前置式全自动相控阵超声检测系统的制作方法

文档序号:6288270阅读:203来源:国知局
专利名称:前置式全自动相控阵超声检测系统的制作方法
技术领域
本实用新型是一种适用于管道环焊缝和钢质储罐横立焊缝无损检测的前置式 全自动相控阵超声检测系统,涉及超声波的测量、调节电变量的系统和管 道系统技术领域。
背景技术
目前在管道或钢质储罐焊缝检测中使用的全自动相控阵超声检测设备,均是 釆用探头和超声发射接收控制系统分立安装,探头信号经专用相控阵检测电缆与 超声发射接收控制系统相连接,电缆中传输的是微弱的超声模拟信号,不但增加 了专用检测电缆的成本,也使信号的抗干扰处理变得非常复杂。如我国引进的焊 缝全自动相控阵超声检测系统,就是将超声探头安装在扫查器上,包括工控机、 超声釆集单元、专用伺服驱动系统在内的超声发射接收控制系统安装在检测车上, 探头和超声发射接收控制单元之间通过专用相控阵检测电缆相连。该电缆价格昂 贵、维修困难,在检测施工过程中,由于拖拉、扭曲等原因常常造成该检测电缆 故障。由于维修周期长,影响施工进度,增加了施工成本。
实用新型内容
本实用新型的目的是设计一种缺陷定位准确、分辨率高、施工安全环保、可
实现对管道环焊缝和钢质储罐横立焊缝进行实时分区扫查和T0FD检测的前置式 全自动相控阵超声检测系统。
本实用新型的技术方案是在新开发的工控机控制平台上搭建的全自动相控阵 超声检测系统,在由探头和超声发射接收控制系统组成的检测系统中,把超声发射 接收控制系统小型化,全部放置在焊缝扫查器上,共同组成一个智能相控阵超声 检测系统,其构成如图l所示。它由安装在扫查器上的超声发射接收控制板、前置 放大器、T0FD探头、相控阵探头、多路测温电路、驱动器、直流伺服电机、编码 器和直流电源及放置在检测车中的工控机组成。工控机与超声发射接收控制板由 网线连接,超声发射接收控制板通过同轴电缆与前置放大器连接,前置放大器的 输入接TOFD探头的输出;同时超声发射接收控制板通过多芯同轴电缆与相控阵 探头连接;工控机由RS232与多路测温电路连接,工控机也与驱动器通过RS232 通讯线相连,连有编码器的驱动器与直流伺服电机连接,直流电源与超声发射接 收控制板、多路测温电路、驱动器、直流伺服电机、编码器连接,为其供电。具体是TOFD探头C563-SM的OUT+、OUT-分别接前置放大器Mode15682的IN+、 IN-,前置放大器Model5682的0UT、 GND分别接超声发射接收控制板multi2000 的IN61、 GND;相控阵探头7. 5L60E60-10的OUT1-OUT60分别接超声发射接收控 制板咖lti2000的IN1-IN60;超声发射接收控制板multi2000的RJ45由网线与 工控机JPC-1504的RJ45连接;工控机JPC-1504的TxDl、 RxDl通过RS232通讯 线分别与多路测温电路C8051F330的RxD、 TxD相连;工控机JPC-1504的TxD2、 RxD2通过RS232通讯线分别与驱动器Copley ACJ-055的RxD、 TxD相连,驱动器 Copley ACJ-055的输出接直流伺服电机Maxon RE40,驱动器Copley ACJ-055的 输入接编码器HEDL55的输出;直流电源S-100-12与超声发射接收控制板 multi2画、多路测温电路C8051F330、驱动器Copley ACJ-055、直流伺服电机 Maxon ,、编码器HEDL55连接,为其供电(见图2)。
相控阵探头检测到的信号送到超声发射接收控制板,TOFD探头检测的信号经 前置放大器放大后也送到超声发射接收控制板;工控机的网络接口与超声发射接 收控制板的通讯口连接,超声发射接收控制板通过工控机的网络接口接收程序软 件传过来的控制字,按照接收的控制字对应的超声发射接收控制法则对超声发射
