一种恒应力加载氢渗透实验装置及试验方法与流程

文档序号:18412191发布日期:2019-08-13 18:37阅读:375来源:国知局
一种恒应力加载氢渗透实验装置及试验方法与流程

本发明属于金属材料性能测试技术领域,具体涉及一种恒应力加载氢渗透实验装置。



背景技术:

随着金属材料的广泛应用,金属材料的性能变得至关重要,尤其是钢的使用在海洋工程上更为突出,由于海水的特殊性,容易使钢材产生氢脆现象,氢脆现象是指由于氢以原子状态渗入金属内,在金属内部再结合成分子而产生很高的压力,严重时会导致表面鼓包或皱折,从而使钢的优越性能丧失,因此,对影响氢渗透现象因素的研究,对氢渗透的作用机理和安全防护等方面具有重要的意义。

目前,氢渗透试验大多采用电化学渗透方法测定氢在金属结构中的扩散行为,用电化学充氢方法可获得比实际工况条件苛刻的氢浓度,更能模拟反应器的停工状态,且试验装置相对简易,故该方法更适合材料多场耦合环境下氢脆的研究,然而现有技术中大多无法实现试件拉伸与电化学反应同时进行,同时外加应力很难达到恒定,不能准确的进行氢渗透曲线的测定,此外,外加应力机构与电解槽也难以连接,现有设备难以实现慢拉伸与电化学腐蚀设备间的良好配合,可选试样种类局限较大。



技术实现要素:

本发明的第一目的是解决现有技术存在的问题与不足,提供一种恒应力加载氢渗透实验装置,能够在恒载荷拉伸力的作用过程中,实现氢渗透反应;

本发明的第二目的是提供一种恒应力加载氢渗透实验装置的试验方法。

本发明采用以下技术方案:

一种恒应力加载氢渗透实验装置,包括机械应力加载机构和氢渗透反应机构,机械应力加载机构和氢渗透反应机构设置在底座上,所述机械应力加载机构包括施力机构、拉伸传动机构和力补机构,氢渗透反应机构包括试件和试件拉伸架,拉伸传动机构包括弹簧和被动滑块,所述施力机构与弹簧连接,弹簧与被动滑块连接,被动滑块与试件拉伸架连接,施力机构可对弹簧产生拉力而使弹簧发生形变,弹簧对被动滑块和试件拉伸架产生拉力而使试件拉伸架远离试件的方向运动,从而实现对试件的拉伸,试件拉伸后长度会发生变化,使弹簧的长度也发生改变,导致弹簧对试件的拉力产生一部分损失,所述力补机构可对损失的力进行补偿,以保证试件的恒力加载。

进一步的,所述力补机构包括位移检测器、电流控制器、标准重量砝码、电磁盘、钢丝和定滑轮,所述位移检测器与弹簧连接,位移检测器依次与电流控制器和电磁盘电性连接,电磁盘固定在底座上,电磁盘上方设置有被钢丝一端牵引的标准重量砝码,钢丝另一端绕过固定在底座上的定滑轮与试件拉伸架连接而对试件产生拉力,所述位移检测器用于检测弹簧的长度变化,并根据弹簧的长度变化,电流控制器调整流经电磁盘的电流,进而调节电磁盘对标准重量砝码的引力,最终控制标准重量砝码通过钢丝拉动试件的拉力,实现对试件损失的拉力补偿,以保证试件的恒力加载。

进一步的,所述施力机构包括丝杠、运动滑块和丝杠限位板,丝杠与运动滑块连接,运动滑块与弹簧连接,可通过旋转调节丝杠运动,丝杠带动运动滑块远离弹簧方向移动,进而对弹簧产生拉力而使弹簧发生形变,丝杠限位板设置在底座上,固定设置在丝杠的后方,用于限制丝杠的移动。

进一步的,所述氢渗透反应机构还包括电解池、垫片、密封夹和试件固定架,所述试件固定架固定在底座上,试件一端固定设置在试件固定架上,另一端设置在试件拉伸架上,通过试件拉伸架远离试件方向移动而实现对试件的拉伸作用,所述试件上夹持有垫片,所述垫片中间设置有孔径小于试件宽度的开孔,垫片通过密封夹与试件紧密贴合,电解池分为阴极电解池和阳极电解池,阴极电解池和阳极电解池分别设置在试件两边,通过垫片上设置的开孔与试件密封连接。

