一种全自动凝点测试装置及方法与流程

文档序号:18457578发布日期:2019-08-17 01:44阅读:493来源:国知局
一种全自动凝点测试装置及方法与流程

本发明涉及石油测量技术领域,尤其涉及一种全自动凝点测试装置及方法。



背景技术:

油品的凝点是指试样在规定条件下冷却到液面不流动时的最高温度。在石油、石化行业中,凝点是评价油品低温流动性的重要指标。对于原油,其凝点关系到输油管道设计与运行所允许的最低进站温度,进而决定了原油的输送工艺;而对于润滑油与柴油等成品油,凝点决定了其可正常工作的环境温度。由于凝点在油品的生产、运输和使用方面都有十分重要的意义,因此针对油品凝点的测量制定了详细的规范。

国家标准gb510-83《石油产品凝点测定法》规定,将油品装入高度160±10毫米,内径20±1毫米的试管内,装样深度30毫米,首先将试管至于50±1℃的水浴中加热到50±1℃,而后逐渐冷却试样,当试样冷却到预期凝点时,将试管倾斜45°并保持倾斜状态1分钟,观察液面是否移动。重新加热到50±1℃并改变预期凝点重复上述过程,直到确定某实验温度能使液面不移动,而提高2℃又能使液面移动,取使液面不动的温度作为试样的凝点。而石油行业标准sy/t0541-2009《原油凝点测定法》规定,将经按用户要求预热后的油样装入试管中(试管高度160±10毫米,内径20±1毫米,装样深度50±3mm),以0.5℃/min至1℃/min的冷却速度冷却试样至高于预期凝点8℃时,每降2℃观测一次试样的流动(即微微倾斜试管并观察液面是否有移动的迹象,移动则继续冷却),直至微微倾斜试管而液面无移动迹象时,立刻将试管水平放置,若5s内液面移动则记该温度即为凝点,否则改变预期凝点重复上述过程。

油品胶凝的原因在于降温时油品中所含的蜡结晶析出,并相互连接而形成具有一定强度的海绵状三维网状结构。这些结构将仍为液态的油品包裹在其中,最终使油品整体上失去流动性。由于蜡晶的形状与连接情况受试样的变形历史与热历史的影响很大,故油品的凝点亦受试样的变形历史与热历史的影响,这使得准确测定油品的凝点相当困难。对于依据国标法测量凝点的实验,若预期凝点偏差较大,则反复升温不仅费时费力,而且一方面会导致轻组分挥发,另一方面也改变了油样的温度历史,影响测量的准确性。而对于依据行业标准进行的测量凝点的实验,虽然温度历史得到了很好的控制(按用户要求预热,连续降温,不反复升温),“但微微倾斜试管并观察液面是否有移动的迹象”这样的表述难于实现自动化,且结果严重依赖实验人员的操作水平:一旦倾斜试管角度过大造成油样变形过大,从而蜡晶网状结构严重破坏,则其凝点可能显著降低,造成较大的测量误差。

现有技术中对于油品凝点的自动测量的技术方案主要是通过机械式的倾斜系统来实现测试标准中的倾斜操作。在这方面的案例包括德国walter公司原产的mp852倾点仪等,现有技术中使用步进电机提供动力,通过涡轮涡杆与齿轮系统对步进电机所产生的运动进行减速,从而实现倾斜角度的分档控制。通过对倾斜角度的分档控制实现对凝点测试规范中“微微倾斜试管并观察液面是否移动”的操作。由于采用步进电机驱动的机械式的倾斜系统,试管的倾斜角度被分为有限而不连续的档位,其最小倾角是0.9°。对于加入降凝剂等蜡晶结构比较脆弱的油品来讲,这仍然有可能蜡晶结构破坏过大。同时,试管在倾斜到指定角度的过程中经历快速的起动与制动,这会引入较大的惯性力,也会破坏蜡晶结构。蜡晶结构的破坏将会影响测量准确性,使凝点的测量结果更低。