接收过程进行控制,并把接收的超声信号以数据包的形式传输给工控机;多路测 温电路将温度信号送工控机,工控机获得探头和环境的实时温度用于对超声声速 进行实时修正,使相控阵超声聚焦法则准确可靠;工控机通过发送控制字给驱动 器,控制直流伺服电机的前进、后退、行进速度及行走距离,同时通过驱动器实 时检测直流伺服电机的行进距离,用于对检测的超声信号的位置进行精确标定。
其中多路测温电路板是新开发的控制板,电路构成如图2所示。单片机 C8051F330芯片的1、 2、 6、 7、 8、 9、 10、 14、 15、 20端接地,4、 5端分别接编 程接口 JATAG的7、 4端,而JATAG的2、 3、 9端接地,1端接+3V; C8051F330芯片 的11端接DS1再串接电阻R6到地,12端接插座TEMP2并经电阻R3到+5V, 13端 接插座TEMPI并经电阻R2到+5V; C8051F330芯片的18和19端各接电容C2、 CI 到地,并18和19端之间并联电阻Ri和晶振Yl; C8051F330芯片的16、 17分别接 串口通讯芯片SP3223的15、 13端,而SP3223的2、 4端之间接电容C3, 5、 6端之 间接电容C4,14、 20端接+3V; SP3223的18端接地,7、 3、 19端分别接电容C8、 C7及C5、 C6的并联到地,SP3223的16、 17端分别接插头RxD、 TxD。
驱动器与直流伺服电机、编码器、直流电源的连接如图3所示,驱动器l的 输出端子J4-8、 J4-1、 J4-9、 J4-2、 J4-10、 J4-3经屏蔽线分别接编码器3的A、/A 、 B 、 /B 、 X 、 /X端,驱动器1的输出端子J4-6、 J4-4分别接编码器3的 GND、 +5¥端子;驱动器1的输出端子J2-4、 J2-3、 J2-2经屏蔽线分别接直流伺 服电机2的U、 V、 W端,J2-l端与屏蔽线外的屏蔽网接地;驱动器l的输入端子 J3-3和J3- 2、 J3-4分别接直流电源4的正极和负极。
本系统中所用其它模块均为市销产品,工控机可选研祥工控机JPC-1504类 产品,超声发射接收控制板可选multi2000类产品,前置放大器可选Mode15682 类产品,TOFD探头可选C563-SM类产品,相控阵探头可选7. 5L60E60-10类产品, 多路测温电路可选C8051F330类产品,驱动器可选Copley ACJ-055类产品,直 流伺服电机可选Maxon RE40类产品,编码器可选HEDL55类产品,直流电源可选 S-100-12类产品。
与现在国内管道施工中釆用的相控阵超声检测系统不同,前置式全自动相控 阵超声检测系统把超声检测系统小型化,全部放置在焊缝扫查器上,共同组成一 个智能扫查装置,对焊缝进行超声检测,输出的检测结果是数字信号,经通用通 讯电缆,将数字信号传输到工控机的网络接口和RS232接口,不再使用专用相控
阵检测电缆传输超声模拟信号,因传输的是数字信号,同时减小了超声信号传输 过程干扰。
前置式全自动相控阵超声检测系统从根本上解决了该技术难题,为管道和钢 质储罐施工现场焊缝检测提供了 一套全新方案。
可见,本实用新型可实现对管道环焊缝和钢质储罐横立焊缝进行实时检测,可 以方便地通过人机界面设置全自动超声检测方案和检测装置的运行速度及精确定 位,具有相控阵超声检测和TOFD检测功能,超声检测电缆由通用通讯电缆构成,
维护方便。

图1前置式全自动相控阵超声检测系统原理框图 图2前置式全自动相控阵超声检测系统电原理图 图3多路测温电路图 图4驱动器控制端子接线图
其中l一驱动器 2—直流伺服电机
3—编码器 4一直流电源具体实施方式
