分析化验装置和方法

文档序号:6141877阅读:282来源:国知局
专利名称:分析化验装置和方法
技术领域
本发明涉及一种用于测定流体标本中分析物存在的分析化验装置和方法。该装置和方法特别用于测定全血中心脏分析物的存在,尽管其应用并不限于此。
背景技术
本发明的产品和方法可用于许多诊断目的,以及用于跟踪哺乳动物疾病的病程和治疗法。它适于多种哺乳动物体液,例如全血、血清、血浆和尿。尽管本发明主要作为用于检测心脏分析物来讨论,但是它还适于利用抗原/抗体或等价反应的其它领域。
利用本发明的装置及其所公开的变形可执行许多相关的分析操作,特别是那些包括免疫测定的操作。例如,采用从血浆中分离红细胞的免疫测定或非免疫测定的化验形式和外侧液路均可被采用。例如用于检测妊娠或排卵的激素,肠胃溃疡的包括H幽门的病毒、细菌和真菌传染性的微生物,药物的使用或滥用以及肿瘤标志物的那些分析物都是非限制性的例子。也可以考虑利用本发明进行酶测定,例如通过形成色原来测定血液中葡萄糖或其它分析物的水平。
近来已经发展了许多免疫测定方法,它们利用在干燥微孔载体上(例如多孔薄膜,待测标本通过毛细作用穿过该多孔薄膜)发生的反应,反应产物可肉眼检测或利用例如反射计的仪器可测。但是并不限于此,这些方法通常包括抗原/抗体反应,其中,反应对中的一方用可检测标记物进行标记。标记物典型为酶标记或微粒直接标记,例如金的溶胶标记。本领域已经公知了许多有用的标记物及其使用方法。
在几篇美国或其它国外专利中已经描述了这种类型的典型免疫层析装置。例如,美国专利4861711描述了一种装置,它通过在一系列边靠边接触的共面薄膜上发生的抗原/抗体反应对分析物进行检测。在美国专利4774192、4753776、4933092、4987065、5075078、5120643、5079142、5096809、5110724、5144890、5591645、5135716中描述了其它装置。所有这些专利都描述了叠层结构。
因为在上述专利中所描述的这些含多孔微孔薄膜的装置是多层的,并需要多层微孔材料和过滤纸带来保证精确结果,因此,这些装置总是很难制造。
为检测全血中的心脏分析物,有必要除去红细胞,使其不会干扰视觉观察或其它观察,以便检测这种免疫测定反应中通常产生的有色反应产物。
当采用免疫测定装置检测全血中的心脏分析物时,该装置利用这些抗原与标记抗体反应产生可测产物。采用抗原/抗体反应来进行这种诊断或分析操作的一种广泛使用的方法是采用标记检测抗体,它与抗原上的一个抗原决定簇反应,在微孔薄膜纸带的检测区形成标记抗体/抗原复合物。由于毛细作用,该复合物沿着薄膜移动,直到它接触到含有捕捉抗体的固定检测线,该捕捉抗体与抗原上的另一个抗原决定簇反应,以富集并形成可测反应产物。典型地,由于该产物是有色的,因此是可目测的。通过一些结构,颜色对于肉眼更加明显。在更为复杂的装置中,可使用合适的仪器测量所产生颜色的强度或产物的其它性质来确定抗原的存在或浓度,例如光学传感器。在几种检测全血中心脏分析物的装置中应用了该方法。在所有这些装置中,因为红细胞具有深颜色,它会干扰有色反应产物的正确目视观察,所以必需阻止红细胞进入颜色增强阶段或捕捉区。
为防止这些干扰已经作了许多努力。结果迄今为止,用于分析全血的该类产品包括这样一些装置,例如包括一种去除红细胞并形成血浆的过滤器,由此就会不存在由红细胞产生的对颜色可见度的干扰。
美国专利5135716使用一种凝聚剂来帮助红细胞的分离。其它专利描述了滤纸或塑料过滤器的使用。
在美国专利4477575中描述了用玻璃纤维网过滤红细胞的用法。然而,玻璃纤维网仅是简单地将另一个层加到装置上。其主要困难存在于精确放置若干层薄而软的纸带,使其与薄层结构完全配准,同时并保证标本放置区、反应区以及薄膜纸带的其它区域间相互完全连通的过程中。而且需在适当的平台(该平台通常是一个具有可分离上薄膜和下薄膜的中空盒,它包括固定的座和槽,用以阻止薄膜移动并保持选定的薄膜区域相对于视窗或盒上其它开口而位于适当位置)上放置完整薄膜的困难使问题进一步复杂化。
作为一个通用规则,常常将例如如上所述的诊断装置描述为其具有加入待测标本的施加区。由于毛细作用,标本沿着基底上的预定路径流到检测区,该基底通常是一个硝化纤维素薄膜。检测区载有分析物需求的可移动标记抗体。如果分析物存在,就形成标记抗体/分析物复合物,该复合物与捕捉区(位于检测区下游)内固定的(即固定不动的)捕捉抗体反应,形成可测产物,该产物通常是有颜色的,并是肉眼可见的。
有时非常容易就能形成标记抗体/分析物复合物,但不能与捕捉抗体充分结合产生容易检测的信号。如果没有足量复合物接触捕捉抗体,或以一种对于形成可检反应产物不是最佳的结构接触捕捉抗体,这种情况就会发生。其它可能的问题是诱导时间不足或抗体亲和力过低。
可通过利用生物素/抗生物素蛋白、生物素/链霉亲和素反应或为熟练技术人员所公知的类似反应来避免该困难。这些反应常常用于提高诊断操作的灵敏性。在该方法的一个应用中,在检测区内可移动地附着两种抗体,并在捕捉区内固定链霉亲和素。标记检测抗体,最好使用金属,例如金,检测抗体与分析物上的一个抗原决定簇反应。用生物素标记的另一个抗体与分析物上的另一个抗原决定簇反应。可以认为抗体混合物是检测分析物存在的试剂系统。如果分析物存在,将在检测区形成包含金的标记检测抗体/分析物/生物素标记检测抗体的复合物。该复合物由于毛细作用而穿过多孔薄膜进入捕捉区。当复合物到达捕捉区内固定的链霉亲和素时,链霉亲和素与生物素结合,并将复合物富集到一个小区域,以形成可测反应产物。
已经知道该反应存在几种变化。例如,检测区可同时含有由生物素标记的抗体和由例如金的有色标记物标记的链霉亲和素。由它们形成并移动到捕捉区的复合物是一个分析物/生物素标记抗体/金标记链霉亲和素的复合物,该复合物移动到捕捉区,并通过与捕捉抗体反应而在捕捉区内富集,以便形成可测反应产物。
通常将上述鉴别方法描述为涉及在长条状的方形薄层装置上发生的反应,该装置的一个末端具有标本施加区,它与一种过滤层相连。经过滤的标本在检测区接触到可移动的标记特异性结合试剂,并形成复合物,该复合物沿多孔薄膜移动到远侧设置的特异性结合试剂,即在横跨薄膜的检测线上固定的捕捉试剂。复合物与该试剂反应,并沿着试剂检测线富集,以变得可见。
典型地,通过向施加区中心加入数滴待测标本或将施加区浸渍到小体积的待测标本中将该待测标本放置在施加区。
这些结构存在一定的问题,特别是当仅在数分钟内要达到高灵敏度并使结果可见时。
例如,通过使捕捉区的捕捉检测线具有较小宽度(该捕捉检测线的宽度比检测区的宽度小),这样在小范围捕捉区内捕捉该数量的标记反应产物,从而给出更强的信号颜色,由此可达到高灵敏度。
进一步说,在化验过程中,使更大标记量的复合物穿过捕捉检测线能提高灵敏度。然而,这需要更大的标记量,检测区的面积也必需更大。
如果该区域具有长条通道的形式,并通过简单增加通道长度来增加区域面积,其结果是由于向前移动的液体的速度沿着被湿润的全部距离成指数降低,因此使化验时间大量增加。
具有较宽的检测区和较小宽度的捕捉区通道的该区域其它形状(即较大的宽长比)有产生流动停滞区的缺点,在该停滞区存在少许流动或不存在流动。在极端情况下,大量标本不能进入形成可检测产物的反应中。
本发明通过提供一个装置来解决上述许多问题,该装置小到可以手提(尽管不必如此),并使待测流体快速而有效地流动。尽管目前它的最重要用途是用于诊断心脏分析物存在的全血分析,它也适用于化验液体中其它成分的存在,例如携带抗原的体液,该抗原与抗体形成复合物,随后它被检测,例如使用另一抗体的双抗体(夹心)分析中。在急诊室中利用上述几个专利所描述的心脏分析物来帮助医生诊断胸痛的原因并确定疼痛是否来自心脏的毛病。
本申请是针对上述发明特征的几个改进。
发明概述针对这些问题的解决方案如下所述根据本发明的第一方面,使标本同时从许多不同方向进入检测区,检测区是这样设计的,它使由不同方向汇合的流动都指向捕捉区通道的入口,并使从进入检测区到所述捕捉区通道入口的所有距离基本上相等。
本发明通过提供一个装置来解决上述问题,该装置小到可以手提(尽管不必如此),并可使待测流体快速而有效地流动。尽管目前它的优选用途是用于诊断心脏分析物存在的全血分析,它还适用于化验液体中其它成分的存在,例如携带抗原的体液,该抗原与抗体形成复合物,随后复合物被检测,例如使用另一抗体的双抗体(夹心)分析中。
通过构造微孔通道,使其中只有很少或没有机会发生滞流,并使液体从多个位点由标本环流通道进入检测区,可实现待测液体的快速有效流动。对检测区进行设计,使汇合的流体前端向着捕捉区的入口端移动。
当用于全血分析时,本发明特别有利的方面是微孔基底的选择,它能从血浆中层析地分离红细胞。作为颗粒性物质的过滤,因为现行的过滤会堵塞介质中的细胞,并阻止甚至停止介质的流动,因此层析分离是特别重要的。此外,如上所述,过滤一般需要附加层。然而,在层析分离中,颗粒性物质连续流动,尽管比载液的流速慢,但这样就只有很小或不存在流动阻抗。因此就不必进行其它生物标本的层析分离。
本发明的另一个重要特征如下所述,因为微孔载体中标本通道的整个体积是湿润的,因此所有流动都达到预选点,并且颗粒性物质(例如红细胞)不会干扰可测反应产物的检测。
根据本发明第一方面的装置对早期装置的几个方面作了改进,即,它提供的技术解决方案叙述如下标本同时从许多不同方向进入检测区,检测区是这样设计的,它使来自不同方向汇合的流动都指向捕捉区通道的入口,并使从进入检测区到所述捕捉区通道入口的所有距离基本上相等。通过构造微孔通道,可实现待测液体的快速有效流动,从而使其中只有很少或没有机会发生滞流,并使液体从多个位点由标本环流通道进入检测区。检测区是这样设计的,它使流体的汇合前端向着捕捉区的入口端移动。
依照本发明的第二方面对下述装置作了进一步改进。例如,使用少量微孔薄膜将装置作得更小,这样可在其结构中使用更少的材料,并且其作用更快。可通过下面的解释使其最重要的优点更加明确,该优点是即使要鉴别多个分析物,在结构中仅需改变微孔薄膜的结构,而不用改变支持层。
在此是针对有关装置结构和微孔薄膜、顶层和底层间相互关系的改进,在该微孔薄膜上进行从红细胞中分离血浆,底层和顶层一起将薄膜固定在恰当位置。此外,当进行血浆从红细胞的层析分离时,顶层和底层为从施加孔导入标本并使其穿过薄膜到达捕捉抗体提供通道。第一个改进是标本输送通道的结构变化,通过由装置顶层和底层组成的通道使标本从施加孔导入到薄膜上。与根据本发明的第一方面不同的是,标本输送通道中没有薄膜。该位置上省去薄膜是一个改进,这减少了装置所需的微孔薄膜的数量,并避免了有关消除标本输送通道上薄膜的微孔结构的需要,或避免了流体标本与除装置顶层或底层之外的材料的接触。所得到的产品在制造材料和人工方面成本更低。需要微孔薄膜的区域仅限于检测区和捕捉区。装置各部分间构成界面,这些部分包括标本输送通道以及包含薄膜和标本环流通道的部分,将界面设置形成毛细管,以便依照该装置将血样传导到薄膜上,而不会引起标本的无规则分布。
本发明进一步的优点是,在执行大量不同的分析化验中使用该装置的同一顶层和底层部件。对应于待测的特异性分析或分析物的检测,只需将薄膜进行改装。例如,对于每次分析,试剂与薄膜的附着或键合、它们的位置以及液体在薄膜上流体路径的形状,都是个性化的。而对于每次分析,标本输送通道的顶层和底层以及标本环流通道是相同的。
也可以将标本输送通道成形为能容纳预定体积的标本,进一步通过可选择的视窗或透明体,给用户指示出标本输送通道何时被充满从而为其施加足够的标本。进一步的改进是标本输送通道的结构,当通道被充满时,通道中容纳的标本输送到标本环流通道,并由此开始免疫测定。
在进一步的实施例中,在装置通道内,将试剂(例如标记检测抗体)设置到薄膜前方的流体路径中,这样试剂与标本混合。由上述通道的非限制性的例子,试剂可以是小球、微球或冷冻干燥的粉末。
本发明装置的重要特征是薄膜没有延伸到标本输送通道的全长。另一个重要特征是标本输送通道是这样设计的,它将已知预定体积的标本输送到装置的工作部分。
因此,本发明的目的是提供一种上面所述的分析化验装置,它具有在顶层底表面内形成的标本输送通道,并具有由通道、底层顶表面限定的侧壁。在标本输送通道区域中几乎不存在薄膜。在一个实施例中,用平行的侧壁构造标本输送通道,该通道与标本环流通道有效连通。在本发明的另一个实施例中,在装置内使标本输送通道成形为能够容纳进行分析所需的标本体积。在该实施例中,对与标本环流通道有效连通的标本输送通道末端进行变形,而得到标本输送通道的狭窄端,在该狭窄端,标本输送通道与标本环流通道相接。在该实施例中,当标本输送通道中充满的流体接触到狭窄部分的尖端时,毛细作用将引导液体从标本输送通道进入标本环流通道,然后到达装置的薄膜上。然后标本流动,直到标本输送通道排干了预定体积的流体,分析就开始进行。如上所述,在标本输送通道和标本环流通道接合处设置一个任选的观察窗,用以向操作者指示已向装置中加入了足够能实施化验的标本,以及当标本输送通道完全充满血液,以及标本被导入到标本环流通道时,观察窗将指示标本的存在。
在根据本发明的第一方面的装置的情况下,根据本发明第二方面的装置缓解了现有技术装置的问题,这是因为标本同时从多个不同方向进入检测区,检测区设计成使来自不同方向汇合的流动都指向捕捉区通道的入口,并使从进入检测区到所述捕捉区通道入口的距离基本上相等。通过构造微孔通道,可实现待测液体的快速有效流动,从而使其中只有很少或没有机会发生滞流,并使液体从多个位点由标本环流通道进入检测区。对检测区或通道进行设计,使汇合的流体前端向着捕捉区的入口端移动。
根据本发明的第三方面对装置作了更进一步的改进。根据本发明第三方面的装置改进也是有关装置的结构和微孔薄膜、顶层和底层间相互关系的改进,在该微孔薄膜上发生血浆从红细胞的分离,底层和顶层一起将薄膜固定在恰当的位置。本申请是涉及一种装置,其中标本输送通道位于顶层的顶表面,并由罩覆盖,标本通过从顶层顶表面的标本输送通道的末端延长至标本环流通道的通道,被导入到标本环流通道。当标本进入并充满标本环流通道时,它同时从多个位点层析地移动到薄膜上,并开始血浆从红细胞的层析分离和流体从多个位点向检测区的进入。由于本发明的标本输送通道位于顶层顶表面,这提供了若干优点。一个优点是装置中所需的薄膜数量的减少。该位置上缺省薄膜是一个改进,这是因为减少了装置所需要的微孔薄膜的数量,并避免了有关消除标本输送通道上的薄膜微孔结构的需要,或避免了任何有关液体标本与除装置的顶层或底层之外的材料的接触。所得产品在制造材料和人工方面成本更低。第二个优点是通道的位置可以使用户观察到通道的充满。直到通道被充满,化验才会开始,因此无需外部计量装置。如果标本输送通道的容积等于进行化验所需的标本量,当通道充满时,就会停止标本的进一步加入。此外,装置的标本采集部分可以这样成形,以便使由刺指尖获得的一滴血方便地进入装置,由此用少量血充满标本输送通道,通常是30~50(μl),并开始分析。
根据本发明第三方面的装置的进一步优点是,试剂以施加层或一个或多个固体颗粒的形式放置在标本输送通道内,当标本通过通道时,该试剂在标本中溶解。该位置试剂的施加为装置制造提供了较简单的方式,以及能使试剂在标本到达薄膜前能及早地与标本混合。