因此,如何克服凝点的自动测量精度低及测量过程中对蜡晶破坏过大的问题,是当前亟待解决的技术问题。



技术实现要素:

为了解决现有技术中的缺陷,本发明提供了一种全自动凝点测试装置及方法,本申请无需利用机械装置倾斜测量试管,只需调整旋转单元的旋转,且不同的角速度对应不同的测量凝点标准的有益效果。利用旋转单元的旋转产生离心加速度代替现有技术中的倾斜试管,同时利用激光检测单元实时检测待测油样液面的微小移动,从而极大降低了测量过程中由于油样变形对蜡晶网状结构的破坏性,具有提高了油样凝点的测量准确性及显著缩短了测试时间的有益效果。

为了实现上述目的,本发明提供了一种全自动凝点测试装置,包括控温测量室及与所述控温测量室通信连接的综合控制单元,该装置还包括:旋转单元、与所述旋转单元固定连接的测量试管及激光检测单元;所述旋转单元包括:动力模块及与所述动力模块固定连接的传动轴;所述激光检测单元包括:激光器、光敏电阻及测量电路;

所述测量试管、所述激光检测单元及所述传动轴设置于所述控温测量室内;

所述传动轴固定于所述动力模块上并随所述动力模块的旋转而转动;所述动力模块与所述综合控制单元通信连接;

所述测量试管通过固定旋臂固定于所述传动轴上,所述激光检测单元通过测量旋臂固定于所述传动轴上,所述测量试管及所述激光检测单元均随所述传动轴的转动而转动;所述测量试管,用于放置待测油样;

所述激光器设置于所述测量试管的中心轴的上端,并通过所述光敏电阻固定于所述测量试管靠近所述传动轴一侧的内壁上;所述光敏电阻与所述测量电路的一端电连接;所述测量电路设置于所述测量旋臂内,所述测量电路的另一端与所述综合控制单元电连接。

本发明还提供了一种全自动凝点测试方法,该方法包括:

激光检测单元垂直向测量试管内的待测油样的上表面发射激光;

综合控制单元根据控温测量室发送的第一温度值缓慢提高动力模块的转速;

所述激光检测单元实时检测是否生成电阻偏移信号;

如果是,所述激光检测单元向所述综合控制单元发送偏移电信号;所述综合控制单元根据所述偏移电信号向动力模块发送缓慢降速指令;在所述动力模块停止转动后,所述综合控制单元向所述控温测量室发送降温指令;所述控温测量室根据所述降温指令将所述待测油样的温度降至第二温度值,并将所述第二温度值发送至所述综合控制单元;所述综合控制单元根据所述第二温度值缓慢提高所述动力模块的转速;所述第一温度值与所述第二温度值之差为2摄氏度;

如果否,所述综合控制单元实时读取所述动力模块的转速;直到所述动力模块的转速等于临界角速度时,所述综合控制单元等待预设时间后读取所述待测油样的温度记为所述待测油样的凝点,并向所述动力模块发送停止转动指令。

本发明提供的一种全自动凝点测试装置及方法,包括控温测量室、与所述控温测量室通信连接的综合控制单元、旋转单元、与所述旋转单元固定连接的测量试管及激光检测单元;所述旋转单元包括:动力模块及与所述动力模块固定连接的传动轴;所述激光检测单元包括:激光器、光敏电阻及测量电路;所述测量试管、所述激光检测单元及所述传动轴设置于所述控温测量室内;所述传动轴固定于所述动力模块上并随所述动力模块的旋转而转动;所述动力模块与所述综合控制单元通信连接;所述测量试管通过固定旋臂固定于所述传动轴上,所述激光检测单元通过测量旋臂固定于所述传动轴上,所述测量试管及所述激光检测单元均随所述传动轴的转动而转动;所述测量试管,用于放置待测油样;所述激光器设置于所述测量试管的中心轴的上端,并通过所述光敏电阻固定于所述测量试管靠近所述传动轴一侧的内壁上;所述光敏电阻与所述测量电路的一端电连接;所述测量电路设置于所述测量旋臂内,所述测量电路的另一端与所述综合控制单元电连接。本申请具有极大降低了对蜡晶网状结构的破坏性、提高了油样凝点的测量准确性及显著缩短了测试时间的有益效果。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本申请提供的一种全自动凝点测试装置的结构示意图;

