器。实施例121和122表示或者在实施例121中,利用电阻膜形成的蛇形折叠的ims单元的例子,或者在实施例122中,用导电片段形成的蛇形折叠的ims单元的例子。对两个实施例来说,rf通道由两个对齐的板123、124和125、126形成。所述板可以是pc板,或者利用防静电塑料的板,比如semitron。另一方面,可以用具有安装销的模压电极,形成分段导向器。

参见图13,实施例131和132表示3d折叠ims的例子,其中不同的平面层可用于扩大电荷吞吐量,或者用于延长ims长度,如实施例132中那样。长度延长的ims的一种更便利的布置133可在螺旋rf通道内形成,所述螺旋rf通道由电阻条形成,或者由借助电阻链馈电的导电片段形成。具有轴向dc场,并且具有rf径向约束的ims最好由rf发生器馈送信号,所述rf发生器具有多个次级线圈,并且具有借助中央抽头馈送的dc电位,以致每个rf相位通过至少两个次级线圈,被馈送给电阻链的两端,而dc信号是通过次级线圈传送的。较大ims长度下的总ims电容变成现实关切之事。对仅仅ims来说,气压最好设定在1~10mbar之间,足以部分抑制rf运动,以致可使rf频率和振幅都保持较低(通常约1mhz和200vo-p),以便功率有限地利用实际的rf发生器。在faims或组合的ims-faims情况下,气压必须低于1mbar,最好低于0.1mbar。应考虑到较高的功率,设计rf发生器,rf发生器可以利用具有大功率rf放大器或真空管的icp类发生器。

低成本ims-ms级联

上述具有迁移率分离器的级联强调多个仪器系统:需要阱阵列、大口径和大电容ims单元的构成,并且强调tof检测器的动态范围和寿命。尽管存在这些技术问题的显然解决方案,不过本发明仍提供对仪器的当前状态来说可行的低成本备选方案。

参见图14,低成本级联分析方法包括以下步骤:(a)在离子源中,使被分析物分子的混合物离子化-有或没有在线色谱分离;(b)利用迁移率或差分迁移率谱仪,过滤离子流,以致每次通过一个分离的离子分数(或称为离子部分)(ionicfraction);(c)去聚类或裂解所述分离的离子分数;和(d)在具有编码频繁脉动的多反射飞行时间质谱仪(mr-tof)中,分析所述去聚类或裂解的离子分数,以补偿在迁移率过滤步骤的离子损失。

下面是具有典型数字的一种例证实现。用于检测荷尔蒙水平的样品,例如临床分析用样品被离线脱盐,然后以例如约10ul/min的流率被电喷射。离子流包含痕量(一般约(1-10)nm)的目标被分析物离子,许多基质离子,和在esi中不可避免,并且已知由非共价配合物形成的化学噪声离子。由于多个原因,利用具有频繁编码脉动的mr-tof的直接分析可能成问题,其中主要的原因在于痕量被分析物信号、基质和化学噪声之间的干扰较强。即使在频繁的mr-tof脉动和mr-tof的r=100000分辨率下,化学噪声也会把分析动态范围局限于4个数量级。化学噪声的去聚类或裂解没有帮助,因为化学噪声的非共价配合物大小都会变化,但是仍会占据mr-tof中的整个有用质量范围。