进一步的,所述垫片为两片贴合在一起的亚克力板,两片亚克力板之间贴有硅胶片,使垫片与试件密封贴合。

进一步的,所述垫片的亚克力板形状为边长为40mm的正方形或者直径为40mm的圆形,厚度为2mm;硅胶片的形状为圆形,直径为30mm,厚度为2mm。

进一步的,所述钢丝水平设置,与试件受力的中心线重合。

进一步的,运动滑块通过螺纹与丝杠连接,运动滑块通过销钉与弹簧连接,运动滑块通过设置在底座中的燕尾槽进行滑动。

进一步的,所述被动滑块与弹簧通过销钉连接,被动滑块通过设置在底座中的燕尾槽进行滑动。

进一步的,所述丝杠中间设置有贯穿丝杠两端的通孔,所述钢丝穿过通孔与试件连接。

进一步的,所述弹簧设计数量为3个,保证拉伸过程中受力的稳定。

进一步的,所述电磁盘通过螺钉固定在底座上。

进一步的,所述力补机构还包括定滑轮固定板,所述定滑轮固定板通过螺钉固定在底座上,定滑轮固定在定滑轮固定板上。

一种恒应力加载氢渗透实验装置的试验方法,包括以下步骤:

s1、将施力机构、拉伸传动机构、力补机构和氢渗透反应机构安装在底座上,将施力机构、拉伸传动机构与氢渗透反应机构依次连接,将力补机构和氢渗透反应机构连接;

s2、取两片亚克力板贴合在一起,作为垫片,根据试件的宽度大小,在垫片中间设置孔径小于试件宽度的开孔,将试件置入两片亚克力板之间,使试件完全覆盖住垫片的开孔,在两片亚克力板之间贴有硅胶片,使其紧密贴合在一起,在垫片上夹上密封夹,保证试件的密封性;

s3、将s2中制备好的试件一端固定设置在试件固定架上,另一端固定设置在试件拉伸架上;将阴极电解池和阳极电解池分别通过垫片上的开孔与试件两边连接,使阴极电解池和阳极电解池与试件密封连接。

s4、旋转丝杠,丝杠通过钢丝依次拉动弹簧、被动滑块和试件拉伸架,使试件拉伸架向远离试件的方向运动,从而对试件产生拉伸作用。

s5、通过位移检测器检测弹簧长度的变化δx,电流控制器4根据δx的大小对电流大小进行控制,其中电流i=(kδx-mg)/bl,进而控制电磁盘对标准重量砝码施加的作用力,通过钢丝经过定滑轮传递给试件拉伸架,补偿由于弹簧形变而损失的力,从而保证试件的恒力加载。

s6、采集并记录数据,计算氢扩散系数及相关参数。

进一步的,s2中,对于带有缺口的试件,所述垫片的开孔需要偏离中心设置,防止反应液接触试件缺口而产生泄露,保证垫片开孔分布在试件缺口两边,反应液作用于试件上以保证反应的进行。

进一步的,s3中,所述阴极电解池和阳极电解池通过胶粘黏与垫片在开孔处连接固定,使阴极电解池和阳极电解池与试件密封连接。

本发明的有益效果:

(1)本发明装置可调节,能够满足各种拉伸氢渗透反应的情况,该装置可通过弹簧的弹性变形对试件提供加载力,根据试件拉伸的微小变形通过电磁反馈系统进行力补,以保证载荷能够持续恒定的输出;

(2)本发明试件在氢渗透反应装置中进行电化学反应,通过硅胶和亚克力板制作的垫片保证了实验环境的密封,经实验密封性能满足72h的基本要求,本装置对金属材料拉伸的适用性极强,装置简单,测量精确,成本较低,易实现恒力下的蠕变应力及位移的实时监测;

(3)本发明对于有缺口的试样,通过改变垫片的开孔的偏心距离来实现充氢,避免了直接在缺口位置处充氢造成的渗液、漏液问题。

附图说明:

图1是本发明装置正视图;

图2是本发明装置仰视图;

图3是本发明装置垫片和密封夹结构示意图;

图4是本发明装置v型槽试件与垫片结构示意图;