图2是本申请一实施例中的测量电路的结构示意图;

图3是本申请一实施例中的全自动凝点测试装置的结构示意图;

图4是本申请另一实施例中的全自动凝点测试装置的结构示意图;

图5是本申请提供的一种全自动凝点测试方法的流程示意图;

图6是本申请一实施例中的测量试管的旋转示意图;

图7是本申请一实施例中的旋转中的试管其轴线与合加速度夹角的示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

关于本文中所使用的“第一”、“第二”、……等,并非特别指称次序或顺位的意思,亦非用以限定本发明,其仅为了区别以相同技术用语描述的元件或操作。

关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。

关于本文中所使用的“及/或”,包括所述事物的任一或全部组合。

针对现有技术中存在的缺陷,本发明提供的一种全自动凝点测试装置,其结构示意图如图1所示,该装置包括:控温测量室1、与控温测量室1通信连接的综合控制单元2、旋转单元3、与旋转单元3固定连接的测量试管4及激光检测单元5。

其中,旋转单元3包括:动力模块301及与动力模块301固定连接的传动轴302。激光检测单元5包括:激光器501、光敏电阻502及测量电路503。

测量试管4、激光检测单元5及传动轴301设置于控温测量室1内。

传动轴301固定于动力模块302上并随动力模块302的旋转而转动;动力模块302与综合控制单元2通信连接;

测量试管4通过固定旋臂6固定于传动轴301上,激光检测单元5通过测量旋臂7固定于传动轴301上,测量试管4及激光检测单元5均随传动轴301的转动而转动。

激光器501设置于测量试管4的中心轴的上端,并通过光敏电阻502固定于测量试管4靠近传动轴301一侧的内壁上;光敏电阻502与测量电路503的一端a电连接;测量电路503设置于测量旋臂7内,测量电路503的另一端b与综合控制单元电连接。

具体实施时,如图1所示,测量试管4为标准的油品测凝试管(测量试管4的高度为160±10毫米,测量试管4的内径为20±1毫米),用来盛装待测油样8,测量试管4上装有密封塞9以防止待测油样8中的轻组分在测试过程中挥发。

在测试过程中,旋转单元3带动测量试管4与激光检测单元5与传动轴302一同旋转。测量试管4的旋转会产生离心力,当测量试管4内部的屈服应力不足以抗衡离心力时,测量试管4内的待测油样8的液面将发生移动。激光检测单元5通过测量光路13实时测量待测油样8的液面的运动。激光检测单元5将测得的电阻偏移信号转换成偏移电信号输入到综合控制单元2,综合控制单元2根据接收的偏移电信号判断是否需要提高或降低动力模块302的转速。

动力模块302具体为调速电机,综合控制单元2具体为计算机,本申请不以此为限。

在一个实施例中,如图2所示,测量电路503包括:电刷5031、电流表5032及电阻5033。

具体实施时,激光器501沿测量试管4轴线垂直将激光射向待测油样8的上表面。在待测油样8的液面未发生移动(即液面未发生变形)时,由于入射光路与待测油样8的液面垂直,则反射光路将沿入射光路返回。在待测油样8的液面发生移动(即液面向远离传动轴301的方向倾斜)时,如图2所示,入射光路l1与待测油样8的液面垂直,反射光路l2向光敏电阻502测倾斜,从而将激光照射到光敏电阻502,使光敏电阻502的电阻值发生改变输出电阻偏移信号,电阻偏移信号通过测量电路503转换为电信号后输入到综合控制单元2。

