减少高频噪声的电容性感测的制作方法

文档序号:6582415阅读:210来源:国知局
专利名称:减少高频噪声的电容性感测的制作方法
技术领域
本发明涉及用于从被电容性充电的键上所存在的电荷量的改变来感测人体的存在的方法和设备。本发明还涉及包含多个键的触敏控制面板,所述多个键可以矩阵布置,且可用于形成(例如)二维触敏用户输入装置。
在一些实施例中,触摸传感器包含包括驱动板和感测板的键,其中可在测量循环期间,在所述键被驱动之后,测量电荷信号。
背景技术
触敏控制装置如今盛行于许多电子装置上,例如移动电话、MP3播放器、个人数字助理以及例如炊具和制冷机等大型家用电器。这是因为触敏控制装置在可用于定位用户控制件的"表面占用面积"的量方面是节约空间的;是稳固的,因为触敏控制装置的实施所需的机械组件的量减少;且触敏控制装置还可被制成潜在地抵抗其所安置的环境中的有害物质。对于大型家用电器的实例,水和其它含水物质的存在通常对接触开关有害。因此,触敏开关可安置在保护性层后面,从而防止由含水物质导致的损害。此外,触敏控制件可安置在显示屏幕(例如,LCD显示屏幕)前面,使得用户可通过在已显示特定菜单选项的位置处触摸屏幕来选择特定功能。
存在各种形式的触敏控制件,其使用电容性传感器来感测例如用户手指等人体的存在。(例如)WO-97/23738中揭示触敏电容性传感器。在WO-97/23738中,提供单个耦合板,且其经安置以形成触敏开关。触敏板被称作键。根据此实例,在测量循环的驱动部分中,使用驱动电路对所述键进行充电,且接着在所述循环的测量部分期间,通过从所述键转移所感应的电荷而由电荷检测电路来测量此电荷。所述循环的充电和转移部分可较大地变化,且可根据有关应用而选择。通常,使用测量循环突发来产生多个信号样本值。即使存在干扰物质,传感器也可由于被感应到键上的电荷的量的改变而检测到所述键附近的物体的存在。
WO-00/44018中揭示另一种形式的触敏控制件。在此实例中,提供一对电极,其充当键,使得由于在所述两个电极之间转移的电荷的量的改变而检测到例如用户手指等人体的存在。通过此布置,使用驱动电路来驱动所述电极中的一个电极(标记为X),且所述对电极中的另一电极(标记为Y)连接到电荷测量电路,所述电荷测量电路在由X板驱动时,检测Y板上存在的电荷量。如WO-00/44018中所揭示,可布置若干对电极以形成感测区矩阵,其可提供触敏二维位置传感器的高效实施。此些二维电容性换能传感器通常与包含用于消费者电子装置和家用电器的实例中的触敏屏幕或触敏键盘/小键盘的装置一起使用。如上文所指示,此些二维电容性触摸传感器可与液晶显示器或阴极射线管结合使用,以形成此些触敏屏幕。
尽管触敏电容性传感器(例如上文所描述的和上文提及的揭示内容中所揭示的那些触敏传感器)已成功地部署在许多应用中,但某些应用可能对检测电荷由于人体的存在而发生的改变呈现具有挑战性的环境。举例来说,对于上文所陈述的各种实例,可能针对特定应用而存在的噪声可导致对准确地测量从被电容性充电的键转移的电荷量的破坏。

发明内容
根据本发明,提供一种用于从被电容性充电的键上所存在的电荷量的改变来感测人体的存在的方法和设备。所述方法包含执行测量突发,其从多个测量循环产生多个信号样本值。所述测量循环中的每一者包含在所述测量循环的驱动部分期间将电荷感应到所述键上;以及在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键上所感应的所述电荷;以及产生信号样本值以表示在所述测量循环的所述信号测量部分期间从所述键测得的所述电荷。所述方法包含将所述测量突发的多个所述信号样本值的值同所确定的最大值与所确定的最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可从所述多个信号样本中在所述所确定接受范围内的一者或一者以上的所述值的改变来确定人体的存在。因此,例如,通过去除或至少减少在所述所确定接受值范围之外的信号样本值的影响,所述多个信号样本值中只有那些在所述所确定接受范围内的信号样本值用于检测人体是否存在。因此,可实质上减少原本可能会致使触摸传感器错误地检测到人体的例如方波噪声等噪声的影响。
本发明的实施例可提供一种用于改进从被电容性充电的键取得信号测量值的准确性的方法和设备,且明确地说,可去除或至少减少原本可能会导致在人体不存在时错误地检测到人体的存在的噪声的影响。已发现,具有高频分量的噪声(例如脉动噪声或方波噪声)可导致从包含被电容性充电的键的接触传感器产生的信号样本的值的显著改变。所述触摸传感器从自测量循环突发产生的所述信号样本的所述值的改变来确定人体的存在。所述测量循环中的每一者产生一信号样本,如果在所述测量循环期间从所述键