根据本发明第三方面的装置的更进一步的优点是,在执行大量不同的分析化验中可使用装置的同一顶层和底层部件。对于待测分析物的特异性分析检测,只需将薄膜进行改装。例如,对于每次分析,试剂与薄膜的附着或键合、它们的位置以及薄膜上流体路径的形状都是个性化的。而对于每个分析,标本输送通道的顶层和底层以及标本环流通道是相同的。
如上所述,标本输送通道也可以成形为能容纳预定体积的标本,给用户指示出标本输送通道何时被充满从而为其施加足够的标本。进一步的改进是标本输送通道的结构是这样的,当通道已充满时,通道中容纳的标本输送到标本环流通道,并由此开始免疫测定。另外,任选的特征是化验终止指示器,它能指示化验完成并可被读取,这避免了需要计时器。能让用户观察化验结果和化验终止指示器的视窗开在装置顶层上,或整个装置由透明材料构成,但在不想被观察的区域通过印刷或表面处理使其不透明。
本发明第三方面的装置的主要特征是,在装置顶层的顶表面上标本输送通道的位置,这样薄膜不用扩展到标本输送通道的全长。另一个特征是标本输送通道是这样设计的,它使已知预定体积的标本输送到装置的操作部分。进一步的特征是标本输送通道内试剂的放置,以便使试剂在标本中溶解。
因此,本发明的目的是提供一种如上所述的分析化验装置,它具有在顶层的顶表面形成的标本输送通道。用罩覆盖该标本输送通道,该罩最好是透明的。在标本输送通道区域没有薄膜存在。在一个实施例中,标本输送通道由平行侧壁构成,并与标本环流通道有效连通。在本发明的另一个实施例中,标本输送通道成形为能容纳装置内执行分析所需的标本体积。在该实施例中,对与标本环流通道有效连通的标本输送通道末端进行成形,使其提供标本输送通道的狭窄处,在此标本输送通道与标本环流通道相接。在该实施例中,当标本输送通道中充满的流体接触到狭窄部分的尖端时,毛细作用将引导液体从标本输送通道进入标本环流通道,然后到达装置的薄膜上。然后标本流动,直到标本输送通道排出了预定体积的标本,然后开始进行分析。
如上所述,根据第三方面的装置解决了现有技术装置中的问题,原因是使标本同时从多个不同方向进入检测区,检测区是这样设计的,它使来自不同方向汇合的流动都指向捕捉区通道的入口,并使从进入检测区到所述捕捉区通道入口的距离基本上相等。通过构造微孔基体(薄膜),可做到待测液体的快速有效流动,从而使其中只有很少或没有机会发生滞流,并使液体从多个位点由标本环流通道进入检测区。对检测区进行设计,使汇合的流体前端向着捕捉区的入口端移动。


附图1、2和3表示现有技术。图1和2分别表示增加标记量或提高检测区与捕捉区的宽度比的尝试结构。图3是通用标准结构,其中微孔载体(即薄膜)的宽度沿其整个长度是均匀一致的。
图4表示本发明装置的一个薄膜结构,它适于使用一个半圆形检测区和一个狭窄捕捉区通道检测一种或若干种分析物。半圆形检测区的边缘与标本环流通道相连。
图5表示本发明装置的顶层底表面的结构,它适于与图4的薄膜一起使用。
图6、7和8是图5沿剖面线A-A、B-B和C-C的剖视图。
图9表示本发明装置的一个薄膜结构,它使用一个矩形检测区和一个狭窄捕捉区通道检测一种或若干种分析物。
图10表示本发明装置的顶层底表面结构,它适于与图9的薄膜一起使用。
图11表示本发明目前优选的薄膜结构,它适于通过生物素/链霉亲和素方法检测三种不同分析物。
图12和13分别表示具有一条和三条流体路径的替换微孔薄膜结构。
图14表示本发明的一个实施例,它在顶层上具有两条路径和一条弧形环流通道。
图15是本发明装置的透视图。
图16A、16B和16C表示本发明装置的分解图,它具有图11结构中的顶层、支持层和微孔载体。
图17A-D是表示本发明的一个装置,它具有一个标本环流通道,该通道不同于图15和16A-C所示的标本环流通道。
图18表示本发明装置中使用的薄膜结构,该结构适于使用一个半圆形检测区和一个狭窄捕捉区通道检测一种或若干种分析物。该半圆形检测区的边缘与标本环流通道相连。
图19A-B分别表示本发明装置的顶层底表面和底层顶表面的结构,该结构适于与图18中的薄膜一起使用。在后续附图中示出沿剖面线A-A、B-B、C-C和D-D的剖视图,它表示已组装装置的剖面图。
图20-23分别是图19A沿剖面线A-A、B-B、C-C和D-D的剖视图。具有交叉影线的上部表示装置顶层的剖视部分,空白的底部部分表示底层的剖视部分。
图24表示本发明装置的一个薄膜结构,它使用一个矩形检测区和一个狭窄捕捉区通道检测一种或若干种分析物。
图25表示本发明目前优选的薄膜结构,它适于通过生物素/链霉亲和素方法检测三种不同分析物。
图26和27分别表示具有一条和3条流体路径的替换微孔薄膜结构。
图28A-B表示本发明装置顶层的底表面结构,它包括具有预定容积的标本输送通道,该通道具有指示通道充满的视窗,还包括能引导标本从标本输送通道进入标本环流通道的结构。在图28B中示出了该装置顶层在剖面线E-E处的剖视图。
图29是本发明装置的透视图。
图30A、30B和30C表示本发明装置的分解图,它具有图25结构中的顶层、支持层和微孔载体。
图31表示用于本发明装置中的薄膜结构,它适于使用一个半圆形检测区和一个狭窄捕捉区通道检测一种或若干种分析物。该半圆形检测区的边缘与标本环流通道相连。
图32-34表示本发明装置的一个例子的结构及其组件,它包括薄膜夹具、底层、顶层和标本输送通道罩。
图35-36表示本发明装置的一个例子的分解图,包括剖视图。
图37表示本发明的薄膜结构,它适于通过生物素/链霉亲和素方法和使用三条路径来检测三种不同分析物。
图38-40描述了本发明的具有附着在标本输送通道中的化验试剂的装置。
术语在该说明书和权利要求书中以下术语具有以下含义。
“干燥的微孔载体”和“干燥的微孔载体层”是指一种多孔产品,通过它待测标本能通过毛细作用移动。这些可通过附图和对本发明的描述来理解。干燥的微孔载体(层),在本领域常常称之为薄膜,通过封锁一些孔区制成该薄膜,这样使待测流体能沿着规定的路径穿过选定的通道。
在分析化验装置中,“顶层或顶部”是一个层,使其成形为能与底层或底部一起固定干燥微孔载体(薄膜)层,当顶层和底层被配准放置时,它们与干燥微孔层一起构成路径,该路径控制待测标本流过装置的方向。
“抗原”是一个分子,在动物体中它诱导抗体的形成。本发明的装置具有测定流体中抗原存在的用途。该装置特别具有分析体液的用途,特别是全血、血清、血浆和尿。抗原常常称之为“分析物”。
“心脏分析物”是一种作为心脏组织衰退的结果而释放到血液中的分析物。
“通道”是所有形成的管道,通过它,分析中的流体标本在分析化验装置中流动。在顶层内或微孔载体层本身可形成通道。由于顶层通常是硬塑料,例如聚丙烯酸酯和聚甲基丙烯酸酯,因此可通过模塑、冲压、切削或任何等效方法形成顶层。在微孔层中,可通过将预期结构冲压成层而形成通道。也可以通过使用蜡或墨水形成没有微孔的边界而形成微孔层。当标本从一个通道直接流到另一个通道时,将这些通道说成是有效连通的。
此处使用的词“半圆形”这个词不只限于圆的一半,而通常指的是去掉一个扇形的圆形区域,或指的是扇形本身。
在此使用的词“外接的(划圈的)(circμmscribed)”不限于弧形通道周围,而是与微孔薄膜的半圆形区域相符合就可。随着描述的深入应明确该术语还包括其它形状,例如当载体区为多边形或形成部分多边形时,标本环流通道与一个或多个其它形状的检测区相符。
“基本上”是一个术语,表示有关标本进入检测区的位点与捕捉区通道的入口端之间的距离。这些距离应尽量相同。显然,因为检测区的弧形边缘与捕捉区通道入口端之间的最后所有距离都相等,所以与标本环流通道相符的载体半圆形区是非常优选的结构。
“快速地”意指在足够短的时间内形成检测产物,即大约5到15分钟内,以便使医疗人员作出有意义和有用的结论。
“有效”意指用少量流体形成检测产物,即几滴全血(大约从10μl到80μl),甚至当抗原以非常低的浓度存在时,也利用少量的试剂,这一般是例如肌钙蛋白的心脏分析物的情况。
图1、2和3是现有技术的装置。在这些图中,相同标号具有相同含义。
图1是构造成试图避免上述问题的现有技术装置图。在该图中,1是例如为硝化纤维素的微孔多孔薄膜。将待测标本加到区域2中。
检测区3包括可移动的反应试剂,例如用于检测血浆载液中钙肌蛋白I的检测抗体4。用例如为金的标记物5标记抗体4。
为方便起见,将图1、2和3的装置表示为单层薄膜。然而,实际上,大多数装置具有一系列位于区域2上的过滤层,这样只有携带分析物的血浆到达区域2。换句话说,可通过凝结成血清而除去标本中的红细胞。然而,这是一个在装置外部进行的分离步骤,在化验前通常需要对带有血清的凝结血细胞的混合物进行分离过滤。
如果分析物存在,该分析物将与标记抗体4反应形成标记抗体/分析物复合物,由于毛细作用,该复合物将随着血浆移动到捕捉区6,在此复合物与安置并固定在捕捉区6的捕捉抗体7反应。结果,在具有捕捉抗体7的区域中,标记抗体/分析物复合物形成可测反应产物。通常,将抗体7固定在横跨捕捉区6的一条检测线上,并且反应产物为肉眼所能观察。如果标记物是金,则检测线是红色到紫色。
例如图1所述结构引起的问题是,携带分析物的血浆从区域2向所有方向移动。一部分向着检测区3和捕捉区6移动。而另一部分则以相反方向移动,从而不会到达捕捉区6。
图2表示现有技术中的一个装置,为了增加标本必需流经的路径的长度,它采用流动围堰装置。该装置的问题是在检测区3顶部边缘的死角产生滞流区域。
图3表示一个长条形的长方形微孔基板,在该基板上发生与图1和2中相同的反应。其不存在液体滞流,也没有任何流体被截留。图3标准装置的主要问题是,如果装置太短,就没有足够的标记量与捕捉抗体接触并反应,而生成足量的可检测产物。如果装置太长,则在得到化验结果前要经过太长时间。发明的详细描述下面将描述本发明的第一方面。如上所述,本发明的装置可用于分析多种液体生物标本,以检测抗原的存在。目前可以预期的是发现该装置的主要用途是用于检测心脏分析物存在的全血诊断,这些分析物例如肌钙蛋白I、肌钙蛋白T、肌红蛋白、CK-MB、肌球蛋白轻链、碳酸酐酶、脂肪酸结合蛋白、糖原磷酸化酶BB、肌动蛋白以及当心脏组织随着例如绞痛或心肌梗死的缺血毛病而恶化时,血液中所发现的其它任何已知分析物基质。因此,作为外延说明,将本发明主要描述为用在心脏病诊断中。
在前面已经大体上并结合图1、2和3讨论了现有技术及其缺陷。
图4表示本发明的一个干燥微孔载体层1,它是为通过分析物和抗体对之间的反应来检测一个或多个分析物而进行的全血分析配置的,在经典的抗原/抗体反应中,抗体对利用多克隆或单克隆抗体对与分析物上的不同抗原决定簇反应,其中所选抗体对中的一方被标记。
该图表示载体层1,其中载体层所选定一部分的微孔结构被破坏(例如通过流动围堰装置),仅留下一个微孔区来限定具有边缘11的半圆形检测区3和捕捉区通道6,该捕捉区通道6在末端12被封闭。
薄膜1层析地分离红细胞,形成红细胞前缘13和其下游的血浆前缘14,薄膜1最好是硝基纤维素或等效材料。
检测区3含有标记检测抗体4和5,如果分析物存在,该检测抗体就与分析物反应,生成标记抗体/抗原复合物。
为方便起见,尽管只示出了一个抗体,但检测区3可含有若干种不同种类的标记抗体。
标记抗体4是可移动的,即它通过任何几种已知方式可移动地附着在检测区3中,因此标记抗体/分析物复合物一旦形成,它就自由地向下游移动到捕捉区通道6,以便与横跨捕捉区通道6固定的捕捉抗体反应,生成可测反应产物。
此外,为方便起见只示出了一条捕捉抗体检测线,但在此可以有多条这样的检测线,一条检测线对应一种待测分析物。
捕捉区6可任选地包括一种制品15,它与血液、血浆、血清或其它标本中一般存在的任何物质反应,生成一种可见的控制产物。控制反应的使用是任选的,但这是优选的。
图5表示顶层16的底表面结构,将该底表面带到与图4中的薄膜1配准,以提供本发明的装置。
顶层16具有“通孔”或“施加孔”17,用于加入标本。它与标本输送通道18有效连通,标本输送通道18与标本环流通道19连通。为了与图4中半圆形检测区3的边缘11相符,将标本环流通道19表示为弧形结构。
标本环流通道19在两个末端20处封闭。它由内壁21和外壁22构成,并由毛细圈闭23环绕,该毛细圈闭用以保证位于边缘11所有位点的标本流入图4的检测区3,然后从捕捉区通道6的入口端6a进入捕捉区6。
图6、7和8分别是图5沿剖面线A-A、B-B和C-C的剖视图。相同的附图标记具有相同意义。尺寸(mm)仅用于说明。尺寸不适于确定比例。
图9和10与图4和图5类似,只是除了检测区3在形状上是矩形的,并且与边缘11连通的标本环流通道19为近似矩形。与图4和图5相同,图9和10示出该装置具有一个可移动的、标记检测抗体4和5及一个捕捉抗体7的固定检测线。
假设没有大量交叉反应,图9和10的装置可用于检测一种或不止一种分析物。
图11表示本发明目前优选的薄膜1的结构,其中利用生物素/链霉亲和素反应来诊断全血标本,以确定三种分析物的存在。通过前述图例和后面的图例可容易地设计顶层通道的结构。图中,相同的附图标记具有与其它图中相同的含义。可采用该设计来确定一个小标本中的分析物肌红蛋白、肌钙蛋白I或T和CK-MB的存在。
薄膜1形成有3条分离的路径,每一条路径对应于每种来自三个分离检测区3a、3b和3c的边缘11a、11b和11c的分析物。检测区由阻塞块24分隔。构造整个有效区使其能提供3个检测区3a、3b和3c,并使这3个检测区在其边缘11a、11b和11c与位于装置顶层16底表面(图中未示出)上的标本环流通道19有效连通。检测区3a、3b和3c与相应捕捉区通道的相应入口端6a、6b和6c有效连通。
检测区3a含有两种标记抗体,例如,对应于CK-MB的生物素标记抗体和对应于CK-MB的金标记抗体。
通常,在图11中,黑圈表示金标记抗体,而白圈表示生物素标记抗体。为防止图混乱,就不给出这些检测抗体的附图标记。
在图11装置的操作过程中,作为血浆从红细胞分离的例子,将三个检测区3a、3b和3c的每一个中的红细胞前缘分别表示为13a、13b和13c,相应血浆前缘的位置分别表示为14a、14b和14c。
如果标本中有CK-MB存在,它形成的复合物将由入口6a处进入捕捉通道,最终与位于链霉亲和素检测线7a上的链霉亲和素反应,产生可见产物。
在图中示出的分离路径中发生与例如肌钙蛋白I或肌钙蛋白T的其它分析物和与肌红蛋白的类似反应。
图12到16c来进一步解释发明,并展示其通用性。
利用常规抗原抗体反应,可类似地检测同样的或其它的分析物。
图12表示本发明为例如肌钙蛋白I的一种分析物的全血分析而设计的微孔载体层1。
图中示出了微孔载体层1,其中在某些区域载体层的微孔结构被破坏,用以限定检测区3和捕捉区通道6,该捕捉区通道6在末端12处封闭。
优选为硝基纤维素或等效材料的薄膜1层析地分离红细胞,形成红细胞前缘13和血浆前缘14。
在本发明的该实施例中,检测区含有标记检测抗体4,它被标记物5所标记。如果分析物存在,则标记检测抗体与该分析物反应,形成标记抗体/抗原复合物。
标记抗体4,5是可移动的,即通过任何几种已知方式使它们可移动地附着在检测区3中,这样标记抗体/分析物复合物一旦形成,它就自由地向下游移动到捕捉区通道6,以便与横跨捕捉区通道6固定的检测线7上的捕捉抗体反应,生成可测反应产物。