实施例.以本例说明本实用新型的具体实施方式
,并对本实用新型作进一步的说明。本例是一工业试验样机,其构成如图1所示,电路及接线如图2-图4所示。 工控机与超声发射接收控制板由网线连接,超声发射接收控制板通过同轴电
缆与前置放大器连接,前置放大器的输入接T0FD探头的输出;同时超声发射接 收控制板通过多芯同轴电缆与相控阵探头连接;工控机由RS232与多路测温电路 连接,工控机也与驱动器通过RS232通讯线相连,连有编码器的驱动器与直流伺 服电机连接,直流电源与超声发射接收控制板、多路测温电路、驱动器、直流伺 服电机、编码器连接,为其供电。
本例的电原理如图2所示,T0FD探头C563-SM的0UT+、 OUT-分别接前置放大 器Model5682的IN+、 IN-,前置放大器Model5682的0UT、 GND分别接超声发射接 收控制板multi2000的IN61、 GND;相控阵探头7. 5L60E60-10的OUTl-OUT60分 别接超声发射接收控制板multi2000的IN1-IN60;超声发射接收控制板 multi2000的RJ45由网线与工控机JPC-1504的RJ45连接;工控机JPC-1504的 TxDl、RxDl通过RS232通讯线分别与多路测温电路C8051F330的RxD、TxD相连;工 控机JPC-1504的TxD2、 RxD2通过RS232通讯线分别与驱动器Copley ACJ-055的 RxD、 TxD相连,驱动器Copley ACJ-055的输出接直流伺服电机Maxon RE40,驱 动器Copley ACJ-055的输入接编码器HEDL55的输出;直流电源S-100-12与超声 发射接收控制板multi2000、多路测温电路C8051F330、驱动器Copley ACJ-055、 直流伺服电机Maxon RE40、编码器HEDL55连接,为其供电。
具体为工控机选研祥JPC-1504,超声发射接收控制板选multi2000,前置放 大器选Mode15682, TOFD探头选C563-SM,相控阵探头选7. 5L60E60-10,多路测 温电路选C8051F330 ,驱动器选Copley ACJ-055,直流伺服电机选Maxon RE40, 编码器选服DL55,直流电源选S-100-12。
工控机除了通过网络接口向超声发射接收控制板发送控制指令,同时接收超 声发射接收控制板的超声信号数据包外,还通过RS232端口 l与多路测温电路通 讯,获得探头和环境的实时温度用于对超声声速进行实时修正,使相控阵超声聚 焦法则准确可靠。通过RS-232端口 2与伺服电机驱动器进行通讯,工控机的RS232 通讯接口与驱动器的J5-14、 J5-29连接,工控机通过发送控制字给驱动器,控制 直流伺服电机的前进、后退、行进速度及行走距离,同时通过驱动器实时检测直 流伺服电机的行进距离,用于对检测的超声信号的位置进行精确标定。
多路测温电路如图3所示,C8051F330芯片的1、 2、 6、 7、 8、 9、 10、 14、 15、 20端接地,4、 5端分别接JATAG的7、 4端,而JATAG的2、 3、 9端接地,1端接+3V;C8051F330芯片的11端接DS1再串接电阻R6到地,12端接插座TEMP2并经电阻 R3到+5V, 13端接插座TEMPI并经电阻R2到+5V; C8051F330芯片的18和19端 各接电容C2、 Cl到地,并18和19端之间并联电阻R1和晶振Yl; C8051F330芯片 的16、 17分别接SP3223的15、 13端,而SP3223的2、 4端之间接电容C3, 5、 6 端之间接电容C4,14、 20端接+3V; SP3223的18端接地,7、 3、 19端分别接电容 C8、 C7及C5、 C6的并联到地,SP3223的16、 17端分别接插头RxD、 TxD。 其中