8转移的电荷量由于充当将电荷从所述键移除到通地的分流器的人体的存在而改变,那么 所述信号样本的值改变。然而,例如矩形噪声等噪声可能导致测量突发中的信号样本的 值改变,尤其在所述信号样本与所述矩形噪声的上升沿或下降沿重合(例如其通常由于 LCD屏幕中的切换而产生)时。
本发明的实施例提供一种用于处理从触摸传感器产生的信号样本值,以便减少可能 导致信号样本值的改变的噪声的影响的技术,所述改变可能被误解为有人体接近被电容 性充电的键的触摸传感器。所述处理可包含(例如)丢弃所述范围之外的信号样本值。 可通过信号样本的所确定的最大值或所确定的最小值来界定接受范围,(例如)周期性 地或在触摸传感器的测试阶段期间(例如,在通电或启动阶段期间)产生所述信号样本。
在所附权利要求书中界定本发明的各种其它方面和特征。


现在将参考附图仅以实例方式来描述本发明的实例实施例,在附图中,相同的部分 由相同的参考标号指代,且其中
图1A是提供触敏传感器的实例的示意性框图,且图1B是用户手指安置成接近传感 器的实例说明;
图2是说明图1B中所示的触摸传感器的电气等效物的示意性框图3是与图1B中所示的触摸传感器组合以用于形成触摸传感器的电路的示意性框
图4是说明图3中所示的感测电路的操作的实例时序图5是说明提供二维电容性换能传感器布置的触敏矩阵的示意性框图6是展示图5中所示的二维电容性换能传感器的应用的示意性说明;
图7是展示信号强度相对于时间的曲线图的图解说明,其表示已受正弦噪声(例如
电源噪声)影响的感测键上所存在的电压或电荷;
图8是信号强度相对于时间的曲线图的图解说明,其表示存在矩形噪声的情况下感
测键上的电压或电荷;
图9是对于图7中所示的正弦噪声与图8中所示的矩形噪声的组合,信号强度相对
于时间的图解表示;
图IOA是信号强度相对于时间的曲线图的图解表示,其中矩形噪声叠加于测得信号 之上;图IOB是信号强度对时间的曲线图,其表示根据图IOA的图,键上所存在的电荷 的经取样测量值;且图IOC是图10B中所示的样本中的每一者的相对值相对于时间的说明;
图11是对于人体已移动成接近感测键一段时间的实例,信号值相对于时间的曲线 图的图解表示;
图12是说明处理包含噪声的电荷的样本以便抑制图10A中所示的矩形噪声的操作 中的过程元素或步骤的示意性框图13A是通过带通滤波来相对于图10B中所示的时间而处理电荷的样本的效果的图
解表示5
图13B是由图12中所示的转换速率限制器所执行的处理产生的信号幅值相对于时 间的曲线图的图解表示;以及
图13C是通过由图12中所示的过程将电荷的样本平均化而产生的测得电荷的值的 图解表示;
图14提供说明根据本技术的触摸传感器的操作的实例流程图;以及
图15是说明如由图14所说明的处理技术执行的用于调适信号样本值的改变速率或
转换速率的过程的一个实例的流程图。
具体实施例方式
如上文所阐释,存在各种形式的触摸传感器,其可由于从触摸传感器的键转移的电 荷而确定接近所述触摸传感器的人体的存在。图1A和图1B中展示此触摸传感器的实例。 图1A和图1B中所示的实例对应于其中一对电极形成触摸传感器的实例。如图1A中所 示,形成以下描述中的驱动或X板和接收或Y板的一对电极100、 104安置在触敏控制 面板15的表面下方。如图1A和图1B中所示,触摸传感器IO经布置以由于从Y板104 转移的电荷的量的改变而检测人体(例如用户的手指20)的存在。如图1A中所示,当 X板100被电路充电或驱动时,在触摸面板表面15上方和下方形成由线18和19说明 的电场,由于此电场,电荷被转移到Y板104。 X板IOO和Y板104形成被电容性充电 的键10。如图1B中所示,由于用户的手指20所提供的通地或接地效应(如由接地34 示意性地说明),由于电场18 (因为用户的手指20的存在)的干扰,控制面板15的表 面上方的电场被干扰。
图2中展示图1A和图1B中所示的触摸传感器的等效电路图。在图2中,以电路图 形式说明等效电容。键的X板IOO与Y板104之间所形成的电容为电容CE 105。人体 20的存在具有引入分流电容30和32的效应,分流电容30和32随后经由人体20通过 等效接地电容器22接地到接地34。因此,人体20的存在影响从键的Y板转移的电荷
10的量,且因此提供检测人体20的存在的途径。
图3提供实例电路图,其通过感测从图2中所示的X板100转移到Y板104的电 荷的量来形成触摸传感器,且包含电荷测量电路,所述电荷测量电路已从WO-00/44018 再现,以便辅助说明本发明的实例实施例。