在一个实施例中,如图3所示,该装置还包括:冷却单元11及设置于控温测量室内的控温单元10。控温单元10包括:温度传感器1001、对流风扇1002及珀耳贴模块1003,用于为控温测量室1提供所需的测试温度。温度传感器1001及珀耳贴模块1003均与综合控制单元2通信连接。

其中,冷却单元11通过冷却水路12与珀耳贴模块1003连接,用于对控温单元10进行冷却。

温度传感器1001,用于将采集的控温测量室1的温度信息输出到综合控制单元2。

具体实施时,综合控制单元2将接收的温度传感器1001发送的温度信息与预设温度进行比较,输出比较结果;根据比较结果向珀耳贴模块1003发送制热或者制冷执行。

对流风扇1002,用于强制控温测量室2内的空气进行对流,使得测量试管4内待测油样8的温度与温度传感器1001采集的温度信息一致。

在一个实施例中,如图3所示,固定旋臂6包括:上固定旋臂601及下固定旋臂602。

在一个实施例中,如图3所示,旋转单元3还包括:固定于传动轴301上的上轴承303及下轴承304;

传动轴通过上轴承303固定于控温测量室1的顶部,并通过下轴承304固定于控温测量室1的底部。

在一个实施例中,如图4所示,固定旋臂6还包括:分别设置于上固定旋臂601及下固定旋臂602上的旋臂调节销603。

具体实施时,上固定旋臂601及下固定旋臂602的长度可调节,并通过旋臂调节销603固定上固定旋臂601的长度及下固定旋臂602的长度。上固定旋臂及下固定旋臂的长度均包括20厘米档及20.5档。

在一个实施例中,如图4所示,测量试管4包括:平行设置于传动轴301左右两侧的左测量试管401及右测量试管402,本申请不以此为限。

具体实施时,左测量试管401及右测量试管402分别装有待测油样8。

在一个实施例中,如图4所示,激光检测单元5的数量为两个,分别设置于左测量试管401及右测量试管402的中心轴上端。

具体实施时,如图4所示,各激光器501设置于左测量试管401中心轴的上端及右测量试管402的中心轴的上端,一个激光器501通过一个光敏电阻502固定于左测量试管401靠近传动轴301一侧的内壁上,另一个激光器501通过另一个光敏电阻502固定于右测量试管402靠近传动轴301一侧的内壁上。各光敏电阻502通过电刷与各光敏电阻502电连接的测量电路503的一端a电连接。各测量电路503分别设置于一测量旋臂7内,各测量电路503的另一端b与综合控制单元2电连接。

基于与上述全自动凝点测试装置相同的申请构思,本发明还提供了一种全自动凝点测试方法,如下面实施例。由于该方法解决问题的原理与全自动凝点测试装置相似,因此该方法的实施可以参见全自动凝点测试装置的实施,重复之处不再赘述。

本发明实施例提供的一种全自动凝点测试方法,其流程图如图5所示,该方法包括:

s101:激光检测单元垂直向测量试管内的待测油样的上表面发射激光。

s102:综合控制单元根据控温测量室发送的第一温度值缓慢提高动力模块的转速。

s103:激光检测单元实时检测是否生成电阻偏移信号;如果是,执行步骤s104;如果否,执行步骤s105。

s104:激光检测单元向综合控制单元发送偏移电信号;综合控制单元根据偏移电信号向动力模块发送缓慢降速指令;在动力模块停止转动后,综合控制单元向控温测量室发送降温指令;控温测量室根据降温指令将待测油样的温度降至第二温度值,并将第二温度值发送至综合控制单元;综合控制单元根据第二温度值缓慢提高动力模块的转速,重新执行步骤s103。其中,第一温度值与第二温度值之差为2摄氏度,本申请不以此为限。

具体实施时,激光检测单元向综合控制单元发送偏移电信号,包括:

光敏电阻根据接收的激光器垂直发射到待测油样的上表面的激光反射光生成电阻偏移信号,并将电阻偏移信号发送至测量电路;