Rl选10MD; R2选4. 7KC1; R3选4.7KQ; R6选1KD; Cl选22pF; C2选22pF; C3选0. luF; C4选0. luF; C5选luF; C6选0. luF; C7选luF; C8选luF;
晶振Yl,选22. ll顏z。
驱动器l与直流伺服电机2、数字编码器3、 24V直流电源4的连接如图4所 示,驱动器l的输出端子J4-8、 J4-l、 J4-9、 J4-2、 J4-10、 J4-3经屏蔽线分别 接数字编码器3的A、 /A 、 B、 /B、 X、 /X端,驱动器l的输出端子J4-6、 J4-4 分别接数字编码器3的GND、 +5乂端子,驱动器l的输出端子J2-4、 J2-3、 J2-2 经屏蔽线分别接直流伺服电机2的U、 V、 W端,J2-l端与屏蔽线外的屏蔽网接地; 驱动器1的输入端子J3-3和J3-2、 J3_4分别接24V直流电源4的正极和负极。
全自动相控阵超声检测技术代表了管道环焊缝及大罐横立焊缝无损检测的 发展方向,本例经施工现场工业应用试验证明,前置式全自动相控阵超声检测系 统应用于管道环焊缝和钢质储罐横立焊缝超声检测中,满足相关检测标准要求, 焊缝超声检测缺陷定位准确、分辨率高、施工安全环保。
权利要求1.一种用于管道环焊缝和钢质储罐横立焊缝检测的前置式全自动相控阵超声检测系统,包括探头和超声发射接收控制系统,其特征是它由安装在扫查器上的超声发射接收控制板、前置放大器、TOFD探头、相控阵探头、多路测温电路、驱动器、直流伺服电机、编码器和直流电源及放置在检测车中的工控机组成;工控机与超声发射接收控制板由网线连接,超声发射接收控制板通过同轴电缆与前置放大器连接,前置放大器的输入接TOFD探头的输出;同时超声发射接收控制板通过多芯同轴电缆与相控阵探头连接;工控机由RS232与多路测温电路连接,工控机也与驱动器通过RS232通讯线相连,连有编码器的驱动器与直流伺服电机连接,直流电源与超声发射接收控制板、多路测温电路、驱动器、直流伺服电机、编码器连接;相控阵探头检测到的信号送到超声发射接收控制板,TOFD探头检测的信号经前置放大器放大后也送到超声发射接收控制板;超声发射接收控制板通过工控机的网络接口接收程序软件传过来的控制字,按照接收的控制字对应的超声发射接收控制法则对超声发射接收过程进行控制,并把接收的超声信号以数据包的形式传输给工控机;多路测温电路将温度信号送工控机,工控机获得探头和环境的实时温度,对超声声速进行实时修正;工控机通过发送控制字给驱动器,控制直流伺服电机的前进、后退、行进速度及行走距离,同时通过驱动器实时检测直流伺服电机的行进距离,对检测的超声信号的位置进行精确标定。
2. 根据权利要求1所述的前置式全自动相控阵超声检测系统,其特征是该系 统的电路构成为TOFD探头C563-SM的(OUT+、OUT-)分别接前置放大器Mode15682 的(IN+、 IN-),前置放大器Model5682的(OUT、 GND)分别接超声发射接收控制板 multi2000的(IN61、 GND);相控阵探头7. 5L60E60-10的(OUT1-OUT60)分别接超 声发射接收控制板multi2000的(IN1-IN60);超声发射接收控制板multi2000的 (RJ45)由网线与工控机JPC-1504的(RJ45)连接;工控机JPC-1504的(TxDl、RxDl) 通过RS232通讯线分别与多路测温电路C8051F330的(RxD、 TxD)相连;工控机 JPC-1504的(TxD2、RxD2)通过RS232通讯线分别与驱动器Copley ACJ-055的(RxD、 TxD)相连,驱动器Copley ACJ-055的输出接直流伺服电机Maxon RE40,驱动器 Copley ACJ-055的输入接编码器HEDL55的输出;直流电源S-100-12与超声发射 接收控制板multi2000、多路测温电路C8051F330、驱动器Copley ACJ-055、直 流伺服电机Maxon画、编码器HEDL55连接。