如图3中所示,驱动电路101连接到键的X板100,且键的Y板104连接到电荷测 量电路108的输入106,其中X板和Y板共同形成电容器105。输入106连接到第一可 控开关IIO,且连接到测量电容器Csll2的一侧。测量电容器112的另一侧经由第二开 关114连接到测量电路108的输出U6,其作为电压VOUT被馈送到控制器118。在图3 所示的电路图中,已采用惯例展示开关110、 114中的每一者的控制输入针对控制输入 "0"而打开,且针对控制输入"1"而关闭。开关IIO、 114中的每一者的另一侧连接到 接地,使得如果控制输入为"1",那么连接输入将连接到接地。现在将参考图4中所示 的时序图来阐释图3中所示的触摸传感器的操作,其包含经布置以测量从键的X板转移 到Y板104的电荷的量的测量电路的功能。
在图4中,展示四个时序图130、 132、 134、 138,以说明图3中所示的测量电路 108的操作。第一时序图130表示施加到第二开关114的控制输入。因此,在左手侧, 展示控制输入的逻辑值,而在右手侧将连接点114.1处的效应展示为"Z"(其中连接点 114.1被隔离或浮动),或接地的逻辑控制输入1。类似地,时序图132说明处于浮动(Z) 或接地(0)的连接点110.1的逻辑控制输入值"0"或"1"。第三时序图134展示向键 的X板IOO提供的驱动信号的相对时序(在所述情况下,与针对两个开关HO、 114的 时序图130、 132对比),所述时序图的值是绝对值,使得左手侧说明电压在OV与参考 电压之间变化,参考电压是用于对X板IOO进行充电的电压。最后一个时序图138提供 测量电容器112上由于根据时序图130、 132、 134所说明的时序来打开和关闭开关110、 114的以及驱动X板IOO而产生的实例信号强度或电压的说明。现在将如下阐释时序图 130、 132、 134、 138:
在图4中,在第一点tl处,使电荷测量电路108初始化,其中开关IIO、 114的两 个控制输入均处于高(1),使得Y板和电荷测量电容器112均被设置为接地,且键的X 板100处于零,且因此不受驱动电路101驱动。对应地,电荷测量电路U2上的输出电 压处于零。在t2处,到达控制开关1H的逻辑输入被设置为零,从而打开所述开关,且 使连接点114.1浮动,连接点114.1将输出电压116连接到测量电容器112的一侧。
在下一时间t3处,到达开关110的控制输入被设置为低(0),从而使连接点110.1 浮动,连接点110.1在时间t4之前为YA,驱动电路101将键的X板IOO驱动到参考电压V。接着,为了对测量电容器CS进行充电,并持续t5与t6之间的周期S,将到达开 关114的控制输入设置为高(1),从而使YB接地,以将键的Y板104上所感应的电荷 转移到电荷测量电容器112上,直到到达开关114的控制输入被设置为低(0)(其再次 使连接点114.1浮动)时的t6为止。在对测量电容器CS进行充电并持续t5与t6之间的 第一停留时间之后,在t7处,将到达开关IIO的控制输入设置为高(1),从而使连接点 110.1接地,连接点110.1连接到电荷测量电容器CS 112的另一侧。因此,可测量测量 电容器上的电压。将在t5与t6之间的停留时间期间从Y板104转移到测量电容器CS 112 上的电荷的量表示为输出电压VOUT。
在t8处,驱动电路101变为低(0),其结束第一测量突发。
在t9处,测量突发的下一测量循环发生。在驱动电路用电压"V"再次驱动X板 100 (在时间tl0处)之前,在t9处,到达开关110的控制输入变为低(0),从而使YA 浮动。测量电容器112再次由从键的Y板104转移到测量电容器112上的电荷充电。如 同第一突发一样,在点tll处,到达开关114的控制输入变为高(1),从而使点114.1 接地,且将电荷驱动到测量电容器上,直到到达开关114的控制输入变为低,从而再次 使YB浮动时的tl2为止。因此,在tll与tl2之间的停留周期期间,电荷再次从Y板 104转移,从而增加测量电容器CS上的电压,如由输出电压VOUT表示。在tl3处, 到达开关110的控制输入被设置为高(1),从而使YA接地,且在tl4处,驱动电路101 变为低(0),其结束第二测量突发。因此,如图第一突发一样, 一定量的电荷已从Y板 转移,其已增加了测量电容器112上的电压,其表示从Y板转移的电荷的量。