捕捉区6可任选地包括制品15,它与血液、血浆、血清或其它体液中一般存在的任何物质反应以生成可见产物。控制反应的使用是任选的,但这是优选的,由此操作者就能知道已经向装置中加入了足够的血液或其它流体,以使诊断反应开始进行。
应注意的是检测区3和捕捉区通道6是有效连通的,即检测区3中的流体由于毛细作用而直接通过入口端6a进入捕捉区通道6。
还应注意的是检测区3具有半圆形的几何形状以及一个弧形边缘11。可认为该圆弧的中心(在此处,检测区与捕捉区通道6有效连通)是检测区3的第二端或相对端,液体通过该圆弧中心流入捕捉区通道6的入口端6a。由于该结构,从捕捉区通道6的入口端6a到边缘11上的每个位点是基本上等距离的,检测区中所有流体均匀地流入捕捉区通道6,并且标本的连贯部分在相同时刻到达入口端6a。结合下面对顶层的描述,将更为清楚地理解来自若干方向的流动的均匀性。
本发明装置的主要特征是,血浆液流流过检测区3和捕捉区通道6,到达捕捉抗体检测线7时,仅有很少或没有象现有技术结构中那样的标记抗体/抗原复合物截流在检测区3中。作为代替,这里存在流体从检测区3到捕捉通道区6的快速而有效的毛细流动。捕捉抗体7与标记抗体/分析物复合物反应,并将其富集起来,形成最有效的可测产物。该新结构的一个有利效果是诊断装置的尺寸可减到最小。
在本发明的装置中可以利用任何熟练技术人员能得到的各种标记物。金属和酶标记物是优选的。金属标记物由于其显著的灵敏性是特别优选的。在金属中,金是最优选的,主要原因是因为对于该类型反应,金已得到广泛使用,以及其性质已得到很好地了解。另外,根据已知方法,通过使用可溶的银盐和还原剂,能够增强金的信号,使其变得容易可见。金标记物作为催化剂,它将银盐还原成金属银,该金属银沉淀为可见产物。典型反应对是银的乳酸盐和氢醌,银的乳酸盐作为可还原的银离子源,氢醌作为还原剂。金属银围绕每个金颗粒形成容易辨别的黑色沉淀。
尽管可以根据已被广泛了解的因素(例如分析物浓度和反应物的亲合力)容许可估计的变化,但本发明中使用的金标记抗体的优选粒径大约从35到65nm。
如果采用例如为辣根过氧化物酶的酶标记物,可依据标准过程(程序)通过加入过氧化氢和例如为邻苯二胺的染料检测反应。
在检测区内有一个预处理区,尽管这不是本发明的必要特征。采用预处理区来除去血液中存在的干扰预定反应的物质或使预定反应难以检测的物质。例如,如果将该装置用于检测心脏分析物,典型的干扰物质是肌酸激酶、CK-MM的异构体。对应于异构体CK-MB的抗体将与CK-MM发生交叉反应,从而给出错误的读数。可通过如下操作来避免上述问题在预处理区(该预处理区位于与CK-MB对应的可移动抗体的上游)内设置足够的对应于CK-MM的固定抗体,由此所有CK-MM在流动标本到达检测抗体前被除去。
图12的装置使用一种或多种标记检测抗体和位于固定捕捉抗体检测线内的捕捉抗体。当采用若干个标记检测物时,必需注意避免交叉反应的干扰。按照下面结合其它附图进行的解释,将抗体设置在不止一个检测区并使其与它们的特异性分析物反应通常是最好的。
图12和13的装置也准备采用生物素/抗生物素蛋白反应,同时利用上面所述的那些变化。在目前提供给图12装置的优选变型中,将生物素标记抗体和金标记抗体可移动地设置在检测区3中,在该检测区,每一种标记抗体与分析物上的不同抗原决定簇反应,生成由生物素标记抗体/分析物/金标记抗体组成的三元复合物,该复合物由于毛细作用而移入并穿过捕捉通道区6,在该捕捉通道区内复合物与抗生物素蛋白或链霉亲和素反应,并被富集起来,形成可测反应产物。
当然,本发明采用的抗体既可以是单克隆的,也可以是多克隆的。类似地,也可采用生物素/抗生物素蛋白反应的等效反应。在此提及的所有试剂可由等效物替代,这仅是说明性的而不是本发明的限制。
熟练的技术人员可以认识到,任何将红细胞和血浆从全血中层析分离出来的微孔膜在本发明中都可以使用。然而,因为硝化纤维素能容易以适当成本得到,因此它是优选的。在色谱分析以及相关领域使用硝化纤维素已有多年,所以科学家和技术人员都熟悉它的性质。
商业可得的硝化纤维素片材能容易地形成具有任何选定通道结构的任何选定结构。
可将本发明的硝化纤维素薄膜表征为海绵状的,它具有许多内部相连的微孔,微孔的大小和尺寸能在薄膜内引起毛细力。这使研究中的生物流体能沿着选定路径移动。
本发明实际操作中,为了将血浆从红细胞中分离开,各种装置的区域、几何形状和尺寸是这样选定的,当液体标本沿着预先设计的路径移动时,在预定区域发生预期反应。对于全血心脏诊断,根据红细胞液流和血浆液流的前缘、预期反应的动力、抗体对其相应抗原决定簇的亲合力、以及为熟练技术人员所公知或通过传统化验方法容易确定的其它因素来选定这些区域。
当得到各种网眼尺寸的多种硝化纤维素材料时,目前优选的微孔载体是那些能阻止大于3到12μm的颗粒通过的材料,如果将它用作过滤器,它就从垂直流动到薄膜水平表面的液流中过滤颗粒。在本发明的实验中,具有大于5到12μm、最好为3到8μm孔径的薄膜是优选的。一些变化是可能的。然而,随着孔径减小,薄膜内流体的流动性降低,因此延长了诊断所需的时间。如果孔太大,流体通过时间减少,结果使反应物没有足够的时间相互接触发生诊断反应,或发展到一个有限程度以致不能提供预期信息。
具有支持聚酯膜或其它膜的硝化纤维素薄膜是商业可得的。由于无支持的薄膜在大规模生产环境中倾向于非常易碎、容易受到破坏和难于处理,所以这些具有支持膜的硝化纤维素薄膜对于本发明中的使用是优选的。此外,该支持膜对于流动中的流体是不渗透的,因此它们不会干扰液体标本穿过本发明装置的选定路径的流动。这样一种具有多种孔径的薄膜可从德国Gerbershausen的Gerbermenbrane获得。
可通过标准技术准备本发明中使用的抗体。例如参见1977年4月出版的由Falfre,Howe,Milstein等人发表的Nature Vol.266,7,550-552。在此通过引用该论文,将结合其有关单克隆抗体制备方面的公开。
将抗体固定到例如硝化纤维素的基底的方法是公知的,该方法在本发明的装置生产中也是合用的。硝化纤维素对于蛋白质是有利的粘合剂。因此,仅需将固定的捕捉抗体施加到预定区域中的捕捉区。通过使用另一种例如牛血清清蛋白的蛋白质首先使检测区饱和,将标记检测抗体可移动地添加到薄膜上。
图13表示一个替换的微孔薄膜结构,该薄膜具有3条流体路径,用于3种分析物使用。该薄膜的结构和运行与其它装置的运行说明近似。
图14表示本发明的一个实施例,它具有顶层16和顶层下面的微孔载体,并具有检测两种分析物的两条路径,在微孔载体层中分别表示为检测区3a和3b以及捕捉通道6a和6b。在顶层16中示出了弧形环流通道19。装置示出了一个开口17,它是任选的圆锥形,并在顶层内由顶表面穿入到内表面与浅而窄的标本输送通道18连通,该标本输送通道18然后与底表面上形成的标本环流通道19连通。在如下所述的图15和16A中将进一步描述圆锥形的开口。
图15是本发明装置的透视图,而图16A、16B和16C是本发明装置的分解图,它们示出了顶层16、“支持层”(或“底层”或“底片”)28,二者将具有塑料衬层29的微孔载体1夹在中间。通孔17从顶表面30穿入到底表面31,并与顶层16的底表面31上形成的标本输送通道18配准。
进一步参照图15和16,标本输送通道18与同样在顶层16的底表面31上形成的环流通道19有效连通。环流通道19在两个末端是封闭的,其末端用附图标记20表示,该设计与图5所示的不同。环流通道19由内壁21和外壁22构成。如图16A中所示,内壁21构成一个形成于顶层16的底表面31上的凹槽边界,称之为毛细圈闭23。图中示出了毛细圈闭延伸到区域33,但这样作不是必要的。
参照图16A和16B,顶层16通过销钉34连接到支持层28上,该销钉是进入相应孔35的压配合。可采用任何其它等效的连接方式,并且层16和层28两层被永久地或可拆卸地固定。
在图16B中示出了具有例如为聚酯膜衬里29的微孔载体1。该微孔载体固定在层16和28之间。载体1具有与层16和28相同的外形尺寸,只要存在通过它的有效路径,从通孔17加入的流体就能穿过输送通道、环流通道、检测区和捕捉区通道分别到达捕捉区通道27a、27b和27c的封闭端12,和分别到达环流通道19的末端20。为检测多种分析物,形成图16C所示的类似于图11微孔载体的微孔薄膜1。因此该薄膜就含有3个检测区24、25和26,它们分别与3个捕捉区通道27a、27b和27c连通。(应注意的是,此处使用的附图标记24、25和26分别对应于上文中图11的附图标记3a、3b和3c,附图标记27a、27b和27c对应于上文中图4的附图标记6)。检测区的弧形边缘11遍布环流通道19的内壁21,因此当流体停止于末端20时,由于毛细作用流体流入检测区24、25和26。
现在毛细圈闭23的目的就变得非常清楚了。缺少毛细圈闭23时,如果微孔载体1与顶层16的平坦的底表面接触,环流通道19中的流体将在微孔载体1和该表面间流动,而不是从通孔17以其预先选定的路径穿过薄膜进入捕捉区通道的末端。
流动终止于环流通道的末端,这使控制标本的量成为可能。如图15和16a中的虚线结构所示,标本环流通道任选延长部分上的任选视窗39可用于指示已经加入了充满通道的足够标本。
如果顶层16透明,则可见反应产物的生成将容易显示。如果顶层16不透明,则设置一个或多个视窗,表示为36、37和38。如图15所示的这些视窗将与捕捉区通道配准,这样操作者就能观察有色产物的生成或调节装置(例如反射计)以确定可测产物是否已生成。
为了说明的目的,图15的装置有3个分离的视窗。在优选装置中,只有一个沿顶层30横向延伸的视窗,这样能同时观察到所有反应结果。
本发明的一个优点是不管打算测量一种、两种或3种抗原,装置都具有相同的尺寸。当然,在每种情况下,将有差别地设计微孔载体层1。然而,顶层16不需要发生任何变化来适应差别设计的载体层1。
图17是本发明的透视图,图17A、17B和17C是本发明的分解图,它们示出了顶层16、支持层28,它们将具有塑料衬里层29的微孔载体1夹在中间。通孔17从顶层16的顶表面30穿入到底表面31,并与顶层16的底表面31上形成的标本输送通道18配准。标本输送通道18与同样在顶层16的底表面31上形成的环流通道19有效连通。环流通道19在两个末端是封闭的,该末端用附图标记20表示。环流通道19由内壁21和外壁22构成。如图17B中所示,内壁21构成顶层16的底表面31的凹槽边界,称之为毛细圈闭23。图中示出了毛细圈闭23延伸到区域33,但这样作不是必要的。
进一步参照这些图,顶层16通过销钉34连接到支持层28上,该销钉是进入相应孔35的压配合。可采用其它任何等效的连接方式,并且层16和层28两层被永久地或可拆卸地固定。
在图17C中示出了具有例如为聚酯膜衬里29的微孔载体1。该微孔载体固定于支承层16和28之间。载体1具有与层16和28相同的外形尺寸,只要存在通过它的有效路径,从通孔17加入的流体就能穿过输送通道18、环流通道19、检测区50、51和52以及捕捉区通道27a、27b和27c,分别到达环流通道19的封闭端20和捕捉区通道27a、27b和27c的封闭端12。(应注意的是,此处使用的附图标记50、51和52分别对应于上文图11中的附图标记3a、3b和3c,附图标记27a、27b和27c对应于上文图4中的附图标记6)。为防止标本在薄膜内流动,将位于与标本输送通道18接合处的微孔载体1部分的微孔结构破坏掉。为进行3种分析物的检测而构成图17C中示出的微孔薄膜1。因此该薄膜包含3个检测区或通道50、51和52,它们分别与捕捉区通道27a、27b和27c连通。检测区50、51和52的邻接弧形边缘11遍布到环流通道19的内壁21上,因此当流体的流动终止于末端20时,流体由于毛细作用而流入检测区50、51和52。
进一步参照图17,流动终止于环流通道末端20,这使控制标本的尺寸成为可能。位于标本环流通道任选延长部分上的任选视窗39用于指示已经加入了足够标本来充满通道,它用图17A和17B中虚线结构53表示。载体1的相应部分勾画出的轮廓以约束流体流入任选通道,也就是位于标本输送通道下面的对应载体部分。本发明装置设计的进一步优点是可将同一顶层片和底层片用于各种不同装置。
如果顶层16透明,则可见反应产物的形成将容易显示。如果顶层16不透明,则设置一个或多个视窗,在该例子中表示为单个视窗37和化验终点指示视窗38。如图17A所示的这些一个或多个视窗将与捕捉区通道配准,这样操作者就能观察有色产物的形成或调节装置(例如反射计)以确定可检测产物是否已经形成。
提供任选的化验终点指示视窗38,它通过例如微孔载体1内染料的出现来指示化验终止的时刻,该染料位于化验指示视窗38的上游和视窗37下面微孔载体1部分和捕捉区7的下游的微孔载体1内。当标本通过捕捉区时,它将染料带到化验终止指示视窗。如图18所示,在另一个实施例中,捕捉区通道6任选地包括一个制品15,该制品与血液、血浆、血清或其它体液中一般存在的任何物质反应,产生可见的产物。可将该结构设置在视窗37或化验终止指示视窗38下的微孔载体1上。
为说明的目的,图17A描述的装置具有一个观察捕捉区的视窗和化验终止指示视窗。在优选装置内有一个沿顶层30横向延伸的视窗,以便能同时观察到所有反应结果。
由图17A到17D应注意的是,标本输送通道18贯穿其全长是均匀的,薄膜1很好地延伸到输送通道。还应注意的是位于标本输送通道18下面的薄膜部分的微孔结构被破坏,以阻止标本沿着薄膜的孔隙蔓延。
下面将描述本发明的第二方面。如上所述,可采用本发明的装置来分析多种液体标本,特别是生物标本,可利用能发出检测信号的标记反应物,通过竞争性或夹心类型的传统抗原/抗体反应来对这些生物标本进行分析。熟练的技术人员将认识到本发明的装置有若干种应用。
目前可以预期的是本发明的主要用途是用于检测心脏分析物存在的全血诊断,这些分析物例如肌钙蛋白I、肌钙蛋白T、肌红蛋白、CK-MB、肌球蛋白轻链、脂肪酸结合蛋白、糖原磷酸化酶BB、肌动蛋白以及当心脏组织随着例如绞痛或心肌梗死的缺血毛病而恶化时在血液中所发现的任何其它已知分析物的基质。因此,将本发明主要描述为在心脏病诊断中的应用。然而,通过免疫和其它化验形式(它利用在本发明装置的层析流体流动中的血浆从红细胞的分离),该装置适于用来检测更多种类的分析物。事实上,将从下面看到,通过在装置内的每一个有效分离流体路径中设置特定化验部件,可将一个装置构造为能执行多于一种形式的多种化验,例如免疫化验和酶基化验。
本发明的结构对于为检测CK-MB、肌红蛋白、肌球蛋白轻链、肌钙蛋白I、肌钙蛋白C、肌钙蛋白T以及至少含两种肌钙蛋白亚基的肌钙蛋白I、肌钙蛋白C、肌钙蛋白T的复合物(如美国专利5747274、5290678和5710008所述,在此通过引入这些文献而结合其中的相关部分)而分析全血、血清和血浆是特别有用的。
由图17A、17B、17C和17D注意到,上述装置的输送通道18进入环流通道19的入口前有一个角度。这使缩短整个薄膜1的全长成为可能。还应注意的是,有一个微孔载体1的延长部分,它扩展了标本输送通道18的全长。