图中1、电磁盘;2、标准重量砝码;3、定滑轮;4、电流控制器;5、丝杠;6、钢丝;7、位移检测器;8、弹簧;9、底座;10、试件;11、密封夹;12、垫片;13、试件固定架;14、定滑轮固定板;15、丝杠限位板;16、运动滑块;17、被动滑块;18、试件拉伸架;19、电解池;20、偏心孔。

具体实施方式:

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1-2所示,一种恒应力加载氢渗透实验装置,包括机械应力加载机构和氢渗透反应机构,机械应力加载机构和氢渗透反应机构设置在底座9上,所述机械应力加载机构包括施力机构、拉伸传动机构和力补机构,氢渗透反应机构包括试件10和试件拉伸架18,拉伸传动机构包括弹簧8和被动滑块17,被动滑块17与弹簧8通过销钉连接,被动滑块17通过设置在底座9中的燕尾槽进行滑动,所述施力机构与弹簧8连接,被动滑块17与试件拉伸架18连接,施力机构可对弹簧8产生拉力而使弹簧8发生形变,弹簧8对被动滑块17和试件拉伸架18产生拉力而使试件拉伸架18远离试件10的方向运动,从而实现对试件10的拉伸,由于试件10拉伸后长度会发生变化以及实验装置存在误差,使弹簧8的长度也发生改变,导致弹簧8对试件10的拉力产生一部分损失,这就导致机械应力加载机构对试件10的拉力无法保持恒定,需要力补机构可对损失的力进行补偿,以保证试件10的恒力加载。

本发明实施例中,力补机构包括位移检测器7、电流控制器4、标准重量砝码2、电磁盘1、钢丝6、定滑轮3和定滑轮固定板14,定滑轮固定板14通过螺钉固定在底座9上,定滑轮3固定在定滑轮固定板14上,位移检测器7一边与弹簧8连接,位移检测器7另一边依次与电流控制器4和电磁盘1电性连接,所述电磁盘1通过螺钉固定在底座9上,电磁盘1上方设置有被钢丝6一端牵引的标准重量砝码2,钢丝6另一端绕过固定在底座9上的定滑轮与试件拉伸架18连接而对试件10产生拉力,钢丝6水平设置,与试件10受力的中心线重合,所述位移检测器用于检测弹簧8的长度变化,并根据弹簧8的长度变化,电流控制器4调整流经电磁盘1的电流,进而调节电磁盘1对标准重量砝码2的引力,最终控制标准重量砝码2通过钢丝6拉动试件10的拉力,实现对试件10损失的拉力补偿,以保证试件10的恒力加载。

本发明实施例中,施力机构包括丝杠5、运动滑块16和丝杠限位板15,丝杠5与运动滑块16螺纹连接,运动滑块16通过销钉与弹簧8连接,运动滑块16通过设置在底座9中的燕尾槽进行滑动,可通过旋转调节丝杠5的长度,带动运动滑块16远离弹簧8方向移动,进而对弹簧8产生拉力而使弹簧8发生形变,丝杠限位板15设置在底座9上,固定设置在丝杠5的后方,用于限制丝杠5的移动,丝杠限位板限制丝杠5的移动但不限制丝杠5的转动。

本发明实施例中,丝杠5中间设置有贯穿丝杠5两端的通孔,力补机构的钢丝6可穿过通孔与与试件10连接。

如图2所示,本发明实施例中,弹簧8设计数量为3个,保证拉伸过程中受力的稳定。

如图2-3所示,所述氢渗透反应机构还包括电解池19、垫片12、密封夹11和试件固定架13,所述试件固定架13固定在底座9上,试件10一端固定设置在试件固定架13上,另一端设置在试件拉伸架18上,通过试件拉伸架18远离试件10方向移动而实现对试件10的拉伸作用,所述试件10上夹持有垫片12,垫片12为两片相互对称的亚克力板,两片亚克力板之间贴有硅胶片,使垫片12与试件10密封贴合,垫片12中间设置有孔径小于试件10宽度的开孔,垫片12通过密封夹11与试件10紧密贴合,电解池19分为阴极电解池和阳极电解池,阴极电解池和阳极电解池分别设置在试件10两边,通过垫片12上设置的开孔与试件10密封连接。