在若干突发之后,Y板上所存在的转移到测量电容器U2的电荷的量是一致的,从 而提供键上所存在的通过经由驱动电路101到达X板100的驱动信号产生的电荷的表 示。在放电电阻器140的辅助下确定测量电容器112上的电荷的量。放电电阻器140的 一侧连接到测量电容器,且另一侧SMP连接到放电开关142。放电开关142经由控制通 道144接收来自控制器118的控制信号。控制器118经控制以便在测量突发期间使SMP 接地,且通过将SMP连接到电压VDD来使测量电容器CS 112通过放电电阻器140放 电。控制器118接着通过对测量电容器CS上的电荷被放电到零之前的预定时钟周期的 数目进行计数,而确定所存在的电荷的量。时钟周期的数目因此提供相应的所测量电荷 信号的相对信号样本值。
在替代实施例中,代替将控制器118布置成产生预定数目的测量突发,且随后测量 Y板上存在的电荷,控制器可操作以继续测量突发,直到达到预定的阈值电压为止。达 到预定阈值所需的测量突发的数目随后提供从X板转移到Y板的电荷的量的指示,且因此提供X板与Y板之间的电耦合的指示。因此,接近所述耦合的人体的存在将改变 所述电耦合,且因此改变达到所述阈值所需的突发的数目,其因此可被控制器检测到。
如WO-00/44018中所阐释,提供电荷相减电容器,以将电荷从键的Y板104和测 量电容器减去,以确保存在电荷到测量电容器112上的线性转移,以提供准确的测量。 因此WO-00/44018中提供进一步阐释,WO-00/44018的内容以引用的方式并入本文中。
图3中所展示的测量电路的一个优点是,通过使用相同的构造和操作原理,可形成 触敏开关矩阵,使得用户可选择(例如) 一触敏屏幕上的多个不同位置,或多个不同功 能,其取决于用户的手指(例如)相对于点矩阵的位置。举例来说,已从WO-00/44018 很大程度上再现图5。
在图5中,驱动电路101.1、 101.2、 101.3、 101.4经布置以驱动不同的传感器点205, 其(具有图5中所示的实例)形成N-4xN^4阵列。因此,如图6中对应地展示,提供 具有十六个触敏点的控制面板,其可用于形成具有多个选择控制开关的触敏屏幕或控制 面板。
如图5中所示,驱动电路101.1、 101.2、 101.3、 101.4中的每一者受控制器118.1 控制,以便以与图3中驱动X板100且图4中所表示的方式相同的方式来驱动对应线 XI、 X2、 X3、 X4中的每一者。点205中的每一者处的耦合电容器的输出连接到测量电 容器112.1、 112.2、 112.3、 112.4的一侧,测量电容器112.1、 112.2、 112.3、 112.4经布 置以测量提供输出信号116.1、 116.2、 116.3、 116.4的Y板Y1、 Y2、 Y3、 Y4上所存在 的电荷的量,以便以与图3和图4中所示的电路的操作相同的方式来检测物体的存在。 WO-00/44018中揭示此类矩阵电路的操作的更多细节。
尽管上文参考图1到图6所描述的触摸传感器提供可用于许多应用的有效触摸传感 器,但需要将此些触摸传感器用于更具挑战性的环境中。举例来说,将触摸传感器用于 移动电话可能产生技术问题,因为存在由射频信号的射频辐射且由移动电话内的调制器 产生的多种干扰噪声信号。类似地,在电视上,由于接通和断开LCD显示器和所述显 示器内的像素而导致的切换噪声可产生矩形噪声。还可能存在正弦噪声(例如由电源电 力产生的正弦噪声),其可能影响在键上检测到的电荷的量。图7中展示正弦噪声的实 例。
在图7中,展示可为相对于时间而测量到的电压或电荷的信号强度或幅值的曲线图。 如图7中所示,展示各个点220以指示针对例如图4和图5中所示的触摸传感器的触摸 传感器进行突发测量的点。如将了解,由于线222所表示的正弦噪声,由例如图3和图 5中所示的测量电路等测量电路的测量电容器测量到的从键转移的电荷的量将改变,且因此在一些情况下可能导致错误地测量到人体的存在。
类似地,图8中展示具有较高频率分量的矩形噪声(例如通过切换LCD显示器中 的像素而可能产生的矩形噪声)的结果。此外,展示信号强度相对于具有取样点220的 时间的曲线图,可由例如图3和图5中所示的测量电路等测量电路中的测量循环突发产 生取样点220。此外,在图8中,展示对应于触摸传感器中的测量电路和键的突发的测 量点222。如将简短地阐释,如果测量循环与由于LCD切换噪声通常由图8中所示的曲 线图产生和说明的矩形噪声的上升沿重合,那么可能产生错误测量,其可能再次导致触 摸传感器错误地检测到人体的存在。如将简短地阐释,本发明的实施例可提供一种技术, 其可改善由此矩形噪声导致的有害效应。然而,如将了解,在一些实例中,可能存在正 弦噪声和矩形噪声两者,使得如图9中展示针对图7中所示的正弦噪声与图8中所示的
矩形噪声的组合的信号幅值相对于时间的曲线图。第_号(代理人案号
3050.003US1)的共同待决美国申请案中揭示用于减少正弦噪声的影响的技术。