3. 根据权利要求1或2所述的前置式全自动相控阵超声检测系统,其特征是所述多路测温电路板由单片机C8051F330类芯片构成,单片机C8051F330芯片的 (1、 2、 6、 7、 8、 9、 10、 14、 15、 20)端接地,(4、 5)端分别接编程接口 JATAG 的(7、 4)端,而编程接口 JATAG的(2、 3、 9)端接地,(1)端接+3V;单片机C8051F330 芯片的(11)端接DS1再串接电阻R6到地,(12)端接插座TEMP2并经电阻R3到+5V, (13)端接插座TEMPI并经电阻R2到+5V;单片机C8051F330芯片的(18)和(19)端 各接电容C2、 Cl到地,并(18)和(19)端之间并联电阻Rl和晶振Yl;单片机 C8051F330芯片的(16、 17)分别接串口通讯芯片SP3223的(15、 13)端,而通讯芯 片SP3223的(2、 4)端之间接电容C3, (5、 6)端之间接电容C4, (14、 20)端接+3V; SP3223的(18)端接地,(7、 3、 19)端分别接电容C8、 C7及C5、 C6的并联到地,通 讯芯片SP3223的(16、 17)端分别接插头(RxD、 TxD)。
4. 根据权利要求1或2所述的前置式全自动相控阵超声检测系统,其特征是 所述驱动器(l)的电原理为驱动器(l)的输出端子(J4-8、J4-1、J4-9、J4-2、J4-10、 J4-3)经屏蔽线分别接编码器(3)的(A、 /A 、 B 、 /B 、 X 、 /X)端,驱动器(l)的 输出端子(J4-6、 J4-4)分别接编码器(3)的(GND)、 +5V端子;驱动器(l)的输出端 子(J2-4、 J2-3、 J2-2)经屏蔽线分别接直流伺服电机(2)的(U、 V、 W)端,(J2-l) 端与屏蔽线外的屏蔽网接地;驱动器(1)的输入端子(J3-3)和(J3-2、J3-4)分别接 直流电源(4)的正极和负极。
5. 根据权利要求1或2所述的前置式全自动相控阵超声检测系统,其特征是 所述超声发射接收控制板为mulU2000类产品。
6. 根据权利要求1或2所述的前置式全自动相控阵超声检测系统,其特征是 所述多路测温电路板为C8051F330类产品。
专利摘要本实用新型是一种前置式全自动相控阵超声检测系统。它由安装在扫查器上的超声发射接收控制板、前置放大器、TOFD探头、相控阵探头、多路测温电路、驱动器、直流伺服电机、编码器和直流电源及放置在检测车中的工控机组成;工控机与超声发射接收控制板由网线连接,超声发射接收控制板通过同轴电缆与前置放大器连接,前置放大器的输入接TOFD探头的输出;同时超声发射接收控制板通过多芯同轴电缆与相控阵探头连接;工控机由RS232与多路测温电路连接,工控机也与驱动器通过RS232通讯线相连,连有编码器的驱动器与直流伺服电机连接,直流电源与超声发射接收控制板、多路测温电路、驱动器、直流伺服电机、编码器连接。
文档编号G05B19/04GK201397319SQ20092015362
公开日2010年2月3日 申请日期2009年5月7日 优先权日2009年5月7日
发明者刘全利, 晶 孙, 安志彬, 岳莎莎, 佳 李, 白世武, 岩 薛, 袁欣然, 郭敏利 申请人:中国石油天然气管道局;中国石油天然气管道科学研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1