测量电路将根据电阻偏移信号生成偏移电信号发送至综合控制单元。

s105:综合控制单元实时读取动力模块的转速;直到动力模块的转速等于临界角速度时,综合控制单元等待预设时间后读取待测油样的温度记为待测油样的凝点,并向动力模块发送停止转动指令。

具体实施时,根据凝点的力学涵义事实上是油品的屈服应力达到特定临界数值的温度。因此,从原理上讲,只要保证该临界屈服应力不变,其所需抵抗的运动可不仅由重力来提供,则屈服应力τy的计算公式如公式(1)所示:

τy=0.12×ρ×g×d×sinφ(1)

其中,τy为待测油样8的屈服应力,ρ为待测油样8的密度,g为重力加速度,d为测量试管4的直径,φ为试管倾斜夹角(现有技术中试管倾斜夹角)。

如图6所示,若令测量试管4以角速度ω绕传动轴301旋转,传动轴301距离测量试管4的轴心的距离为r,则产生离心加速度a的大小为a=ω2r,故只要令转速ω满足公式(2),则能够使该转速下待测油样8的液面不移动的临界屈服应力与现有技术中使试管倾斜角为φ=45°时使试管中的待测油样的液面不移动的临界屈服应力相等,如图7所示,故当转速ω满足公式(2)时,持续1分钟内使待测油样8的液面不移动的温度即为待测凝点(即国家标准所规定的凝点)。

同理,如图6及7所示,若在离心加速度a满足公示(3)的转速ω时,保持5秒钟使待测油样8的液面不移动的温度即为待测凝点(即石油行业标准所规定的凝点)。

a=gsin90°=g=ω2r(3)

本发明适用于微变形凝点检测及无变形凝点检测两种模式。如图4所示,设定左测量试管401的固定旋臂6称为标准侧旋臂,右测量试管402的固定旋臂6称为可调侧旋臂。

在微变形凝点检测时,标准侧旋臂长度与可调侧旋臂的长度相等,因此左测量试管401及右测量试管402到传动轴301的中心轴的距离相等,则在左测量试管401及右测量试管402随传动轴301旋转时,左测量试管401及右测量试管402受到的离心力相同,左测量试管401及右测量试管402互为备份。通过激光检测单元5实时检测待测油样8的液面变形情况,从而实时调整动力模块302的转速,以实现微变形凝点检测。

在无变形凝点检测时,标准侧旋臂长度固定位20cm,可调侧旋臂p2的长度调整为20.5cm档,可调侧旋臂的长度略大于标准侧旋臂p1度,则在左测量试管401及右测量试管402随传动轴301旋转时,左测量试管401受到的离心力一直小于右测量试管402受到的离心力。根据右测量试管402中测待测油样8的液面变形情况调整传动轴301的转速,在保持左测量试管401中测待测油样8的液面不发生变形的情况下,测量左测量试管401中测待测油样8的凝点。

为了使本领域的技术人员更好的了解本发明,下面列举微变形检测模式按石油行业标准sy/t0541-2009测试油品凝点的实施例,本申请具体测试过程包括如下步骤:

s201:如图4所示,将仪器调至微变形检测模式(即标准侧旋臂长度与可调侧旋臂的长度相等),在综合控制单元2中设置预期凝点,向左测量试管401及右测量试管402内倒入适量的待测油样8(按sy/t0541-2009要求,待测油样8的深度为50±3mm),用密封塞9将左测量试管401及右测量试管402分别密封,将左测量试管401通过标准侧旋臂固定于传动轴301上,将右测量试管402通过标准侧旋臂固定于传动轴301上。

s202:关闭控温测量室1,启动对流风扇1002。通过珀耳贴模块1003升高控温测量室1的温度,温度传感器1001监测控温测量室1的温度(默认待测油样8的温度与控温测量室1的温度相同),使控温测量室1的温度升至第一预设温度,停止加热并稳定温度。