现在将描述用于减少矩形噪声的影响的技术,其可提供经改进的正确检测人体的存 在的可能性。如将了解,此技术可与前面所提及的美国申请案中所揭示的用于减少正弦 噪声的影响的技术进行组合,以进一步改进在存在正弦噪声和较高频率噪声的情况下正 确地检测人体的可能性。
用以减少噪声的处理
如上文所述,本技术可提供用于减少噪声(例如脉冲或矩形噪声)的影响的布置。 如参考图1到图6中所示的实例测量电路(其釆用微控制器来执行突发测量循环以便以 离散时间间隔将电荷从键转移)而阐释, 一些类型的噪声可破坏这些测量。
图10A展示矩形噪声相对于时间的实例460,其中在两个测量循环突发462、 464 内的一系列取样点期间出现噪声。每一测量循环462、 464产生一组信号样本值,其为 由测量电路(例如上文所述的测量电路)对在键上所感应的电荷进行测量的时间中的代 表性点。然而,矩形噪声可如上文所阐释破坏测量,如果(例如)测量循环对应于矩形 噪声466的上升沿或下降沿的话。
对于图10A中所示的实例突发462、 464,图10B说明这些点中的每一者相对于时 间的电荷测量的值,图IOC中展示作为数值计数值的对应表示。如可看到,线470上展 示检测到的电荷的平均值,且在平均值470上方和下方,根据触摸传感器的操作期间的 预期样本值范围而设置预定最小和最大信号样本472、 474。举例来说,如图11中所示, 展示信号样本值的图表,其包含对应于人体接近电荷传感器时的时间的周期490。如可 看到,预定最小和最大值472、 474经布置以使得正常预期的平均信号值在最小值472
14与最大值474之间,且检测到触摸时的信号的值大于最小值472。平均值可为均值、中 值或任何其它数值平均值。如现在将阐释,由于矩形噪声,还可能存在信号峰492。
如可看到,在时间点475、 476、 478、 480处,在图IOA、图IOB、图10C中,其 中测量循环与来自噪声460的方波的上升沿或下降沿重合,测量到超过474、 476或低 于478、 480 (电荷测量值应处于其内的样本值接受范围)的错误值。因此,这些测量值 474、 476、 478、 480可导致对接近传感器的人体的错误检测。
图10B中所示的样本被表示为图10C中的对应相对值,其可被称为计数值,因为如 针对图3中所示的触摸传感器而阐释,所进行的测量对应于通过测量电阻器对测量电容 器进行放电所需的时间增量的数目。
本发明的实施例提供一种用于减少噪声的影响的布置,其可产生来自触摸传感器的 电荷测量的错误样本。图12提供减少矩形噪声的影响中所涉及的元件的框图。然而, 将了解,本技术处理从(例如)微控制器内的电荷测量电路产生的信号样本值,且因此 图12中所示的元件实际上可形成图3的微控制器118的一部分。
在图12中,首先由带通滤波器518.1、 518.2、 518.3接收样本f/"、 t/"-/、 t/"-2,其 后,所述样本分别由转换速率限制器520.1、 520.2、 520.3处理,且接着将转换速率限制 器520.1、 520.2、 520.3的输出馈送到平均化滤波器522。转换速率限制器经级联以便使 来自第一转换速率限制器520.1的输出被作为输入提供到第二转换速率限制器520.2,且 第二转换速率限制器的输出被作为输入馈送到第三转换速率限制器520.3。由图13A、 图13B和图13C中所示的相对于时间的图表有效地表示带通滤波器518.1、518.2、518.3; 转换速率限制器520.1、 520.2、 520.3以及平均化滤波器522对样本t/w、 f/"-7、 t/"-2中 的每一者的处理以产生输出信号样本F"。
当带通滤波器518.1、 518.2、 518.3接收到样本时,将信号样本值与接受范围472、 474进行比较,且如果所述信号样本值处于值范围之外,那么丢弃所述信号样本值。
如可看到,对于图13A中所示的实例,在点475、 476处对超过最大值474的值以 及在点478、 480处对低于最小值472的样本进行重新取样,直到这些值处于范围内为 止。
所述信号样本接着由转换速率限制器520.1、 520.2、 520.3接收,转换速率限制器 520.1、 520.2、 520.3使用过去样本值f/"-7、 以及当前样本值V"来维持累积的相
对平均值,其应被维持在平均值470左右。根据样本之间的相对改变来调适允许输入值 改变的速率。存在转换速率限制器520.1、 520.2、 520.3的各种可能实施方案。将了解, 可使用各种技术来限制从一个样本到下一个样本的改变速率。此限制可为线性改变,或
15在两个样本超过预定值的情况下,改变速率可被限制为固定增量或减量,使得转换速率 限制器可更快地稳定于平均值。可提供控制输入524,以调适转换速率限制器所提供的 改变速率。