新方法建议利用任何已知的离子迁移率或差分迁移率过滤器,过滤离子流,以致每次通过一个分数(或称为部分)(fraction),然后去聚类或裂解选择的分数。例如,已知dma分析器(采用交叉的dc场和气体喷射流来进行迁移率过滤)通常以约50~100分辨率提供迁移率过滤,同时归因于过滤的离子损失通常约为50-100倍占用比,近似于2倍空间离子损失。随后的裂解可被安排在下游界面(iscid)内,或者安排在cid单元中。由于选择了较窄的质量范围,因此预计化学噪声会分裂,并且与被分析物离子相比,在m/z范围方面发生变化。另外,预计谱密度低得多(与未过滤的初始离子流相比),这最终允许以极限频率,有效地应用mr-tof的频繁编码脉动,从而显著节省灵敏度,和补偿在迁移率过滤步骤的离子损失。在oa操作的典型(通常约(100-300)khz)频率下,信号改善约100-300倍,即,完全补偿在迁移率过滤步骤的离子损失,并且同时提供精确的质量测量(不太受接近的同量异位素影响),迁移率测量支持的更可靠识别,ms-ms测量的能力已在“全质量ms-ms”节中说明。同时,出现另外的分析优点和灵敏度节省。首先,迁移率分离允许省略具有相关的离子损失的标准界面保护装置。其次,以低得多的流率注入样品,这节省单位注入量的灵敏度,因为esi是浓度敏感的离子源。与在高得多的流率下经lc的注入相比,在较小流率下,相同数量的样品将持续长得多的时间提供相同强度信号。从而,当与lc-ms分析相比时,迁移率过滤的占用比损失不会真正影响灵敏度。

提出的方法利用了以下实现:(a)利用mr-tof内的频繁编码脉动的高效率,补偿在离子迁移率过滤的离子损失;(b)同时,迁移率过滤和离子去聚类或裂解的组合显著提高信号-化学背景比,否则,信号-化学背景比会限制mr-tof中的频繁脉动的效率;(c)离子迁移率过滤允许减少界面内的离子损失,所述界面通常具有免受污染影响的装置,所述装置现在可以随同关联的离子损失一起被消除;和(d)在中等样品复杂度的情况下,前面的色谱分离可用迁移率分离替换,从而加速整个分析,使分离更加可再现,和降低样品注入流率,从而节省样品。例如,lc可用迁移率过滤器替换,可按小10-100倍的流率注入样品,从而延长相同强度信号的持续时间。

所述方法适用于各种已知的迁移率和差分迁移率分离器,比如(i)在具有与横向可调dc偏压结合的横向不对称射频场的窄电极隙中的离子差分迁移率分离(faims);(ii)利用横向气态流中的轴向dc场的离子迁移率分离(dma);(iii)轴向dc场和弱轴向气态流内的横向调制静电场中的离子迁移率分离(tm-ims);(iv)在利用tyndal门,形成短离子包的情况下,在轴向dc场内的大气或接近大气的线性迁移单元中的离子迁移率分离(ims);(v)行波离子迁移率分离(t-wave);(vi)通过移动均匀轴向场的各个片段的离子迁移率分离(谐波ims);和(vii)轴向气体喷射流与dc场相对的迁移率分离。

离子迁移率和质谱仪的低成本、高吞吐量级联变得对多种原位电离方法,比如dart、desi、asap、纸喷雾、西瓜喷雾等可行。这些方法的特征在于短并且便利的样品准备,和快速筛选。然而,这些方法产生大量的基质信号和大量的化学噪声。低成本ims-mr-tof级联内的改进的全面分离可能足以专一性高,并且动态范围高地分离和分析各种组成。不过,各种常规的电离方法会受益,比如esi、apci、appi、ei、pi/gd(上面所述)、气态maldi,等等。

最后,如果与液相色谱法结合,那么提出的低成本ims-mr-tof能够以匹配lc时间尺度的速度,扫描ims级。然后,两种方法是显然的。一种是具有在ims之后的离子去聚类的高吞吐量ims-ms分析。另一种是高吞吐量伪ms-ms,其中依据迁移率分离的分数或部分被裂解(利用iscid,或者在cid单元内),利用频繁编码的mr-tof,记录谱图,依据其与相同迁移率分数或部分和与lc中的相同保持时间(rt)的相关性,恢复碎片谱,最后,依据(a)保持时间;(b)迁移率;(c)精确的分子质量;和(d)与库匹配的碎片谱,识别化合物。

尽管参考优选实施例,说明了本发明,不过,对本领域的技术人员来说,显然可以作出形式和细节方面的各种修改,而不脱离如在附加权利要求中记载的本发明的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1