现在已经发现微孔载体(薄膜)1的长度可以缩短到仅从标本环流通道下面的部分延伸到从标本输送通道18、到标本环流通道19和到薄膜上限定流体路径所必需远的地方。扩展到标本输送通道所需的薄膜1的任何微小延长部分105都具有被破坏的微孔结构,这样标本不会流过薄膜,并由此流体的路径是从标本输送通道进入标本环流通道,然后到薄膜上。
标本输送通道18既可以是直的,也可以包含一个角度。
本发明装置的另一个优点是,在(横)截面上减小输送通道18进入环流通道19的部分,由此就存在标本进入标本输送通道18的具有更小尺寸那部分的毛细运动。该结构的具体优点是,事实上,具有较大容积的标本输送通道18部分被设计成能容纳进行分析所需的标本的精确体积。
如下文所述,视窗设置将使操作者能完全控制整个操作。
如上所述,本发明的一个改进是装置微孔载体1尺寸的缩小,这降低了成本,并避免了在标本输送通道18的区域内去除与标本接触的薄膜部位的微孔结构的需要,例如可通过印刷一种特定的墨水。进一步的改进是如上所述的具有体积输送装置的标本输送通道,其中一旦标本将标本输送通道18充满到预定体积,全部体积的标本就排空到标本环流通道19中,以便开始免疫化验。位于或邻近标本输送通道和标本环流通道19结合处的任选视窗91用于指示已向装置加入了足量标本。
图18表示本发明的一个干燥的微孔载体层1(也称作薄膜1),将它设计成用于检测一种或多种分析物的全血分析,它利用多克隆或单克隆抗体对,并标记选定抗体对中的一方,通过抗原和抗体对(在经典抗原/抗体反应中,它们与分析物上不同的抗原决定簇反应)之间的反应而进行分析。
该图示出了载体层1,其中该层的选定部分或划定界面的微孔结构被破坏,以便留下一个限定微孔区,该区包括具有边缘11的半圆形检测区3和捕捉区通道6,该捕捉区通道在末端12处封闭。边缘11包括微小延长部分105,在装配装置时该延伸部分与位于它上面的标本输送通道18和标本环流通道19的接合处配准,这在图21的剖视图中可清楚地看到。该延长部分105与待测流体接触。该延伸部分的微孔结构也被破坏。假如通道和将薄膜固定在一定位置的相应结构限定了流体从标本输送通道进入标本环流通道然后到薄膜上的路径,薄膜部分以及附带的延长部分105可缩小到非常小的尺寸,该延伸部分在标本环流通道外向着标本输送通道延伸。此处描述的各种毛细圈闭和空腔一起保持该限定的流体路径。能达到前述流体路径部分的其它变形都包含在本发明的范围之内。
用于全血分析的薄膜1优选为硝化纤维素或等效材料,这些材料能层析分离红细胞形成红细胞前缘13和位于其下游的血浆前缘14。对于其它液体标本的分析,其它材料则是优选的。
检测区3含有带有可测标记物5的检测抗体4,如果分析物存在,该检测抗体就与分析物反应,形成标记抗体/抗原复合物。
尽管为了方便起见,只示出了一个抗体,但检测区3可以含有若干个标记抗体。
抗体4是可移动的,即它是通过任何几种已知方式可移动地附着在检测区3内,因此标记抗体/分析物复合物一旦形成,它就自由地向下游移动进入捕捉区通道6,并与横跨捕捉区通道6固定的捕捉抗体7反应,形成可测反应产物。
再一次为方便起见,仅示出了一条捕捉抗体检测线7,但可有多条这样的检测线,对应于每种待测分析物有一条检测线。
捕捉区通道6可任选地含有制品15,该制品能与待测流体中经常出现的任何物质反应,产生一种可见的控制产物。控制反应的使用是任选的,但这是优选的。该反应表示流体已通过捕捉区,并起化验终止指示剂的作用。
干燥的微孔载体层1(也称之为薄膜1)仅需要大到足够包含图18所示的部件,而并不需要延伸到含标本输送通道的装置部分。将从下面看到,将该装置成形为能适合于较小的干燥微孔载体层1,但仍能达到本发明的目的。通过减少为装置所需的干燥微孔薄膜的数量从而降低了材料成本。该干燥微孔载体层的缩小尺寸的进一步优点将在下面注解。
图19A表示顶层16的底表面23的结构,该底表面将与底层28的顶表面配准,如图19B所示,并在区域103处将图18的薄膜1夹在两者之间,以提供本发明的一个实施例。
顶层16有一个施加标本的通孔17。该通孔与标本输送通道18有效连通,而标本输送通道与标本环流通道19连通。标本输送通道18具有限定通道的侧壁,以及位于该侧壁之外的毛细圈闭23,以便将标本限制在通道内,并阻止标本在并列的顶层底表面和底层顶表面之间流动。这在图20中的剖视图中示出。为使标本环流通道19与图18的半圆形检测区3的边缘11相符,将标本环流通道19表示为弧形结构。
标本环流通道19在两个末端20处封闭。该标本环流通道由内壁21和外壁22构成,并由毛细圈闭23环绕,它用于保证标本流动是从边缘11的所有位点进入图18的检测区3,并然后由捕捉通道的入口端6a进入捕提通道6。
图19B表示底层28的顶表面的结构。一个凹入进底层28顶表面98的平坦的矩形区域103固定薄膜1。从顶表面98的区域103深度足以使薄膜1的顶表面与顶表面98处在同一水平上。通过本发明可以预期区域103的其它结构,例如它延伸到顶部28的边缘。在另一个实施例中,不设置凹穴,而是将顶层16和底层28设计成以合适的方位固定薄膜1。这仅需要底层和顶层与二者之间的薄膜一起来限定从通孔17到薄膜通道12的末端的流体路径。因而各通道的厚度是可调的。
将薄膜1设置到空腔102的接触面99上,该空腔位于标本输送通道18和标本环流通道19之间的界面上。图30C示出了三维表示的、参与传输装置部件以及其功能之间关系的空腔。当为装置的实施而对顶层16和底层28进行定位时,顶层16底表面内的标本输送通道沿延长部分101而过,直至接触到环流通道19。空腔102的相对位置、侧面99与薄膜的接合处以及上述标本输送通道18和标本环流通道19的接合处形成了一个导管,因此流体从标本输送通道18流入薄膜上面的标本环流通道19。因为薄膜1和侧面99之间的连接被来自其它表面接触(它们能提供流体备用毛细导管)的空气所隔离,因此流体的流动限制在标本环流通道19和在薄膜1上。标本输送通道18的侧壁为毛细圈闭23所环绕,并从通孔17向着标本环流通道19延伸,该输送通道18的侧壁沿着延长部分101延伸,由此顶层16底表面的毛细圈闭23与底层28顶表面的空腔102部分相符合。下面将参照剖视图和图20-23,对这些关系作进一步说明。同样地,侧壁和毛细圈闭在空气接合处终止,并也阻止流体在标本输送通道18的侧壁之外流动,并使流体由于毛细作用而继续流到标本环流通道19中。
图20、21、22和23分别是图19A沿线A-A、B-B、C-C和D-D的剖视图。相同附图标记具有相同意义。尺寸(mm)仅用于说明而不适合表示比例。图20表示标本输送通道18,它在顶层16内形成毛细凹穴,并由装置底层28顶表面的并置部分形成的底壁进一步限定,再进一步由每侧的侧壁所限定,该侧壁进一步被毛细圈闭23所环绕,以便将流体的流动容纳在通道内。毛细圈闭的尺寸范围在通道每侧边是任选的,但它可延长到或几乎延伸到顶层的周边。
图21表示沿标本输送通道18方向的纵断[剖]面,在此标本输送通道18接触到标本环流通道19,图21还进一步表示该处下方的薄膜以及它与空腔102侧面99的接触(如图19B所指)。如上所示,薄膜是这样放置的,它使仅来自标本输送通道的导管进入标本环流通道,并然后进入到薄膜上,因为没有其它可能来自标本的导管从该区域延伸,因此除标本输送通道18的壁厚之外都由毛细圈闭23在两侧限定,这些将在下面作进一步描述。标本输送通道的底壁仅在侧面99处与薄膜边缘接触(如图19B所示),由此利用向下并向底层28顶表面的延长部分101侧壁延伸的空腔102,空气隔离了薄膜与装置的任何其它部分的接触。因此,将流体流动限制在其规定的通道内。如图18中所示的标本输送通道的微小延长部分105,在其与标本环流通道19与空腔102的相邻侧面99的接合处,它与薄膜1在标本输送通道下面延伸的部分相符。该延长部分105可以是开口的,或最好通过破坏其微孔结构来阻塞它,例如可通过印刷一种特殊墨水。其目的是为了阻止血液流到薄膜1所限定的标本路径的外面,并为了限定从标本输送通道到标本环流通道、然后到薄膜上的流体路径。
图22表示在标本输送通道18伸入空腔102的延长部分101(如图19B中所指)的位置、横向穿过标本输送通道18的装置剖视图。与毛细圈闭23结合的空腔102一起配合,这样流体导管被限定到标本输送通道18内,在此该标本输送通道随后接触到薄膜1上的标本环流通道19。标本输送通道18的侧壁之间的宽度限制在延长部分101的宽度范围内,这样这些侧壁的外侧面接触到毛细圈闭23和空腔102,用以阻止任何液体在标本输送通道18的侧壁层之外流动。在标本输送通道18外部的毛细圈闭23的宽度可在制造装置过程中可改变。
图23表示标本环流通道19的剖视图。在操作时,标本进入标本环流通道19,并由于毛细作用快速的移动到标本环流通道19的末端20。一旦通道被充满,标本接触到所有沿着标本环流通道19的薄膜1,并基本上同时从标本环流通道19的整个圆弧传递到薄膜上,到边缘11上,再进入检测区3。
图24与图18类似,除了检测区在形状上是矩形的,并且外接于边缘11的标本环流通道19也是近似的矩形。如同图18中一样,示出了装置具有一种可移动的标记检测抗体4和5以及一种固定的捕捉抗体7。假设没有大量的交叉反应,图24的装置可用于检测一种或多种分析物。
图25表示本发明目前优选的薄膜1的结构,其中利用生物素/链霉亲和素来诊断全血,以检测三种分析物的存在。这在此前的图11中已经描述了,除了在薄膜1与标本输送通道18和标本环流通道19间接合处接触的部分有一个微小的延长部分105。可从前面和下面的说明中更容易理解顶层通道的结构。在该图中,相同的附图标记具有与其它图中相同的意义。采用该设计可确定一个少量标本中若干种分析物的存在,这些分析物例如肌红蛋白、肌钙蛋白I或T和CK-MB。
薄膜1形成有3条不同路径,每种分别由3个分离检测区3a、3b和3c的边缘11a、11b和11c导入的分析物对应于一条路径。检测区由阻断块24分离。对整个操作区域进行构造,使得能在装置顶层16底表面上提供3个检测区3a、3b和3c,这3个检测区在其边缘11a、11b和11c与标本环流通道19有效连通。检测区3a、3b和3c与相应捕捉区通道的相应入口端6a、6b和6c有效连通。
检测区3a含有两种标记抗体,例如对应于CK-MB的生物素标记抗体和对应于CK-MB的金标记抗体。
通常,在图25中黑圈表示金标记抗体,而空圈表示生物素标记抗体。为了不使图混乱,就不给出表示这些检测抗体的附图标记。
作为图25的装置操作过程中血浆从红细胞分离的例子,在3个检测区3a、3b和3c的每个区中,红细胞前缘分别表示为13a、13b和13c,相应血浆前缘的位置分别表示为14a、14b和14c。
如果标本中存在CK-MB,它们形成的复合物就从入口6a进入捕捉通道,最终与位于链霉亲和素检测线7a的链霉亲和素反应,生成可见的产物。
在图中所示的分离路径中发生与例如肌钙蛋白I或肌钙蛋白T和与肌红蛋白的其它分析物的类似反应。应用传统抗原抗体反应可类似地检测相同或其它分析物。
图26通过提供30c来进一步解释本发明,并展示其多功能性。
图26表示本发明为检测例如肌钙蛋白I的分析物的全血分析而设计的一种微孔载体层1。该图示出了微孔载体层1,其中,在某些区域使载体层的微孔结构遭到破坏,以便限定检测区3和在终端12处封闭的捕捉区6。优选为硝化纤维素或等效材料的薄膜1层析地分离红细胞,形成红细胞前缘13和血浆前缘14。在本发明的该实施例中,检测区3包含标记检测抗体4,它由标记物5所标记。如果分析物存在,该抗体就与分析物反应,形成标记抗体/抗原复合物。
标记抗体4是可移动的,即它们通过任何几种已知方式可移动地附着在检测区3中,因此标记抗体/分析物复合物一旦形成,它就自由地向下游移动到捕捉区通道6,以便与横跨捕捉区通道6固定的检测线7上的捕捉抗体反应,生成可测反应产物。
捕捉区6可任选地包括制品15,它与血液、血浆、血清或其它体液中通常存在的任何物质反应,生成可见的产物。控制反应的使用是任选的,但这是优选的,由此操作者知道已经向装置中施加了足够的血液或其它液体,以便使诊断反应开始。
应注意的是检测区3和捕捉区通道6有效连通,即检测区3中的流体由于毛细作用而直接通过入口端6a进入捕捉区通道6。
还应注意的是检测区3具有半圆形的几何形状以及一个弧形边缘11。该圆弧的中心(在此处,检测区与捕捉区通道6有效连通)可认为是检测区3的第二或相对端,流体通过该圆弧中心流入捕捉区通道6的入口端6a。由于该结构,从捕捉区通道6的入口端6a到边缘11上的每个位点基本上等距离,检测区通道3内所有的流体均匀地流入捕捉区通道6,并且标本的连贯部分在相同时间到达入口端6a。结合此处所展示的对顶层的描述,将更为清楚地理解来自若干个方向的流动的均匀性。
本发明装置的主要特征是,当血浆流动时,即它流过检测区3和捕捉区通道6,并到达捕捉抗体检测线7时,仅有很少或没有象现有技术结构中那样的标记抗体/分析物复合物截流在检测区3中。相反,从检测区3到捕捉通道区6存在快速而有效的流体毛细流动。捕捉抗体7与标记抗体/分析物复合物反应,并将其富集起来,形成最有效的可测产物。该新结构的一个有利效果是诊断装置的尺寸可以减到最小。
在本发明的装置中可以利用任何熟练技术人员能得到的各种标记物。金属和酶标记物是优选的。金属标记物由于其显著的灵敏性是特别优选的。在金属中,金是最优选的,主要是因为金已广泛用到该类型的反应中,以及它的性质已被很好地了解。另外,根据已知方法,通过使用可溶的银盐和还原剂能够增强金的信号,以使其变得容易可见。金标记物作为催化剂,它将银盐还原成金属银,该金属银沉淀为可见的产物。典型的反应对是银的乳酸盐和氢醌,银的乳酸盐作为可还原银离子的来源,氢醌作为还原剂。金属银围绕每个金颗粒形成容易辨别的黑色沉淀。
尽管可以根据已被广泛了解的因素(例如分析物浓度和反应物的亲合力)容许可估计的变化,但本发明中所用金标记抗体的优选粒径大约从35到65nm。
如果采用例如为辣根过氧化物酶的酶标记物,可依据标准过程(程序)通过加入过氧化氢和例如为邻苯二胺的染料检测反应。
在检测区内有一个预处理区,尽管这不是本发明的必要特征。采用预处理区来除去血液中存在的干扰预定反应或使预定反应难以检测的物质。例如,如果将该装置用于检测心脏分析物,典型的干扰物质是肌酸激酶和CK-MM的异构体。与异构体CK-MB对应的抗体将与CK-MM发生交叉反应,从而给出错误的读数。可通过如下办法来避免上述问题在预处理区(该预处理区位于与CK-MB对应的可移动抗体的上游)内设置足够的对应于CK-MM的固定抗体,由此所有CK-MM在流动标本到达检测抗体前被除去。
图26的装置使用一种或多种标记检测抗体和位于固定捕捉抗体检测线的捕捉抗体。当采用若干种标记检测物时,必需注意避免干扰的交叉反应。将抗体设置在不止一个的检测区并与它们特异性的分析物反应通常是最好的。
图26和27的装置也准备采用生物素/抗生物素蛋白反应,同时利用上面所述的变型。在目前提供给图29装置的优选变型中,将生物素标记抗体和金标记抗体可移动地设置在检测区3中,在该检测区,它们中的每一个与分析物上的不同抗原决定簇反应,生成由生物素标记抗体/分析物/金标记抗体组成的三元复合物,由于毛细作用,该复合物移入并穿过捕捉通道区6,在该捕捉通道区内复合物与抗生物素蛋白或链霉亲和素反应,以便富集并形成可测反应产物。