从转换速率限制器520.1、 520.2、 520.3的输出,将样本馈送到平均化滤波器,平均 化滤波器对从转换速率限制器520.1 、520.2、 520.3中的每一者接收到的样本执行平均化。 由于微控制器所执行的处理技术,测量电路减少了与噪声脉冲或噪声的上升或下降沿重 合且因此导致值超过或低于预期值范围的信号样本的影响。因此,与致使触摸传感器被 触发的这些噪声诱发值相比,可作出对人体存在的更可靠指示。
设置接受值范围
根据本技术的一个实例,在触摸传感器的测试阶段期间设置信号样本值的接受范 围,所述信号样本值由图IOB和图13A中所示的最大值474和最小值472界定。在一个 实例中,测试阶段是在通电期间。在测试阶段期间,执行一组测量循环突发,以针对每 一测量循环产生一信号样本值。使用在初始化阶段期间取得的信号样本的最大和最小值 来界定信号样本值的接受范围。接受范围界定预定最大和最小值,其适于限制后续的信 号样本值。
在一个实例中,基于初始化阶段期间不存在触摸的假定来确定在此阶段期间产生的 信号样本值的均值。接着参考此均值来计算接受范围的最大和最小值。举例来说,计算 此均值的预定分数,且将此预定分数与所述均值相加以确定最大值,且从所述均值减去 所述预定分数以产生接受范围的最小值。在安静周期(例如)期间,可自动重复校准过 程,或可根据某一确定性时间表而有规律地或无规律地重复。因此,初始化阶段可由微 控制器118控制并起始,以计算接受的值范围以便校准触摸传感器。或者,初始化阶段 可由用户起始以校准装置。
操作概述
在图14和图15中所示的流程图中概述根据本技术的触摸传感器的操作,其包含处 理信号样本值以减少具有较高频率分量的噪声的影响。由图13A中所示的流程图所说明
的方法的过程步骤概述如下
Sl:(例如)在功率已被供应到触摸传感器之后,测试阶段开始。 S2:测试阶段通过控制器执行一系列测量突发以校准触摸传感器来建立接受值范围 而开始。测量突发中的每一者包括多个测量循环,每一循环产生来自触摸传感器的一信 号样本值。因此,此时假定不存在原本将与正被触发的传感器相关联的人体。
S4:控制器接着分析信号样本值,并从所述信号样本值确定信号样本值的稳定状态
16或均值。接着参考此均值,通过将所述值的分数与其自身相加和相减而分别形成最大值
和最小值,来确定接受值范围的最大和最小值。
S6:在步骤S4之后,初始化阶段完成,且处理从测量循环突发产生的信号样本值,
以检测接近触摸传感器的人体的存在或不存在。由控制器接收信号样本值。
S8:通过对处于接受范围之外的信号样本值进行带通滤波而开始信号样本值的处
理。这可通过将高于最大值的值设置为最大值且将低于最小值的值设置为最小值来完
成。或者,可丢弃处于接受范围之外的任何值。
接着经由将元件A连接到图14中所示的步骤S10而继续触摸传感器的操作方法。 S10:接着使信号样本值的转换速率或改变速率限于确定范围内。此外,在一些实
例中,根据连续监视到的信号样本值的改变速率来调适转换速率限制。举例来说,可根
据图15中所示的流程图所说明且如下阐释的技术来调适转换速率限制
S10.2:确定在第一时间周期中连续接收到的信号样本值的值之间的改变速率。 S10.4:根据在第一时间处所确定的改变速率,来确定可允许的信号样本值的改变速
率的上限。
S10.6:根据所确定的上限而限制,信号样本值的改变速率。
S10.8:在第一时间之后的第二时间处,确定连续信号样本值的值之间的改变速率。 S10.10:相对于第一时间处的改变速率,根据第二时间处的改变速率,调适信号样 本值的改变速率的上限。
S10.12:根据经调适的上限而限制信号样本值的改变速率。
返回参考图14中所示的流程图,在步骤S10中的转换速率限制之后在步骤S12中
继续处理
S12:接着将转换速率受限的信号样本值馈送到平均化滤波器,其将信号样本值平 均化。
S14:过程通过控制器从信号样本值的在接受范围内的改变而确定是否存在接近传 感器的人体。
在所附权利要求书中界定本发明的其它方法和特征。可在不脱离本发明的范围的情 况下,对上文所述的实例实施例作出各种修改。具体来说,尽管已参考矩阵触摸传感器
而进行以上描述,其中所述矩阵触摸传感器包含具有X板和Y板的键,其中X板被驱 动,且在Y板上测量电荷,但本发明还可应用于在触摸传感器中仅提供单个板的情况,
所述触摸传感器首先在充电循环中被充电,且接着在测量循环中放电,例如
WO-97/23738中所揭示。将理解,不必以与平均值相等的偏移来设置范围限制。举例来说,可关于噪声底限 而设置下限,以及或不再关于平均值而设置下限。
权利要求