s203:通过珀耳贴模块1003降低控温测量室1的温度(默认待测油样8的温度与控温测量室1的温度相同),温度传感器1001监测控温测量室1的温度以0.5℃/min至1℃/min的冷却速度冷却至高于预期凝点8℃的温度(即第一温度值)。温度传感器1001将第一温度值发送至综合控制单元2。

s204:综合控制单元2根据接收的第一温度值缓慢提高动力模块302的转速,同时启动激光检测单元5检测待测油样8的液面变化情况,直到动力模块302的转速等于临界角速度时,综合控制单元2发出指令使动力模块保持该转速5s。其中,g为重力加速度,r为传动轴301距离测量试管4轴心的距离。

s205:各激光检测单元5均实时检测是否生成电阻偏移信号;如果是,执行步骤s206;如果否,执行步骤s207。

s206:一旦左测量试管401内的激光检测单元5发现对应检测的待测油样8的液面发生移动或右测量试管402内的激光检测单元5发现对应检测的待测油样8的液面发生移动,均向综合控制单元2发送偏移电信号;综合控制单元2根据偏移电信号中断s204向动力模块302发送缓慢降速指令;在动力模块302停止转动后,综合控制单元2向控温测量室1发送降温指令;控温测量室1根据降温指令将待测油样8的温度降至第二温度值,并将第二温度值发送至综合控制单元2,并重新执行s204。第一温度值与第二温度值之差为2摄氏度,本申请不以此为限。

s207:综合控制单元2实时读取动力模块302的转速;直到动力模块302的转速等于临界角速度并保持该转速5s后,试管401与试管402内的激光检测单元5均始终未发现对应检测的待测油样8的液面发生移动,则读取待测油样8的温度记为待测油样8的凝点,并向动力模块302发送停止转动指令。

s208:取出左测量试管401及右测量试管402,完成凝点测量。

本发明利用旋转单元产生离心加速度代替倾斜试管进行实验。在微变形检测模式下,旋转单元的低速转动相当于石油行业标准sy/t0541-2009中所规定的“微微倾斜试管”。而激光检测单元可保证发现待测油样的微小液面移动迹象,从而大大减小测量过程中因待测油样变形而导致对蜡晶网状结构的破坏,提高了凝点的测量准确性。本发明在测量过程中自动进行测量且连续、平稳,可保证一次成功,因此可显著缩短测试时间,从而使得使用本发明测定凝点的过程不仅严格遵循石油行业标准sy/t0541-2009,而且更为精确、省时、省力。

为了使本领域的技术人员更好的了解本发明,下面列举无变形检测模式按国家标准gb510-83测试油品凝点的实施例,本申请具体测试过程包括如下步骤:

s301:如图4所示,将仪器调至无变形检测模式(即标准侧旋臂长度为20cm,可调侧旋臂的长度为20.5cm),在综合控制单元2中设置预期凝点,向左测量试管401及右测量试管402内倒入适量的待测油样8(按sy/t0541-2009要求,待测油样8的深度为50±3mm),用密封塞9将左测量试管401及右测量试管402分别密封,将左测量试管401通过标准侧旋臂(长度为20cm的固定旋臂6)固定于传动轴301上,将右测量试管402通过标准侧旋臂(长度为20.5cm的固定旋臂6)固定于传动轴301上。

s302:关闭控温测量室1,启动对流风扇1002。通过珀耳贴模块1003升高控温测量室1的温度,温度传感器1001监测控温测量室1的温度(默认待测油样8的温度与控温测量室1的温度相同),使控温测量室1的温度升至50±1℃,停止加热并稳定温度。

s303:通过珀耳贴模块1003降低控温测量室1的温度(默认待测油样8的温度与控温测量室1的温度相同),温度传感器1001监测控温测量室1的温度以0.5℃/min至1℃/min的冷却速度冷却至高于预期凝点8℃的温度(即第一温度值)。温度传感器1001将第一温度值发送至综合控制单元2。