当然,本发明采用的抗体既可以是单克隆的,也可以是多克隆的。类似地,也可采用生物素/抗生物素蛋白反应的等效反应。在此提及的所有试剂可由等效物替代,在此仅是说明性的而不是本发明的限制。
熟练的技术人员可以认识到,任何将红细胞和血浆从全血中层析地分离出来的微孔膜在本发明中都可使用。然而,因为硝化纤维素能以适当成本得到,因此它是优选的。在层析分析以及相关领域使用硝化纤维素已有多年,所以科学家和技术人员都熟悉它的性质。商业可得的硝化纤维素片材能容易地形成具有任何选定通道结构的任何选定形式。
可将本发明的硝化纤维素薄膜表征为海绵状的,它具有许多内部相连的微孔,微孔的大小和尺寸能在薄膜内引起毛细力。这使观察中的生物液体能沿着选定路径移动。
为了本发明实际操作中血浆与红细胞的分离,各部件的区域、几何形状和尺寸是这样选定的,当液体标本沿着预先设计的路径移动时,在预定区域发生预期的反应。对于全血心脏诊断,根据红细胞液流和血浆液流的前缘、预期反应的动力、抗体对其相应抗原决定簇的亲合力、以及为熟练技术人员所公知或通过经典化验方法容易确定的其它因素来选定这些区域。
图27表示为检测3种分析物而具有3条流体路径的替换微孔薄膜结构。该薄膜的结构和操作将由其它装置操作的说明而变得清楚。
虽然如前所述,将本发明的诊断装置设计成能检测不止一种分析物是优选的,就可能将它们设计成具有一条捕捉区通道和多条捕捉检测线,每条线对应一种分析物,或具有多条捕捉区通道,每条通道具有一个捕捉检测线。然而,后者的设计由于要增加标本体积以保证在所有通道内都发生反应,所以它不是优选的。这消除了本发明的主要方面,即使用最少量的标本就能得到有用的结果。
仅在某种程度上但不能完全缓解问题的折衷办法是将通道作的尽可能小,并将它们设计成相互间尽可能接近。然而,因为很难从一个通道中的捕捉检测线区别另一个通道中的捕捉检测线,因此通道的接近度增加了有把握地读取结果的难度。
本发明的装置设置有多个通道,它具有包括化验通道和/或一个负控制通道和正控制通道的不止一个通道。多个通道中的每一个具有不止一条的捕捉检测线。该设计对于熟练的技术人员是容易明白的。
一个通道,通常是中间的通道仅含有与所怀疑的分析物相对应的固定抗体。正控制通道在进入通道的入口处含有可移动标记抗体和在通道深处含有固定抗体。负控制通道含有固定抗体,但其仅限制在入口处,以阻止化验中的标本进入通道。将负化验通道设计成具有穿过支持层的进入孔,用以加入不含分析物的物质,例如缓冲液,它将向捕捉抗体迁移。
本发明的产品和方法除具有上面详细描述的化验心脏分析物的价值外,它还可以用到其它的医疗操作中,例如妊娠或排卵化验。该装置和方法对由特定病毒引起的感染化验特别有用。对于这种用途,它们可被设计成竞争性和夹心分析。它们可用于化验抗原、抗体、体表抗原以及病毒粒子,例如AIDS病毒的gp120。
此外,该产品可用于化验包括乱用药物的药品。
在本发明实验中所采用的各种诊断方法中进行的反应对于本领域熟练技术人员通常是非常公知的。大多数诊断方法是以较新和有用形式实施的ELISA化验。本发明的优点是其提供更新和有用的形式,通过该形式可使反应在小而又可手提的仪器中快速而有效地进行,并使用少量的化验液体,同时兼使操纵者对结果有更大的把握。
虽然前面的描述已经公开了在检测区3可移动地附着了一种或更多抗体,但检测抗体以及其它试剂的其它位置也包含在本发明中。例如,可以提供冻干小球形式的检测抗体,例如一个较大的小球或多个较小的小球,将它们设置在薄膜上游的流体路径内,这样小球溶解在流体中。
这些小球非限制性的例子在共同拥有和共同未决的申请(美国Attorney’s Docket No.1112-1-999,1999年7月14日申请)中已经描述了。该共同未决的申请公开了形成多个均匀的、冻干的、刚性的且不含试剂的干净球体的方法,其中每个球体含有碳水化合物基质,并具有分散在其中的至少一个测定体液的一个或多个抗原存在的抗体,该方法包括形成碳水化合物和抗体试剂的干净不含水的溶液,形成均匀的溶液液滴,并以一定的速度将液滴加到一个容器内的液氮中,这样在液氮中每个液滴形成分离的冷冻球体;将冷冻球体保持在容器中,并用液氮覆盖;冻干该冷冻球体,除去液氮形成干燥球体。
将小球设置在标本输送通道、标本环流通道内或二者的接合处;在标本输送通道内或在标本输送通道18与标本环流通道19的接合处设置一个小空腔,用以固定物质。在另一个实施例中,抗体以冻干的形式附着在通道内。还可以提供其它试剂,例如如上所述的用于除去干扰物质的试剂。另外,为执行不止一个分析而在薄膜内具有不止一条流体路径的装置中,分析所共用的试剂设置在薄膜前方的流体路径内,而对应于每个分析的特异性试剂则设置在如上所述的特定薄膜检测区内。这些多样结构也包含在本发明的范围之内。
如图28A和28B中所示,为了提供充满装置流体路径的足够标本,并能进行上述实验,将装置顶层16底表面内的标本输送通道18设计成具有预先选定的容量。将标本加到通孔17上,标本从离通孔17最近的一端开始并向着对侧端充满标本输送通道。一旦标本输送通道充满,就加入了预选体积的标本。如下文所述,设置一个视窗91,用来指示标本输送通道已经被充满;顶层或位于标本输送通道上方的部分可由透明材料制成,这样可容易地观察到充满过程。此外,如图28A中的这种装置的例子所示,顶层16内的标本输送通道18是这样设计的一旦标本输送通道被标本充满到预选体积,如上所述,在通向较窄的毛细通道和通向标本环流通道19的通道的对侧端处,标本的移动前锋与狭窄的收敛管道92的接触引起了标本输送通道内的标本由于毛细作用而被导出标本输送通道18,并进入标本环流通道19,然后到薄膜1上。图28B表示图28A的装置沿剖视标记E-E的剖视图,它示出了标本施加通孔17、标本输送通道18和位于标本输送通道18的末端与标本环流通道19之间的接合处的视窗91,该视窗用于指示标本输送通道18已被用于化验的足量标本所充满。
可任选地将任选视窗91设计成毛细通道,它位于顶层顶表面,并具有喇叭口部分,以便能指示该位置全血的出现。视窗的其它方案也包含在本发明范围内。如上所述,替换方案提供了一个透明体,这样就可观察标本输送通道的充满过程。在任何一个例子中,当视窗指示标本输送通道已充满或通过对整个标本输送通道被充满的直接观察,就停止向通孔施加标本。
图29是组装的诊断装置的透视顶视图,图30A-C分别表示顶层16、薄膜1和底层28的透视图。所说明的装置适于诊断三种分析物。将微孔载体设计成具有3个检测区50、51和52,这三个检测区分别与三个捕捉区通道27a、27b和27c有效连通。为简单起见,该图未包括抗体、红细胞前缘、血浆前缘和该新装置的其它部件。这些部件已在前面的附图中示出。
顶层16具有一个通孔17,该通孔可以是圆锥形的,它从顶层顶表面穿入到内表面,该通孔与浅而又狭窄的标本输送通道18有效连通,该标本输送通道18与在顶层16底表面形成的浅而又狭窄的标本环流通道19连通,该标本环流通道具有弧形的几何形状,以便与检测区50、51和52的弧形边缘11相符。环流通道19在两个末端20处封闭。任选地,可为标本环流通道末端的延长部分53设置一个上方的视窗,使其作为已向装置加入了足够标本的指示器。
参照图30A和图30C,顶层16通过销钉34连接到支持层28上,该销钉是进入相应孔35的压配合。可采用其它任何等效的连接方式,并且层16和层28两层被永久地或可拆卸地固定。
在图30B中示出了具有例如为聚酯膜的衬里29的微孔载体1。该微孔载体固定在层16和28之间的任选凹入区域内,这样薄膜接触到空腔102的侧面。任何位于顶层16和底层28之间的这种薄膜1的结构都包含在本发明的范围之内,只要存在通过它的有效路径,从通孔17加入的流体就能穿过输送通道、环流通道19、检测区、捕捉区通道以及分别到达捕捉区通道27a、27b和27c的封闭端。对于三种分析物的检测,图30B中示出的微孔薄膜1与图25中的微孔薄膜结构类似。因此该薄膜包含三个检测区50、51和52,这些检测区分别与捕捉区通道27a、27b和27c连通。检测区的弧形边缘11遍布环流通道19的内壁21,因此当流体的流动终止于末端20时,流体由于毛细作用而进入到检测区50、51和52。
现在,毛细圈闭的用途就非常明显了。当缺少毛细圈闭23时,如果微孔载体1与顶层16的平坦的底表面相接触,则环流通道19内的流体将在该底表面和微孔载体1之间流动,而不是仅在其预选的路径内从通孔17穿过薄膜、进入捕捉区通道的末端。流体终止于环流通道末端,这使控制标本的量成为可能。如上所述,设置位于标本环流通道任选延长部分53上方的视窗39,它用于指示已经加入了充满通道的足量标本。也可设置如图28A所示的用于指示已施加足量标本体积的视窗91。
如果顶层16透明,则可见反应产物的生成将容易显示。如果顶层16不透明,则设置一个或多个视窗,在此一个表示为38,以及一个任选的化验视窗37。如图30A所示的这些视窗将与捕捉区通道配准,这样操作者就能观察有色产物的生成或调节装置(例如反射计)以确定是否已生成可测产物。
该装置具有用于观察捕捉区每种分析物的分离开的观察窗。在优选装置中,顶表面30具有一个横向延伸的视窗,这样能同时观察到所有反应结果。此外,对应于标本环流通道下方的延长部分(图30B),还有一个任选的视窗39,该视窗用作已加入充满装置所需的足够标本的指示器。在该任选视窗下标本(特别是血液)的出现表示已经加入了足量标本。
本发明的一个优点是,不管打算测量一种、两种或3种分析物,装置都具有相同的尺寸。当然,在每种情况下,将有差别地设计微孔载体层1。然而,顶层16和底层28无需为适应差别设计的载体层1而发生任何变化。
以下将看到所描述的是一种装置和方法,它们能进行液体标本内成分的检测,例如利用竞争性或夹心分析中的酶或直接标记物,通过抗原/抗体反应检测全血、血清或血浆中的心脏分析物。在本发明的装置中,试剂沿着由支持部件和薄膜的不同平面内相继连通的通道形成的路径移动。
当能得到各种网眼尺寸的多种硝化纤维素材料时,目前优选的微孔载体是那些能阻止大于3到12μm的颗粒通过的材料,如果将它用作过滤器,它就从垂直流动到薄膜水平表面的液流中过滤颗粒。在本发明的实验中,具有大约5到12μm、最好为3到8μm孔径的薄膜是优选的。一些变化是可能的。然而,随着孔径减小,薄膜内流体的流动性降低,因此增加了诊断所需的时间。如果孔太大,通过时间减少,结果使反应物没有足够的时间相互接触发生诊断反应,或发展到有限程度而不能提供预期信息。
具有支持聚酯膜或其它膜的硝化纤维素薄膜是商业可得的。由于无支持的薄膜在大规模生产环境中倾向于非常易碎、容易受到破坏和难于处理,所以这种硝化纤维素薄膜对于本发明中的使用是优选的。此外,该支持膜对于流动的流体是不可渗透的,因此它们不会干扰液体标本穿过本发明装置的选定路径。这样一种具有多种孔径的薄膜可从德国Gerbershausen的Gerbermenbrane获得。
可通过标准技术制备本发明中使用的抗体。例如参见1977年4月出版的由Falfre,Howe,Milstein等人发表的Nature Vol.266,7,550-552。在此通过引用将结合该论文在单克隆抗体制备方面的有关公开。
将抗体固定到例如硝化纤维素的基底的方法是公知的,并在本发明的装置生产过程中是合用的。硝化纤维素对于蛋白质是渴望的粘合剂。因此,仅需将固定的捕捉抗体施加到预定区域中的捕捉区。通过使用另一种例如牛血清清蛋白的蛋白质首先使检测区饱和,将标记检测抗体可移动地添加到薄膜上。如上所述,抗体和其它试剂可附着或作为小球放置在薄膜前方的液槽中。当分析使用的标本是全血,并期望进行红细胞与血浆的分离时,该装置中使用的试剂必需不能引起标本红细胞的溶胞,才能进行分离。
可通过本领域已经公知的方法容易地制造本发明的装置。
如上所述,利用本发明的装置及其公开的修改可执行其它分析操作。这包括定性和定量分析,包括免疫测定和非免疫测定类型。酶基反应,例如全血中葡萄糖的定量分析,它利用葡萄糖氧化酶和过氧化物酶,使用适当的反应物和发色底物以产生与标本中葡萄糖水平呈比例的颜色,可将该分析设计成利用本发明的装置进行化验。熟练的技术人员能意识到本装置对于其它分析形式的适应性。
下面描述本发明的第三方面。如上所述,本发明的装置可用于分析各种液体标本,特别是生物标本,它通过竞争性或夹心型的传统抗原/抗体反应并利用能发出可测信号的标记反应物对生物标本进行分析。熟练的技术人员能意识到本发明装置的若干种应用。
目前可以预期的是该装置主要用途是用于检测心脏分析物存在的全血诊断,这些分析物例如肌钙蛋白I、肌钙蛋白T、肌红蛋白、CK-MB、肌球蛋白轻链、脂肪酸结合蛋白、糖原磷酸化酶BB、肌动蛋白以及当心脏组织随着例如绞痛或心肌梗死的缺血毛病而恶化时在血液中所发现的其它任何已知分析物基质。因此,将本发明主要描述为用在心脏病诊断中。然而,通过免疫形式和利用本发明装置层析流体流动中的血浆从红细胞分离的其它分析形式,该装置适于检测多种分析物。实际上,在下面将看到,通过在装置内有效的每个分离流体路径中设置特定分析部件,可将装置构造为能执行不只一种形式的多个分析,例如免疫测定和酶基分析。
本发明的装置对分析血液、血清和血浆尤其有用,以便检测CK-MB、肌红蛋白、肌球蛋白轻链、肌钙蛋白I、肌钙蛋白C、肌钙蛋白T以及至少含两种肌钙蛋白亚基的由肌钙蛋白I、肌钙蛋白C和肌钙蛋白T组成的复合物,如美国专利5747274、5290678和5710008所述,在此通过引入这些文献而结合其中的相关部分。
图31表示本发明的干燥微孔载体层1(也同义地称为薄膜1),将它构造为能用于全血分析,以便通过分析物和抗体对间的反应(在经典的抗原/抗体反应中抗原/抗体对能与分析物上不同的抗原决定簇反应),利用多克隆或单克隆抗体对(所选抗体对中的一方被标记)检测一种分析物或多种分析物。
该图示出了载体层1,其中载体层选定部分的微孔结构被破坏,仅留下一个微孔区来限定具有边缘11的半圆形检测区3和捕捉区通道6,该捕捉区通道6在末端12被封闭。可选择并优选的是沿上面所指区域的边界破坏微孔结构,将标本限制到边界内部。
用于全血分析的薄膜1优选为硝化纤维素或等效材料,这些材料层析地分离出红细胞,形成红细胞前缘13和其下游的血浆前缘14。对于其它液体标本的分析,其它材料是优选的。
检测区3包含具有可测标记物5的检测抗体4,如果分析物存在,它就与该检测抗体反应,生成标记抗体/抗原复合物。
尽管为方便起见仅示出了一个抗体,但检测区3可含有若干个标记抗体。
抗体4是可移动的,即它通过任何几种已知方式可移动地附着在检测区3中,因此标记抗体/分析物复合物一旦形成,它就自由地向下游移动到捕捉区通道6,以便与横跨捕捉区通道6固定的捕捉抗体7反应,生成可测反应产物。由下面进一步的描述应注意的是,可将检测抗体设置在薄膜前方的流体路径中,例如在标本输送通道、标本环流通道或在二者之间的腔体中以小球或附着物质的形式设置检测抗体。
再次为了方便起见,仅示出一条捕捉抗体检测线7,但在此可以有多条这样的检测线,每一条检测线对应于一种待检测分析物。