1.一种从被电容性充电的键上所存在的电荷量的改变来感测人体的存在的方法,所述方法包括执行测量突发,所述测量突发从多个测量循环产生多个信号样本值,所述测量循环中的每一者包含,在所述测量循环的驱动部分期间,将电荷感应到所述键上;在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键上所感应的所述电荷;产生信号样本值,所述信号样本值表示在所述测量循环的所述信号测量部分期间从所述键测得的所述电荷,将所述测量突发的所述多个所述信号样本值的值同所确定的最大值与所确定的最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可仅从所述多个信号样本中在所述所确定接受范围内的一者或一者以上的所述值的改变来确定人体的存在。
2. 根据权利要求1所述的方法,其中所述处理所述信号样本值包含调适超过所述预定最大值或低于所述所确定的最小值的所述信号样本值。
3. 根据权利要求l所述的方法,其中所述处理所述信号样本值包含丢弃来自所述测量突发的在所述接受范围之外的信号样本值,以及 从所述测量突发的在所述接受范围内的其余信号样本值的均值的改变来确定是 否存在所述人体。
4. 根据权利要求1所述的方法,其中所述处理所述信号样本值包含限制所述信号样本的所述值之间的改变速率。
5. 根据权利要求4所述的方法,其中限制所述信号样本值的所述值之间的所述改变速 率包含在第一时间处,确定所述信号样本值的所述值之间的改变速率, 根据在所述第一时间处确定的所述改变速率来确定所述信号样本值的所述改变 速率的上限,根据所述所确定的上限而限制所述信号样本值的所述改变速率, 在所述第一时间之后的第二时间处,确定所述信号样本值的所述值之间的改变速率,相对于所述第一时间处的所述改变速率,根据所述第二时间处的所述改变速率来调适所述信号样本值的所述改变速率的所述上限,以及根据所述经调适的上限而限制所述信号样本值的所述改变速率。
6. 根据权利要求5所述的方法,其中所处信号样本值的所述处理包含将所述信号样本值平均化。
7. 根据权利要求1所述的方法,其包括在测试阶段期间,从一个或一个以上测量突发产生多个信号样本值,每一测量突发包含多个测量循环,所述测量循环中的每一者产生所述信号样本值中的一者,以及基于所述测试阶段期间所产生的所述信号样本的所述值而设置所述所确定的最大值与所述所确定的最小值之间的所述所确定接受值范围。
8. —种用于从被电容性充电的键上所存在的电荷量的改变来感测人体的存在的设备,所述设备包括驱动电路,其耦合到所述键,且可操作以将电荷感应到所述键上,电荷感测电路,其包含信号测量电容器,以及控制器,所述控制器可操作以控制所述驱动电路和所述电荷感测电路,以通过以下步骤来在形成测量突发的多个测量循环中的每一者中产生一信号样本值在所述测量循环的驱动部分期间,将电荷感应到所述键上;在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键上所感应的所述电荷;以及产生信号样本值,以表示在所述测量循环的所述信号测量部分期间从所述键测得的所述电荷,将所述测量突发的多个所述信号样本值的值同所确定的最大值与所确定的最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可仅从所述多个信号样本中处于所述所确定接受范围内的一者或一者以上的所述值的改变来确定所述人体的存在。
9. 根据权利要求8所述的设备,其中所述控制器可操作以调适超过所述所确定的最大值或低于所述所确定的最小值的所述信号样本值。
10. 根据权利要求8所述的设备,其中所述处理所述信号样本值包含丢弃来自所述测量突发的所述多个信号样本值中在所述接受范围之外的那些信号样本值,以及从所述测量突发的在所述接受范围内的其余信号样本值的均值的改变来确定是否存在所述人体。
11. 根据权利要求8所述的设备,其中所述控制器可操作以通过以下步骤来处理所述信号样本值限制所述信号样本的所述值之间的改变速率。
12. 根据权利要求11所述的设备,其中所述控制器可操作以通过以下步骤来限制所述信号样本的所述值之间的所述改变速率在第一时间处,确定所述信号样本值的所述值之间的改变速率,根据在所述第一时间处确定的所述改变速率来确定所述信号样本值的所述改变速率的上限,根据所述所确定的上限而限制所述信号样本值的所述改变速率,在所述第一时间之后的第二时间处,确定所述信号样本值的所述值之间的改变速率,相对于所述第一时间处的所述改变速率,根据所述第二时间处的所述改变速率来调适所述信号样本值的所述改变速率的所述上限,以及根据所述经调适的上限而限制所述信号样本值的所述改变速率。