s304:综合控制单元2根据接收的第一温度值缓慢提高动力模块302的转速,同时启动激光检测单元5检测待测油样8的液面变化情况。直到动力模块302的转速等于临界角速度(依据公式(2)产生的离心加速度相当于将试管倾斜45°放置)时,综合控制单元2发出指令使动力模块保持该转速1min。

s305:各激光检测单元5均实时检测是否生成电阻偏移信号;如果是,执行步骤s306;如果否,执行步骤s307。

s306:一旦左测量试管401内的激光检测单元5发现对应检测的待测油样8的液面发生移动或右测量试管402内的激光检测单元5发现对应检测的待测油样8的液面发生移动,均向综合控制单元2发送偏移电信号;综合控制单元2根据偏移电信号中断s304向动力模块302发送缓慢降速指令;在动力模块302停止转动后,综合控制单元2向控温测量室1发送降温指令;控温测量室1根据降温指令将待测油样8的温度降至第二温度值,并将第二温度值发送至综合控制单元2,并重新执行s304。第一温度值与第二温度值之差为2摄氏度,本申请不以此为限。

s307:综合控制单元2实时读取动力模块302的转速;直到动力模块302的转速等于临界角速度(依据公式(2)产生的离心加速度相当于将试管倾斜45°放置)并保持该转速1min后,试管401与试管402内的激光检测单元5均始终未发现对应检测的待测油样8的液面发生移动,则读取待测油样8的温度记为待测油样8的凝点,并向动力模块302发送停止转动指令。

s308:取出左测量试管401及右测量试管402,完成凝点测量。

本发明利用旋转单元产生离心加速度代替倾斜试管进行实验。在无变形检测模式下,由于可调侧旋臂总是略长于标准侧旋臂,故可调侧旋臂的测试试管内的待测油样所受到的离心加速度总是略大于标准侧旋臂的测试试管内的待测油样所受到的离心加速度,故在旋转单元转动速度增加的过程中,可调侧旋臂的测试试管内的待测油样总会先于标准侧旋臂的测试试管内的待测油样发生变形。因此设置于可调侧旋臂的测试试管内的激光检测单元发现变形后可发出标准侧旋臂的测试试管内的待测油样即将发生变形的预警,此时降低旋转单元的转速可保证在凝点测量全过程中标准侧旋臂的测试试管内的待测油样未发生变形,从而严格保证了国家标准gb510-83凝点测量标准中所规定的测量条件。利用本发明在测量过程中自动进行且连续、平稳,可保证一次成功而无需反复加热,可显著缩短测试时间并减少反复加热对待测油样的油品凝点的改变,从而使得使用本发明测定凝点的过程不仅严格遵循国家标准gb510-83,而且更为精确、省时、省力。

本发明提供的一种全自动凝点测试装置及方法,包括控温测量室、与控温测量室通信连接的综合控制单元、旋转单元、与旋转单元固定连接的测量试管及激光检测单元;旋转单元包括:动力模块及与动力模块固定连接的传动轴;激光检测单元包括:激光器、光敏电阻及测量电路;测量试管、激光检测单元及传动轴设置于控温测量室内;传动轴固定于动力模块上并随动力模块的旋转而转动;动力模块与综合控制单元通信连接;测量试管通过固定旋臂固定于传动轴上,激光检测单元通过测量旋臂固定于传动轴上,测量试管及激光检测单元均随传动轴的转动而转动;测量试管,用于放置待测油样;激光器设置于测量试管的中心轴的上端,并通过光敏电阻固定于测量试管靠近传动轴一侧的内壁上;光敏电阻与测量电路的一端电连接;测量电路设置于测量旋臂内,测量电路的另一端与综合控制单元电连接。本申请具有极大降低了对蜡晶网状结构的破坏性、提高了油样凝点的测量准确性及显著缩短了测试时间的有益效果。

本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。

本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1