捕捉区通道6可任选地含有制品15,该制品能与待测流体中通常出现的任何物质反应,产生表示流体通过捕捉区的可见控制产物。控制反应的使用是任选的,但这是优选的。
该申请在上述装置的基础上提供了进一步改进。如图32-34中的例子所示,本发明的装置具有标本输送通道18,该通道在装置的顶表面上延伸,并由图34A中示出的罩壳75覆盖。该装置部件非限制性的例子将在下面作进一步详细描述。将标本输送通道设置于装置顶表面的优点有几个方面。首先,该装置的操作者可以观察到标本输送通道的充满过程,并且,如果标本输送通道的容积等于实施化验所必需的标本量,当操作者看到通道已被完全充满时就终止标本的施加。第二,只要顶层顶表面上的标本输送通道不会干扰薄膜或位于顶层和底层之间的其它装置部件或结果的观察与读取,就可将标本输送通道设置在装置顶表面上的任何适当位置,包括在装置罩住薄膜的部分上面设置标本输送通道。这就能够提供更小的装置,其大小仅限于薄膜大小。薄膜尺寸的减小和简化处理或包括标本输送通道在内的部件的任何延长部分的消除都提供了一个较小的装置,该装置具有很小的薄膜、,降低了制造、包装和运输成本,并提供了一个用户界面友好并有利于环保的装置。
对于标本输送通道,一个便利的设置是这样的,装置的标本施加孔位于装置向端点逐渐尖细的位置,例如图32中所示。通过将标本施加开口60留在血滴中,其中标本一般是30到50μl,通过毛细作用吸入标本并充满标本输送通道,此后标本导入标本环流通道,然后到薄膜上,这就为由指尖针刺获得的全血充满装置提供了一个方便的方式。
此外,标本输送通道预装有干燥的化验试剂以实施所述的免疫反应,这些化验试剂例如对应于分析物的金结合抗体和对应于分析物的生物素化的抗体。预装入步骤包括含试剂的溶液的施加,然后该加入的试剂在标本输送通道内干燥,或将颗粒设置在通道限定的空腔或凹穴内,例如,含化验试剂的冻干小球。当与标本接触时,干燥的试剂溶解在标本中,并由标本携带着沿流体路径移动。
本发明装置的另一个特征是位于环流通道19接合处附近的位置92上的标本输送通道18一部分在截面上缩小,这样就有标本进入具有较小容积的标本输送通道18部分的毛细运动。该结构的独特优点是,可将标本输送通道18设计成能容纳实施分析所需的精确体积的标本。当标本输送通道充满了标本,并且标本接触到截面缩小的通道部分时,毛细作用使标本移动到进一步缩小的截面部分,由此标本从标本输送通道传递到标本环流通道,并开始血浆与红细胞的层析分离和免疫测定过程。
图32-34详细表示本发明的装置实例中的部件。许多替换结构是可能的,并包含在此处本发明的范围之内。熟练的技术人员容易理解可能的其它结构,特别是,如图35A所示,通过将标本输送通道设置到薄膜部分的上方能进一步缩小装置尺寸,下面将作详细描述。图32A表示装置顶层16的顶视图,将该顶层设计成能在它和图33所示的底层28之间固定微孔载体1(薄膜1)。顶层16包括视窗41,该视窗用于使操作者能观察捕捉区7以及薄膜1上的任选化验终止指示区15。在另一个实施例中设置视窗43,它用于观察指示化验完成的流体路径的终点。从下面的图32D中看到,顶层16还包括标本输送通道18和标本环流通道19的一部分,后者具有与此前所述(例如图5)标本环流通道的相同特征。图32B表示顶层的正视图,图32C表示顶层的侧视图。
图32E表示本发明组合装置的实例的组合剖视图,它示出了顶层16、底层28、标本输送通道罩壳75。该图还示出了流体路径标本施加端口60,标本输送通道18,使标本输送通道18和标本环流通道连通的收缩接合处92,薄膜1,观察捕捉区的视窗41和化验终止指示视窗43。
在装置的顶层上,装置用于观察捕捉区和任选的化验终止指示区的视窗可以是开口的,或顶层可由透明材料制成,通过印刷或表面处理使材料不透明,以遮蔽不愿被观察的部分。在一个实施例中,化验终止指示区15含有能与待测流体中通常出现的任何物质发生反应的制品,以便产生通过视窗43可观察的可见控制产物。在另一个实施例中,例如染料的制品附着在区域15的薄膜1上,这从视窗43观察不到。染料在流体中溶解,并被携带(carved)到流体路径的末端12,在此通过视窗43它是可见的。
顶层16具有一个施加标本的开口60。在装置运行过程中,标本输送通道18充满了标本。当标本到达较窄尺寸92的标本输送通道部分,毛细作用驱使标本向着标本环流通道19和薄膜1上流动。如果标本输送通道罩壳75透明,就能使操作者观察到标本输送通道的充满过程,指示标本输送通道完全充满的时刻。
标本从标本输送通道导入标本环流通道,然后到薄膜上。如上所述,将标本环流通道构造成能使标本通过并使其流到薄膜上。标本环流通道侧壁21和22的结构以及通过例如印制一种特定的墨水而在薄膜上限定的流体路径将标本留在流体路径内。
如上所述,该装置适于利用免疫测定方法或包括酶基分析的其它方法进行一种或多种分析物的检测。此处通过非限制性的例子讨论涉及了免疫测定方法。如上面所讨论的,当标本向捕捉通道移动时,它拾取标记检测抗体,在此期间,标本中的分析物与检测抗体形成抗体-抗原复合物。随着血浆前缘从红细胞前缘的分离,以及血浆前缘位于红细胞前缘的前方,标本到达捕捉区,在此,结合了标记抗体的分析物与捕捉抗体配合形成双抗体夹心。捕捉区标记抗体的积聚表示标本中存在分析物。当化验完结时,例如,当化验终止指示视窗表示化验完成时,操作者通过视窗观察捕捉区的颜色。如上所述,也可将标记检测抗体以及其它试剂设置在标本输送通道内。
如上所述,标本输送通道18与标本环流通道19有效连通。为与图31的半圆形检测区3的边缘11相符,将标本环流通道19表示为弧形结构。标本环流通道19在两个末端20处可以是开口或封闭的。标本环流通道由内壁21和外壁22构成,并由毛细圈闭23环绕,该毛细圈闭用于保证标本从边缘11上的所有位点流入图31的检测区3,然后从捕捉通道的入口端6a进入捕捉通道6。
图33示出了本发明底层28的实例的详细内容。底层在适当位置固定薄膜1,并具有所示的调整翼片66和68,该调整翼片与顶层16的凹口相对应,以便有助于将两层装配到一起,同时将薄膜固定到合适位置。图4B示出了从具有调整翼片68的端部看去的底层28的正视图,图33C表示侧视图。
图34A和34B分别示出了从顶视图和正视图看去的标本输送通道罩壳。凹口端62表示标本施加区域,当该凹口端与顶层16的末端对准时就形成开口60。罩壳的尖端表示标本输送通道18部分的形状,该标本输送通道收缩成与标本环流通道连通的毛细通道92。通过将罩壳75沿标本输送通道滑入顶层16,并将罩壳75侧面的角形延长部分64滑入沿顶层标本输送通道内壁的对应纵向槽69内,将罩壳75连接到顶层16上。可以利用其它方式将罩壳装配到顶层,包括粘结、焊接等等。
图35-36表示本发明其它实施例的例子。特别是,标本输送通道18的其它位置。它们提供了两个实施例的顶视图、仰视图和纵向剖视图;图A表示顶层16的顶表面,图C表示顶层16的底表面,图B表示顶层16的纵向剖视图,图D表示底层28。在图35中,标本输送通道位于装置含薄膜部分的上方,这样使装置具有缩小的体积。标本施加孔60位于装置侧面。图36表示具有延长部分的装置,该延长部分从装置薄膜固定部分延长,这提供了具有位于装置末端的标本施加孔60的较长的装置。
图38(对应于此前的图11)表示本发明薄膜1的结构,其中利用生物素/链霉亲和素反应诊断全血,以检测三种分析物的存在。该设计用于确定一个小样本中几种分析物的存在,这此分析物例如肌红蛋白、肌钙蛋白I或T和CK-MB。该薄膜1形成有三条不同路径,每一条路径对应于由3个分离的检测区3a、3b和3c的边缘11a、11b和11c导入的一种分析物。通过阻塞块24将检测区分离。形成整个有效区,以便提供三个检测区3a、3b和3c,该三个检测区在其边缘11a、11b和11c处与装置顶层16底表面的标本环流通道19有效连通。检测区3a、3b和3c与对应捕捉区通道的相应入口端6a、6b和6c有效连通。
检测区3a含有两种标记抗体,例如对应于CK-MB的生物素标记抗体和对应于CK-MB的金标记抗体。
通常,在图37中,黑圈表示金标记抗体,而空圈表示生物素标记抗体。为了防止图混乱,就不给出这些检测抗体的附图标记。
在图37装置的运行过程中作为血浆从红细胞分离的例子,三个检测区3a、3b和3c中每一个检测区的红细胞前缘分别表示为13a、13b和13c,相应血浆前缘的位置分别表示为14a、14b和14c。
如果标本中存在CK-MB,它们形成的复合物将从入口6a进入捕捉区,最终与链霉亲和素检测线7a上的链霉亲和素反应,生成可见产物。
在图中所示的分离路径中也发生与其它分析物(例如肌钙蛋白I或肌钙蛋白T)和与肌红蛋白的类似反应。
使用传统抗体抗原反应可类似地检测相同或其它分析物。除了上述例子中描述的夹心型免疫测定外,也可以采用包括竞争性分析的其它免疫测定形式。通过利用不同数量的不同分析部件,能进行定量或半定量分析。此外,该装置还可进行免疫测定以外的分析。例如,在适当的共同因素和发色底物作用下,分析物与酶或一系列酶的相互作用导致标本中颜色的产生,该颜色代表标本中分析物的存在。该颜色可通过视窗41观察。
然而,如前所述,将本发明的诊断装置设计成能检测不止一种分析物是优选的,可以将它们设计成具有一条捕捉通道和多条捕捉检测线,每条检测线对应于一种分析物,或具有多条捕捉通道,每条通道具有一条捕捉检测线。然而,该后者的设计由于要增加标本体积以保证在所有通道内都发生反应,所以它不是优选的。这消除了本发明的主要方面,即使用最少量的标本就可能得到有用的结果。
仅能在某种程度上而不能完全缓解问题的折衷是将通道作的尽可能小,并将它们设计成相互间尽可能地接近。然而,因为很难将一个通道中的捕捉检测线从另一个通道中的捕捉检测线中区别出来,因此通道的接近度增加了有把握地读取结果的难度。
可将本发明的装置设计成具有多个通道,它具有不止一个通道,包括化验通道和/或一个负控制通道和正控制通道。多个通道每个具有不止一条捕捉检测线。该设计对于熟练技术人员是容易明白的。
一个通道,通常是中间的通道仅含有与所怀疑分析物相对应的固定抗体。正控制通道在通道入口处含有可移动标记抗体以及在通道深处含有固定抗体。负控制通道含有固定抗体,但仅限制于入口处,以阻止化验中的标本进入通道。将负化验通道设计成穿过支持层的进入孔,用以加入不含分析物的物质,例如缓冲液,它将向捕捉抗体移动。
本发明的产品和方法除具有上面详细描述的化验心脏分析物的价值外,它还可以用到其它的医疗操作中,例如妊娠或排卵化验。该装置和方法对化验由特定病毒引起的感染特别有用。对于这种用途,将它们设计成竞争性和夹心分析。它们可用于化验抗原、抗体、体表抗原以及病毒粒子,例如AIDS病毒的gp120。
此外,该产品可用于化验包括乱用药物的药品。
在本发明的实验中所采用的多种诊断方法进行的反应对于本领域熟练技术人员通常是非常公知的。大多数方法是以较新和有用形式实施的ELISA化验。本发明的优点是在提供更新和有用的形式,通过该形式使反应在小而又可手提的仪器中快速而有效地进行,并使用少量的化验液体,同时使操纵者对结果有更大的把握。
本发明的装置可利用熟练技术人员所能得到的任何种类的标记物。金属和酶标记物是优选的。金属标记物由于其显著的灵敏性是特别优选的。在金属中,金是最优选的,主要是因为金已广泛用到该类型的反应中,以及它的性质已被很好地了解。另外,根据已知方法,通过使用可溶的银盐和还原剂能增强金的信号,以使其变得容易可见。金标记物作为催化剂,它将银盐还原成金属银,该金属银沉淀为可见的产物。典型的反应对是银的乳酸盐和对苯二酚,银的乳酸盐作为可还原银离子源,对苯二酚作为还原剂。金属银围绕每个金颗粒形成容易辨别的黑色沉淀。
尽管可以根据已被广泛了解的因素(例如分析物浓度和反应物的亲合力)容许可估计的变化,但本发明中使用的金标记抗体的优选粒径大约从35到65nm。
如果采用例如为辣根过氧化物酶的酶标记物,可依据标准过程(程序)通过加入过氧化氢和例如为邻苯二胺的染料检测反应。
在检测区内有一个预处理区,尽管这不是本发明的必要特征。采用预处理区来除去血液中存在的干扰预定反应或使预定反应难以检测的物质。例如,如果将该装置用于检测心脏分析物,典型的干扰物质是肌酸激酶和CK-MM的异构体。与异构体CK-MB对应的抗体将与CK-MM发生交叉反应,从而给出错误的读数。可通过这样作来避免上述问题在预处理区(该预处理区位于与CK-MB对应的可移动抗体的上游)内设置足够的对应于CK-MM的固定抗体,由此所有CK-MM在流动标本到达检测抗体前被除去。
采用图37的薄膜的装置使用一种或多种标记检测抗体和位于固定捕捉抗体检测线的捕捉抗体。当采用若干种标记检测物时,必需注意避免交叉反应的干扰。将抗体放置在不止一个的检测区,并使其与它们的特异性分析物反应通常是最好的。
本发明的装置也准备采用生物素/抗生物素蛋白反应,同时利用那些上面所述的变化。在目前提供给装置的优选变化中,将生物素标记抗体和金标记抗体可移动地设置在检测区3中,在该检测区,每个标记抗体与分析物上的不同抗原决定簇反应,生成由生物素标记抗体/分析物/金标记抗体组成的三元复合物,该复合物由于毛细作用而移入并穿过捕捉通道区6,在该捕捉通道区复合物与抗生物素蛋白或链霉亲和素反应,并被富集起来,形成可测反应产物。
当然,本发明中所采用的抗体既可以是单克隆的,也可以是多克隆的。类似地,也可采用生物素/抗生物素蛋白反应的等效反应。在此提及的所有试剂可由等效物替代,在此仅是说明性的而不是本发明的限制。
熟练的技术人员可以认识到,任何将红细胞和血浆从全血中层析地分离出来的微孔基底在本发明中都可使用。然而,由于硝化纤维素能以适当成本得到,因此它是优选的。在层析分析以及相关领域使用硝化纤维素已有多年,所以科学家和技术人员都熟悉它的性质。商业可得的硝化纤维素片材能容易形成具有任何选定通道结构的任何选定形式。
可将本发明的硝化纤维素薄膜表征为海绵状的,它具有许多内部相连的微孔,微孔的大小和尺寸能在薄膜内引起毛细力。这使观察中的生物液体能沿着选定路径移动。
为了本发明实验中的血浆从红细胞的分离,各部件的区域、几何形状和尺寸是这样选定的,当液体标本沿着预先设计的路径移动时,在预定区域内发生预期反应。对于全血心脏诊断,根据红细胞液流和血浆液流的前缘、预期反应的动力、抗体对其相应抗原决定簇的亲合力、以及为熟练技术人员所公知或通过传统化验方法容易确定的其它因素来选定这些区域。
尽管图37表示为了检测3种分析物而使微孔薄膜具有3条流体路径的结构,但也可设置具有3个捕捉区的一条流体路径,如上所述,这是优选的。
本发明的一个优点是,不管打算测量一种、两种或三种分析物,装置都具有相同的尺寸。当然,在每种情况下,将有差别地设计微孔载体层1。然而,顶层16无需为适应差别设计的载体层1而发生任何变化。
将看到所描述的是一种装置和方法,它们能进行液体标本的成分检测,例如,利用竞争性或夹心分析中的酶或直接标记物并通过抗原/抗体反应检测全血、血清或血浆中的心脏分析物。在本发明的装置中,反应物沿着在支持部件和薄膜的不同平面内相继连通的通道形成的路径移动。
虽然前面的描述已经描述了在检测区3可移动地附着了一种或更多抗体,但检测抗体已及其它试剂的替换位置也包含在本发明中。例如,以冻干小球形式提供检测抗体,例如一个较大的小球或多个较小的小球,将它们设置在薄膜上游的流体路径内,这样小球溶解在流体中。