本发明实施例通过旋转丝杠5运动,丝杠5带动运动滑块16远离试件10移动,从而将弹簧8拉长,在弹簧8的回弹过程中,对被动滑块17产生拉力,使被动滑块17及试件拉伸架18远离试件10运动,从而对试件10产生拉伸作用,试件10经过拉伸作用,长度会产生变化,由于试件拉伸后长度的变化,使得弹簧8的长度也随之发生改变,使弹簧8对试件10的拉力产生一部分损失,从而通过力补机构对损失的力进行补偿,位移检测器7检测出弹簧8的微小变形δx,损失力由胡克定律f=kδx,所以需要通过电磁盘1和标准重量砝码2补偿力f,故f1=bil,f=f1+mg(m为砝码质量),从而推导出i=(kδx-mg)/bl,只有δx为变量,故通过位移检测器7测量出δx,电流控制器4根据δx的大小对电流大小进行控制,进而控制电磁盘1对标准重量砝码2施加的作用力,通过钢丝6经过定滑轮3传递给试件拉伸架18,即可保证试件10的恒力加载。

所述试件10上夹持有垫片12,垫片12为两片贴合在一起的亚克力板,两片亚克力板之间贴有硅胶片,使垫片12与试件10密封贴合,亚克力板与硅胶片构成的垫片12对试件10有很好的贴合作用,垫片12中间设置有孔径小于试件10宽度的开孔,保证电化学溶液试件表面紧密接触,在密封夹11的压力下,垫片12与试件10贴合紧密,避免了液体溢出形成短路回路的情况发生,试件10拉伸过程中,在垫片12和密封夹11的压力作用下,电解池19中的溶液与试件10接触始终处于密封状态。

本发明的其他实施例中,可针对试件不同的尺寸形状,给予适应性的解决方案,本实施例中,采用直径为40mm厚度为2mm的圆形亚克力板用胶粘黏在化学反应池接口处,将直径30mm厚度2mm的硅胶片贴在亚克力板上,根据试件尺寸的大小,垫片的中间开孔可自行设定,加持试件10后,在化学反应池接口处用密封夹11预紧,保证完全密封。

本发明的其他实施例中,针对带有v形槽的试件,本发明提供新的解决方案,根据氢渗透实验反应的原理,保证电流能够流经v形槽处即可保证氢渗透实验的成功,因此,在加持v形槽试件时,所用垫片的开孔需要偏离中心设置,即为偏心孔20,以保证垫片开孔均匀分布在v形槽两边,不接触v形槽即可保证反应液不泄露,同时反应液作用于试件上,以保证反应的进行。

本发明实施例所述的恒应力加载氢渗透实验装置的试验方法,包括以下步骤:

s1、将施力机构、拉伸传动机构、力补机构和氢渗透反应机构安装在底座上,将施力机构、拉伸传动机构与氢渗透反应机构依次连接,将力补机构和氢渗透反应机构连接;

s2、取两片亚克力板贴合在一起,作为垫片,根据试件的宽度大小,在垫片中间设置孔径小于试件宽度的开孔,将试件置入两片亚克力板之间,使试件完全覆盖住垫片的开孔,在两片亚克力板之间贴有硅胶片,使其紧密贴合在一起,在垫片上夹上密封夹,保证试件的密封性;对于带有缺口的试件,所述垫片的开孔需要偏离中心设置,防止反应液接触试件缺口而产生泄露,保证垫片开孔分布在试件缺口两边,反应液作用于试件上以保证反应的进行;

s3、将s2中制备好的试件一端固定设置在试件固定架上,另一端固定设置在试件拉伸架上,将阴极电解池和阳极电解池分别通过垫片上的开孔与试件两边连接,所述阴极电解池和阳极电解池通过胶粘黏与垫片在开孔处连接固定,使阴极电解池和阳极电解池与试件密封连接;

s4、旋转丝杠,丝杠通过钢丝依次拉动弹簧、被动滑块和试件拉伸架,使试件拉伸架向远离试件的方向运动,从而对试件产生拉伸作用;

s5、通过位移检测器检测弹簧长度的变化δx,电流控制器4根据δx的大小对电流大小进行控制,其中电流i=(kδx-mg)/bl,进而控制电磁盘对标准重量砝码施加的作用力,通过钢丝经过定滑轮传递给试件拉伸架,补偿由于弹簧形变而损失的力,从而保证试件的恒力加载;

s6、采集并记录数据,计算氢扩散系数及相关参数。

以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1