可将小球设置在标本输送通道、标本环流通道内或二者的接合处;在标本输送通道内或在标本输送通道18与标本环流通道19的接合处设置一个小空腔,用以固定物质。在另一个实施例中,抗体以冻干形式附着在通道内。还可以设置其它试剂,例如上面所述的用于除去干扰物质的试剂。另外,在为进行不止一个的分析而在薄膜上设置不止一条流体路径的装置中,分析所共用的试剂设置在薄膜前方的流体路径内,而对应于每个分析的特异性试剂则设置在如上所述的特定薄膜检测区内。这些多样结构也包含在本发明的范围之内。
当能得到各种网眼尺寸的多种硝化纤维素材料时,目前优选的微孔载体是那些能阻止大于3到12μm的颗粒通过的材料,如果将它用作过滤器,它就从垂直流动到薄膜水平表面的液流中过滤颗粒。在本发明的实验中,具有大约5到12μm、最好为3到8μm孔径的薄膜是优选的。一些变化是可能的。然而,随着孔径减小,薄膜内流体的流动性降低,因此增加了诊断所需的时间。如果孔太大,流体通过时间减少,结果使反应物没有足够的时间相互接触发生诊断反应,或发展到不能提供预期信息的极限程度。
具有聚酯支持膜或其它膜的硝化纤维素薄膜是商业可得的。由于无支持的薄膜在大规模生产环境中倾向于非常易碎、容易受到破坏和难于处理,所以这些硝化纤维素薄膜对于本发明中的使用是优选的。此外,该薄膜对于流动的流体是不可渗透的,因此它们不会干扰液体标本穿过本发明装置的选定路径。这种具有多种孔径的薄膜可从德国Gerbershausen的Gerbermenbrane获得。
可通过标准技术准备本发明中使用的抗体。例如参见1977年4月出版的由Falfre,Howe,Milstein等人发表的Nature Vol.266,7,550-552。在此将通过引用结合该论文在单克隆抗体制备方面的有关公开。
将抗体固定到例如硝化纤维素基底的方法是公知的,且其在本发明装置的生产中是适用的。硝化纤维素对于蛋白质是渴望的粘合剂。因此,仅需将固定的捕捉抗体施加到捕捉区的预定区域。通过使用另一种例如牛血清清蛋白的蛋白质首先使检测区饱和,将标记检测抗体可移动地添加到薄膜上。检测抗体的可替换位置在前面已经描述了。如图38A-38B所述,在标本输送通道和标本环流通道间的接合处设置空腔100,该空腔用以容纳小球或例如冻干标记检测抗体的其它形式的试剂,当待测流体通过装置的该区域时,这些小球或试剂就溶解在流体中。图38A还示出了化验终止指示视窗43和含试剂的对应试纸,该试纸位于该视窗上游的薄膜上。流体溶解该试剂,并携带该试剂进入视窗43的视野以表示化验结束。
在图39所示的另一个实施例中,位于位置100的检测抗体出现在标本输送通道内。图40A-40B和图41A-41B表示装置设计中的其它变化,它含有容纳干燥或小球形式试剂的空腔,特别是凹状槽。如上所述,在流体路径中设置的试剂包括标记检测抗体以及其它执行化验所需的试剂,这些其它试剂包括除去标本中存在的干扰物质所需的试剂。根据需要,既可在薄膜上又可在流体路径中设置试剂。各种组合都能被熟练的技术人员所理解,以便提供对于选定分析物的可操作分析。当分析中所使用的标本是全血并期望进行红细胞从血浆的分离时,装置中设置的试剂必需不会引起标本中红细胞的溶胞,以便进行分离。
可通过本领域公知的方法容易地制造本发明的装置。
如上所述,使用本发明的装置以及它所公开的修改可以执行其它分析操作。这既包括定性又包括定量分析,既包括免疫测定形式又包括非免疫测定形式。酶基反应,例如全血中葡萄糖的定量分析,它利用葡萄糖氧化酶和过氧化物酶,使用适当的反应物和发色底物产生与标本中葡萄糖水平呈比例关系的颜色,可将该反应设计成利用本发明的装置进行操作。熟练技术人员能意识到其它分析形式对于本装置的适应性。
下面仅通过说明的方式给出非限制性的例子。
例1全血CK-MB化验1A)在一个聚酯支持的硝化纤维素薄膜上(来自德国Gerbershausen的Gerbermenbrane GmbH),用Paint Marker 751黄(来自德国Ahrensburg的Edding AG)画出如图4所示的轮廓(contour)。用13mg/ml的链霉亲和素水溶液(聚链霉亲和素(Streptavidin,poly,),来自德国Benried的Micrsoft GmbH)制备捕捉检测线。用80μl浓度为4%(重量/体积)的蔗糖(来自德国Steinheim的Sigma-Aldrich GmbH)溶液、10μl水和10μl浓度为1mg/ml的重组CK-MB(来自加拿大Toronto的Spectral Diagnostics)溶液制备控制检测线。待干燥后,用含最终浓度为0.06%(重量/重量)的辛基-β-D葡萄糖-吡喃糖苷(Octyl-beta-D-Gluco-Pyranoside)(来自德国Steinheim的Sigma-AldrichGmbH)、1∶30稀释度的Kasein-Bindemittel(来自德国Erkrath的H.Schmineke&Co..)以及30mM最终pH值为6.2的1,4-呱嗪二乙烷磺酸(来自德国Steinheim的Sigma-Aldrich GmbH)的阻塞(blocking)溶液浸渍薄膜。待干燥后,加入2.7μl的金结合溶液和2μl生物素化(biotinylated)的抗体溶液,将薄膜再次干燥。再加入该金结合溶液和2μl生物素化的抗体溶液,再将薄膜干燥。用填充(loaded with)了浓度为22μg/ml的抗体5CKMB-6的40nm的金溶胶制备轭合金(gold-conjugate)溶液,该金结合溶液是在OD值为10(520nm)的条件下由英国Cardiff的British Biocell International制备的,其中抗体5CKMB-6来自Toronto Spectral Diagnostics。将45μl水和10μl的2.5%(重量/体积)Crotein C(来自英国Croda Chemical Ltd.)的水溶液加到45μl的该金结合(OD10)溶液中,并将其混合。用来自Toronto Spectral Diagnostics的抗体lrCKMB-28制备生物素化的抗体溶液,如上所述,将20μl的6%(重量/体积)Crotein C水溶液和3μl浓度为2mg/ml的生物素化的抗体溶液的储液加到57μl水中,并将其混合。
B)为比较,向在1A)中那样准备化验,但在此没有生物素化的抗体溶液,并用浓度为13mg/ml的抗体lrCKMB-28(来自Toronto的Spectral Diagnostics)制备抗体捕捉检测线,以此代替链霉亲和素捕捉检测线。
用指示浓度的rCKMB增敏肝素化的全血,取28μl用于化验。其结果(在6-7分钟内)如下rCKMB 链霉亲和素 抗体ng/ml 捕捉 捕捉0 - -5 + n.d.20 ++ n.d.80 +++ +- =没有可见信号线++++ =强信号线n.d. =未检测到所有控制线为正。
例2半圆形与矩形CK-MB化验的比较为说明通用性的概念,将标本进入半圆形区域(圆形部分)(图4和图5)和标本进入矩形区域(即图9和图10的侧边3)作比较。在两种情况下,化验区(轮廓线(contour)区域)相同。除了轮廓形状和血液进入方向外,其它所有步骤与例1)中相同。rCKMB 圆形部分 矩形ng/ml 信号 化验时间信号 化验时间0 - 6.5分钟 -7.5分钟20 ++7.0分钟 ++ 7.5分钟例3半圆形区-3种分析物-一个检测区预备如例1B)中的化验,但除了具有CKMB抗体捕捉检测线外,还有TNI抗体捕捉检测线和肌红蛋白抗体捕捉检测线。
TNI捕捉13mg/ml的多克隆山羊TNICKMB捕捉13mg/ml的lrCKMB-28肌红蛋白捕捉13mg/ml的多克隆家兔肌红蛋白所有抗体来自Toronto的Spectral Diagnostics。
对应于3种分析物的轭合金是来自英国Cardiff的British BiocellIntern..TNI-金-a填充了8μg/ml的81-7抗体(OD10)的40nm的金溶胶TNI-金-b填充了16μg/ml的21-14抗体(OD10)的40nm的金溶胶肌红蛋白-金填充了90μg/ml的2Mb-295抗体(OD10)的15nm的金溶胶CK-MB金填充了22μg/ml的5CKMB-6(OD10)的40nm的金溶胶所有抗体来自Toronto的Spectral Diagnostics。
TNI金结合溶液包括15μl的OD为33的TNI-金-a,30μl的OD为33的TNI-金-b,45μl水和10μl的浓度为2.5%(重量/体积)的Crotein C水溶液。取2.7μl该溶液加到化验区。
CKMB/肌红蛋白金结合溶液包括48μl的OD为33的CKMB-金,25μl的OD为6的肌钙蛋白-金,17μl水和10μl的浓度为2.5%(重量/体积)的Crotein C水溶液。取2μl该溶液加到化验区。
用指示浓度的rCKMB、TNI和肌红蛋白增敏肝素化的全血,取28μl用于化验。其结果如下信号TNI-捕捉 CKMB-捕捉 肌红蛋白-捕捉0ng/ml TNI-0ng/ml CKMB-0ng/ml肌红蛋白痕量2ng/ml TNI +20ng/ml CKMB+200 ng/ml肌红蛋白 ++痕量甚至来自健康人体的未增敏血液也含有痕量肌红蛋白。
例4半圆形区域-3种分析物-3个检测区为检测不止一种具有高灵敏性的分析物,采用图11中的形状。象例1A)(相同的成形方法)中那样用链霉亲和素(13mg/ml)制备捕捉检测线。在该例子中,用Paint Marker 780白(来自德国Ahrensburg的EddingAG)划出轮廓。
所有金结合溶胶(gold sol-conjugates)是由英国Cardiff的BritishBiocell Interntional制备的.所有抗体来自 Toronto的SpectralDiagnostics。
TNI-金结合溶液由以下溶液混合得到18μl的OD为55的轭合金A(在OD为10时,充填了浓度为18μl/ml的抗体81-7的50nm的金溶胶),36μl的OD为55的轭合金B(在OD为10时,充填了浓度为10μl/ml的抗体21-14的60nm的金溶胶),36μl水和10μl浓度为2.5%(重量/体积)的Crotein C水溶液。取1.8μl该溶液加到化验区。
生物素化的TNI-抗体它由以下溶液混合得到67μl水,25μl浓度为6%(重量/体积)的Crotein C水溶液,3.5μl浓度为1mg/ml的生物素化地山羊TNI抗体储备溶液,以及5μl浓度为27.6mg/ml的Chrom Pure Goat IgG(来自Jackson ImmunoResearch Laboratories Inc.)溶液。取2.1μl该溶液加到化验区。
CKMB-金结合溶液除了储备溶液的OD值为33和使用1.1μl混合液外,其它与例1A)中相同。
生物素化的CKMB-抗体溶液除使用1.4μl外,其它与例1A)中相同。
肌红蛋白-金结合溶液由以下溶液混合得到17μl的OD值为6(在OD为10时,充填了浓度为90μl/ml的抗体2Mb-295的15nm的金溶胶)的金结合溶液,73μl水和10μl浓度为2.5%(重量/体积)的Crotein C水溶液。取0.8μl的该溶液用到化验。
生物素化的肌红蛋白溶液由以下溶液混合得到45μl水,25μl浓度为6%(重量/体积)的Crotein C水溶液,和30μl浓度为1mg/ml的生物素化的家兔抗体肌红蛋白储备溶液。取0.5μl该溶液用于化验。
用指示浓度的rCKMB、TNI和肌红蛋白增敏肝素化的全血,取70μl用于化验。其结果(在7到12分钟内)如下信号TNI CKMB 肌红蛋白0ng/ml TNI-0ng/ml CKMB-0ng/ml肌红蛋白 -2ng/ml TNI++20ng/ml CKMB ++200ng/ml肌红蛋白 ++10ng/ml TNI++++100ng/ml CKMB ++++700ng/ml肌红蛋白 ++++可以理解的是,本发明不限于在此所描述或示出的说明,应认为这仅是执行本发明最好模式的说明,对其进行形式、尺寸、部件设置和操作细节的修改是容许的,但这不会脱离本发明的精神和范围。相反地,本发明能包含所有这样的修改,且这些修改都在权利要求的精神和范围之内。
权利要求
1.一种测定流体标本中至少一种分析物存在的分析化验装置,所述装置包括干燥微孔载体;覆盖所述载体区域至少一部分的至少一个检测区,它能使标本从多个不同方向进入到所述检测区;具有入口端的至少一个捕捉区通道,它与所述检测区有效连通,以便使标本从检测区流动到捕捉区通道,允许标本进入检测区的所有位点到所述入口端的距离基本相等。
2.根据权利要求1所述的装置含有分析物测定反应所需的试剂。
3.一种测定流体标本中至少一种分析物存在的分析化验装置,所述装置包括一个干燥微孔载体,通过它标本由于毛细作用而流动;标本输送装置,通过它标本被施加到装置中,并在其中流动;标本环流通道,它在终端封闭,并外接于载体的一个区域。至少覆盖载体所述区域一部分的至少一个检测区,其中标本环流通道的至少一部分与检测区边缘相符,并与所述检测区有效连通,使标本同时从多个方向通过检测区边缘而进入检测区,并形成从所述边缘流出的液流,检测区至少含有一种对应于至少一种分析物的可移动标记特异性结合试剂,其所述的至少一种结合试剂能够与所述至少一种分析物反应,生成至少一种标记复合物,该复合物能随着所述液流移动;至少一个具有入口端和封闭终端的捕捉区通道,入口端与检测区有效连通,以便使所述液流从检测区流入捕捉区通道,所述边缘的所有位点与所述入口端之间的距离基本上相等,捕捉区通道至少含有一种固定特异性结合试剂,其至少一种结合试剂能与至少一种标记复合物反应,并将其富集起来,形成至少一种可测反应产物。
4.根据权利要求1或3所述的装置,其特征在于所述分析物是选自肌钙蛋白I、肌钙蛋白T、肌红蛋白、CK-MB和它们的混合物。
5.根据权利要求1或3所述的装置,其特征在于所述反应物是选自HCG、LH以及它们的混合物。
6.根据权利要求1或3所述的装置,其特征在于所述流体标本是选自全血、血浆、血清和尿。
7.根据权利要求1或3所述的装置,其特征在于所述干燥微孔载体是硝化纤维素。
8.根据权利要求1或3所述的装置,它包括设置在载体所述区域的两个或更多检测区,并具有相等数目的捕捉区通道,每个捕捉区通道与相应检测区有效连通。
9.根据权利要求3所述的装置,其特征在于所述标本环流通道是弧形的,所述区域是半圆形的。
10.根据权利要求1或3所述的装置,其特征在于所述区域是多克隆的或形成部分多克隆。
11.一种分析化验装置,它适于测定低量液体生物标本中含有的至少一种抗原的存在,它使标本快速有效的流过至少一个限定路径,并在该路径中发生抗原的测定反应,所述装置包括一个顶层,在其顶表面形成有添加标本的通孔,该通孔与顶层底表面上形成的标本输送通道配准,标本输送通道与末端封闭的标本环流通道有效连通,该标本环流通道形成有内壁和外壁,用于限定标本的路径,环流通道的内壁在顶层底表面限定一个凹槽;一个连接在顶层的支持层;夹在顶层和底层之间的干燥微孔载体,通过它标本由于毛细作用而流动,微孔载体层成形为包含至少一个检测区,该检测区具有与标本环流通道的一部分有效连通的边缘和与捕捉区通道有效连通的第二对侧端,捕捉区通道具有入口端和封闭终端,由此提供了一个管道,通过该管道,标本由于毛细作用而从标本环流通道流到捕捉区通道的终端;标本输送通道、环流通道、检测区和捕捉区通道构成一个限定路径,通过该路径,液体标本从通孔流到捕捉通道的终端;检测区内至少有一个可移动标记试剂,该试剂与抗原发生特异性反应,形成标记复合物,该复合物由于毛细作用而进入捕捉区通道;捕捉区通道具有固定试剂,该固定试剂与标记复合物反应,并将其富集,以形成可测反应产物。
12.根据权利要求11的装置,其特征在于所述标本环流通道是弧形的。
13.根据权利要求11的装置,其特征在于所述液体生物标本选自全血、血浆、血清和尿。
14.根据权利要求11所述的装置,其特征在于所述分析物是选自肌钙蛋白I、肌钙蛋白T、肌红蛋白、CK-MB和其混合物。
15.根据权利要求11所述的装置,其特征在于所述抗原是选自HCG、LH及其混合物。
16.根据权利要求11所述的装置,其特征在于所述顶层是透明的,并且可测反应产物是可见的。
17.根据权利要求11所述的装置,其特征在于所述顶层是不透明的,它具有一个观察视窗,通过该视窗,可测反应产物可见。
18.根据权利要求11所述的装置,其特征在于,在检测区中有一个由可移动标记抗体和可移动生物素标记抗体组成的混合物,可移动标记抗体能与分析物上的一个抗原决定簇反应,可移动生物素标记抗体能与分析物上的另一个抗原决定簇反应,并具有固定试剂,它是选自由链霉亲和素和抗生物素蛋白组成的组中。
19.根据权利要求11所述的装置,其特征在于所述标记物是微粒直接标记物。
20.根据权利要求19所述的装置,其特征在于所述标记物是金标记物。
21.根据权利要求11所述的装置,其特征在于所述干燥微孔载体是硝化纤维素。
22.根据权利要求11所述的装置,其特征在于所述至少一种抗原是心脏分析物,所述液体生物标本是全血,干燥微孔载体能使红细胞从血浆中层析地分离,以形成移动到捕捉区通道的血浆前缘,而红细胞前缘位于其上游,标记复合物的主要部分位于红细胞前缘和血浆前缘之间,因此标记复合物充分免除了红细胞干扰,当该复合物遇到固定试剂时就形成可测反应产物。
23.根据权利要求22所述的装置,其特征在于所述检测区中的可移动的试剂是标记抗体,它与分析物上的一个抗原决定簇反应,固定试剂是一种抗体,它将与分析物上的另一个抗原决定簇反应。
24.根据权利要求22所述的装置,其特征在于所述在检测区中有由可移动标记抗体和可移动生物素标记抗体组成的混合物,可移动标记抗体能与分析物上的抗原决定簇反应,可移动的生物素标记抗体能与分析物上的另一个抗原决定簇反应,并且固定试剂是抗生物素蛋白。
25.根据权利要求22所述的装置,它包括用于测定肌钙蛋白I或肌钙蛋白T存在的试剂。
26.根据权利要求22所述的装置,它包括两条路径,一条路径含有用于测定肌红蛋白存在的试剂,另一条路径含有用于测定CK-MB存在的试剂。
27.根据权利要求22所述的装置,它包括三条路径,第一路径含有用于测定肌钙蛋白I或肌钙蛋白T存在的试剂,第二路径含有用于测定肌红蛋白存在的试剂,第三路径含有用于测定CK-MB存在的试剂。
28.根据权利要求22所述的装置,其特征在于所述第一路径仅含有用于测定肌钙蛋白I存在的试剂。
29.根据权利要求22所述的装置,其特征在于所述仅有一条路径,该路径含有用于测定肌红蛋白和CK-MB存在的试剂。
30.根据权利要求22所述的装置,其特征在于所述仅有一条路径,该路径含有用于测定肌钙蛋白I或肌钙蛋白T存在的试剂以及连同用于测定肌红蛋白和CK-MB存在的试剂。
31.一种测定流体标本中至少一种分析物存在的方法,它包括的顺次步骤是ⅰ)提供一个干燥微孔载体,标本能由于毛细作用而流动通过该载体。ⅱ)设置至少一个检测区,该检测区覆盖了所述载体一个区域的至少一部分,因此所述标本能从多个不同方向进入所述检测区,所述检测区至少含有一种对应于所述至少一种分析物的可移动标记结合试剂,该结合试剂能够与所述分析物反应,形成标记复合物;ⅲ)设置至少一个捕捉区通道,该通道具有与检测区有效连通的入口端,以便使标本从检测区流到捕捉区通道,所述标本进入所述检测区的位点与所述入口端之间的距离基本上相等,所述捕捉区通道含有固定的特异性结合试剂,该结合试剂能与所述标记复合物反应,并将其富集,以形成可测反应产物;ⅳ)将一定量的所述流体标本加到所述检测区;ⅴ)经过足够长的时间,使流体标本以所述多个不同方向从检测区流到捕捉区通道,其中的任何所述分析物在所述捕捉区形成可测反应产物。
32.根据权利要求31所述的方法,其特征在于所述至少一种分析物是心脏分析物。
33.根据权利要求32所述的方法,其特征在于设置了三条路径,用于确定肌钙蛋白I或肌钙蛋白T的存在,并连同确定肌红蛋白和CK-MB的存在。
34.根据权利要求33所述的方法,其特征在于只设置了一条路径,用于确定肌钙蛋白I或肌钙蛋白T的存在,并连同确定肌红蛋白和CK-MB的存在。
35.一种分析化验装置,它适于测定低量液体生物标本中含有的至少一种分析物的存在,并使标本快速有效的流过至少一条限定路径,并在该路径中发生分析物的测定反应,所述装置包括一个顶层,在其顶表面形成有添加标本的通孔,该通孔与顶层底表面上形成的标本输送通道配准,所述标本输送通道具有由所述顶层的所述底表面和底层的顶表面限定的侧壁,所述标本输送通道与末端封闭的标本环流通道有效连通,该标本环流通道形成有内壁和外壁,用于限定标本路径,环流通道的内壁在顶层底表面限定一个凹槽;一个与顶层相接的底层,所述干燥微孔载体位于二者之间,并与所述标本环流通道的所述壁接触,由此形成了一个流体通道;所述干燥微孔载体层的所述流体通道成形为包含至少一个检测区,该检测区具有与标本环流通道有效连通的边缘和与捕捉区通道有效连通的第二对侧端,捕捉区通道具有入口端和封闭终端,由此标本能以多个不同方向从所述环流通道进入所述检测区,以及由此提供了一个管道,通过该管道,流体标本由于毛细作用而从标本环流通道流到捕捉区通道的终端,允许标本进入检测区的所有位点与所述入口端之间的距离基本上相等;标本输送通道、环流通道、检测区和捕捉区通道构成一个限定路径,通过该路径,液体标本从通孔流到捕捉通道的终端;捕捉区通道有固定的试剂,该试剂与所述分析物反应,形成可测反应产物。
36.根据权利要求35的装置,其特征在于所述标本环流通道是弧形的。
37.根据权利要求35的装置,其特征在于所述液体生物标本选自全血、血浆、血清和尿。
38.根据权利要求35所述的装置,其特征在于所述分析物是选自肌红蛋白、CK-MB,肌钙蛋白I或者肌钙蛋白T以及它们的混合物。
39.根据权利要求35所述的装置,其特征在于所述分析物是选自HCG、LH以及它们的混合物。
40.根据权利要求35所述的装置,其特征在于所述顶层是透明的,并且可测反应产物是可见的。
41.根据权利要求35所述的装置,其特征在于顶层是不透明的,它具有一个观察视窗或透明体,通过该视窗或透明体可测反应产物可见。
42.根据权利要求35所述的装置,其特征在于设置了一种可移动标记试剂,所述试剂是标记抗体,它将与分析物上的一个抗原决定簇反应,固定试剂是一种抗体,它将与分析物上的另一个抗原决定簇反应。
43.根据权利要求42所述的装置,它含有一个由可移动标记抗体和可移动生物素标记抗体组成的混合物,可移动标记抗体能与分析物上的一个抗原决定簇反应,可移动生物素标记抗体能与分析物上的另一个抗原决定簇反应,并且固定试剂是抗生物素蛋白。
44.根据权利要求43所述的装置,其特征在于所述固定试剂是选自由链霉亲和素和抗生物素蛋白组成的组中。
45.根据权利要求35所述的装置,其特征在于所述标记物是微粒直接标记物。
46.根据权利要求35所述的装置,其特征在于所述标记物是金标记物。
47.根据权利要求35所述的装置,其特征在于所述干燥的微孔载体是硝化纤维素。
48.根据权利要求42所述的装置,其特征在于所述可移动试剂设置在检测区内。
49.根据权利要求42所述的装置,其特征在于所述可移动试剂设置在薄膜前方的流体路径内。
50.根据权利要求35所述的装置,它包括两条路径,一条路径含有用于测定肌红蛋白存在的试剂,另一条路径含有用于测定CK-MB存在的试剂。
51.根据权利要求35所述的装置,它包括三条路径,一条路径含有用于测定肌钙蛋白I或肌钙蛋白T存在的试剂,另一条路径含有用于测定肌红蛋白存在的试剂,再一条路径含有用于测定CK-MB存在的试剂。
52.根据权利要求35所述的装置,它含有用于测定肌钙蛋白I存在的试剂。
53.根据权利要求35所述的装置,其特征在于仅有一条路径,该路径含有用于测定肌红蛋白和CK-MB存在的试剂。
54.根据权利要求35所述的装置,其特征在于仅有一条路径,该路径含有用于测定肌钙蛋白I或肌钙蛋白T存在的试剂以及连同用于测定肌红蛋白和CK-MB存在的试剂。
55.根据权利要求35所述的装置,其特征在于在所述标本输送通道和所述标本环流通道之间的接合处设置一个视窗,用于指示已向所述标本输送通道加入了足量标本,并启动所述至少一种分析物的所述测定。
56.根据权利要求35所述的装置,其特征在于所述标本输送通道具有预定容积,该容积与测定所述至少一种分析物所需的标本体积相对应,当标本输送通道充满到所述预定体积时,所述标本输送通道具有将所述预定体积的标本从所述标本输送通道导入所述标本环流通道的装置。
57.根据权利要求56所述的装置,其特征在于所述标本输送通道与所述标本环流通道有效连通的部分包括一个通向所述标本环流通道的狭窄毛细部分,其中当标本输送通道被所述标本充满到与所述狭窄毛细部分相连的端点时,所述标本导入标本环流通道。
58.一种分析化验装置,它适于测定低量液体生物标本中含有的至少一种分析物的存在,并使标本快速有效的流过至少一个限定路径,并在该路径中发生分析物测定反应,所述装置包括一个顶层,在其顶表面形成有添加标本的通孔,所述通孔与顶层底表面上形成的标本输送通道配准,所述标本输送通道与末端封闭的标本环流通道有效连通,该标本环流通道形成有内壁和外壁,用于限定标本路径,环流通道的内壁在顶层底表面限定了一个凹槽;一个与顶层相接的底层,所述顶层和底层固定位于二者之间的干燥微孔载体,所述干燥微孔载体具有一个流体路径;所述干燥微孔载体层的所述流体路径成形为包含至少一个检测区,该检测区具有与标本环流通道的一部分有效连通的边缘和与捕捉区通道有效连通的对侧端,捕捉区通道具有入口端和封闭终端,以及由此提供了一个管道,通过该管道,流体标本由于毛细作用而以多个不同方向从所述环流通道流动到微孔载体上,再到捕捉区通道入口,并进入捕捉区通道,再流到捕捉区通道的终端;允许标本进入检测区的所有位点与所述入口端之间的距离基本上相等;输送通道、环流通道、检测区和捕捉区通道构成一个限定路径,通过该路径,液体标本从通孔流到捕捉通道的终端;捕捉区通道内存在固定的试剂,该试剂与所述分析物反应,形成可测反应产物。
59.根据权利要求58所述的装置,进一步包括至少一种可移动标记试剂,该试剂能与分析物进行特异性性反应并形成标记复合物,该复合物由于毛细作用而进入捕捉区通道;在捕捉区通道内存在固定试剂,该试剂与标记复合物反应,并将其富集起来,形成可测反应产物。
60.根据权利要求58所述的装置,其特征在于所述标本环流通道是弧形的。
61.根据权利要求58的装置,其特征在于所述液体生物标本选自全血、血浆、血清和尿。
62.根据权利要求58所述的装置,其特征在于所述分析物是选自肌红蛋白、CK-MB,肌钙蛋白I或者肌钙蛋白T、以及它们的混合物。
63.根据权利要求58所述的装置,其特征在于所述分析物是选自hCG、LH以及它们的混合物。
64.根据权利要求59所述的装置,其特征在于检测区中的可移动试剂是一种标记抗体,它将与分析物上的一个抗原决定簇反应,固定试剂是一种抗体,它与分析物上的另一个抗原决定簇反应。
65.根据权利要求59所述的装置,它含有由可移动标记抗体和可移动生物素标记抗体组成的混合物,可移动标记抗体能与分析物上的一个抗原决定簇反应,可移动生物素标记抗体能与分析物上的另一个抗原决定簇反应,并且固定试剂是一种抗生物素蛋白。
66.根据权利要求59所述的装置,其特征在于所述固定试剂是选自由链霉亲和素和抗生物素蛋白组成的组中。
67.根据权利要求58所述的装置,其特征在于所述标记物是微粒直接标记物。
68.根据权利要求58所述的装置,其特征在于所述标记物是金标记物。
69.根据权利要求58所述的装置,其特征在于所述干燥微孔载体是硝化纤维素。
70.根据权利要求58所述的装置,包括用于测定肌钙蛋白I或肌钙蛋白T存在的试剂。
71.根据权利要求58所述的装置,它包括两条路径,一条路径含有测定肌红蛋白存在的试剂,另一条路径含有测定CK-MB存在的试剂。
72.根据权利要求58所述的装置,它包括三条路径,第一路径含有测定肌钙蛋白I或肌钙蛋白T存在的试剂,另一条路径含有测定肌红蛋白存在的试剂,再一条路径含有测定CK-MB存在的试剂。
73.根据权利要求58所述的装置,其特征在于含有测定肌钙蛋白I存在的试剂。
74.根据权利要求58所述的装置,其特征在于仅有一条路径,该路径含有用于测定肌红蛋白和CK-MB存在的试剂。
75.根据权利要求58所述的装置,其特征在于仅有一条路径,该路径含有测定肌钙蛋白I或肌钙蛋白T存在的试剂以及连同测定肌红蛋白和CK-MB存在的试剂。
76.根据权利要求58所述的装置,其特征在于所述标本输送通道具有预定容积,该容积与测定所述至少一种分析物所需的标本体积相对应,当标本输送通道充满到所述预定体积时,所述标本输送通道具有将所述预定体积的标本从所述标本输送通道导入到所述标本环流通道的装置。
77.根据权利要求76所述的装置,其特征在于在所述标本输送通道与所述标本环流通道有效连通的部分包括一个通向所述标本环流通道的狭窄毛细部分,其中当标本输送通道被所述标本充满到与所述狭窄毛细部分相连的端点时,所述标本被导入标本环流通道。
78.根据权利要求58所述的装置,其特征在于干燥的试剂存在于所述标本输送通道内。
79.根据权利要求78所述的装置,其特征在于所述试剂选自对应于分析物的标记抗体、对应于所述分析物的生物素化的抗体以及二者结合组成的组中。
全文摘要
公开了一种分析化验装置,该装置用于流体标本中一种或多种分析物存在的免疫层析测定。装置是这样构成的它使标本同时从许多不同方向进入检测区,由此消除了标本流动滞流问题。通过对微孔基底的选择,该装置还能进行红细胞从血浆的分离,由此提供了对全血标本中一种或多种分析物的快速化验。本发明的装置可通过具有加入一个标本的多个层析路径,用一个标本同时测定不止一种分析物,或可通过在同一条路径中使用多种捕捉抗体检测多种分析物而同时检测一个标本中的多种分析物。
文档编号G01N33/53GK1318151SQ99811056
公开日2001年10月17日 申请日期1999年8月6日 优先权日1998年8月6日
发明者赫尔穆特·E·弗莱塔格, 史沁卫, 查尔斯·A·哈林顿 申请人:光谱诊断公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1