13. 根据权利要求12所述的设备,其中所述控制器可操作以通过将所述信号样本值平均化来处理所述信号样本值。
14. 根据权利要求8所述的设备,其中所述控制器可操作以在测试阶段期间,从一个或一个以上测量突发产生多个信号样本值,每一测量突发包含多个测量循环,所述测量循环中的每一者产生所述信号样本值中的一者,以及基于所述测试阶段期间所产生的所述信号样本的所述值而设置所述所确定的最大值与所述所确定的最小值之间的所述所确定接受值范围。
15. —种触敏控制面板,其包含键矩阵,所述键矩阵包括第一多个N个输入线、第二多个M个输出线和N乘M个键,所述N乘M个键中的每一者经布置以感测人体的存在,且所述N乘M个键中的每一者安置成邻近于输入线与输出线的相应交叉点,且包括连接到所述N个输入线中的一者的驱动板(X)和连接到所述M个输出线中的一者的接收板(Y),所述N个输入线中的每一者连接到相应的驱动电路,且所述M个输出线中的每一者连接到相应的电荷感测电路,所述电荷感测电路中的每一者包含信号测量电容器,其中所述键矩阵包含控制器,所述控制器可操作以控制所述驱动电路和所述电荷感测电路,以通过以下步骤来针对所述N乘M个键中的每一者,在形成测量突发的多个测量循环中的每一者中产生一信号样本值-在所述测量循环的驱动部分期间,将电荷感应到所述键中的每一者的所述驱动板上;在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键中的每一者的感测板上所感应的所述电荷;以及产生所述信号样本值以表示在所述测量循环的所述信号测量部分期间从所述键中的每一者测得的所述电荷,将所述测量突发的多个所述信号样本值的值同预定最大值与所确定的最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可仅从所述多个信号样本中在所述所确定接受范围内的一者或一者以上的所述值的改变来确定所述人体的存在。
16. 根据权利要求15所述的触敏控制面板,其中所述控制器可操作以调适超过所述所确定的最大值或低于所述所确定的最小值的所述信号样本值。
17. 根据权利要求15所述的触敏控制面板,其中所述处理所述信号样本值包含丢弃来自所述测量突发的在所述接受范围之外的信号样本值,以及从所述测量突发的在所述接受范围内的其余信号样本值的均值的改变来确定是否存在所述人体。
18. 根据权利要求15所述的触敏控制面板,其中所述控制器可操作以通过以下步骤来处理所述信号样本值限制所述信号样本的所述值之间的改变速率。
19. 根据权利要求18所述的触敏控制面板,其中所述控制器可操作以通过以下步骤来限制所述信号样本值的所述值之间的所述改变速率在第一时间处,确定所述信号样本值的所述值之间的改变速率,根据在所述第一时间处确定的所述改变速率来确定所述信号样本值的所述改变速率的上限,根据所述所确定的上限而限制所述信号样本值的所述改变速率,在所述第一时间之后的第二时间处,确定所述信号样本值的所述值之间的改变速率,相对于所述第一时间处的所述改变速率,根据所述第二时间处的所述改变速率来调适所述信号样本值的所述改变速率的所述上限,以及根据所述经调适的上限而限制所述信号样本值的所述改变速率。
20. 根据权利要求18所述的触敏控制面板,其中所述控制器可操作以通过将所述信号样本值平均化来处理所述信号样本值。
21. 根据权利要求15所述的触敏控制面板,其中所述控制器可操作以在测试阶段期间,从一个或一个以上测量突发产生多个信号样本值,每一测量突发包含多个测量循环,所述测量循环中的每一者产生所述信号样本值中的一者,以基于所述测试阶段期间所产生的所述信号样本的所述值而设置所述所确定的最大值与所述所确定的最小值之间的所述所确定接受值范围。
22. —种感测接近触敏控制面板的人体的存在的方法,所述触敏控制面板包含键矩阵,所述键矩阵包括第一多个N个输入线、第二多个M个输出线和N乘M个键,所述N乘M个键中的每一者安置成邻近于输入线与输出线的相应交叉点,且包括连接到所述N个输入线中的一者的被驱动板(X)和连接到所述M个输出线中的一者的接收板(Y),所述N个输入线中的每一者连接到相应的驱动电路,且所述M个输出线中的每一者连接到相应的电荷感测电路,所述电荷感测电路中的每一者包含信号测量电容器,所述方法包括控制所述驱动电路和所述电荷感测电路,以通过以下步骤来针对所述N乘M个键中的每一者,在形成测量突发的多个测量循环中的每一者中产生一信号样本值在所述测量循环的驱动部分期间,将电荷感应到所述键中的每一者的所述驱动板上;在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键中的每一者的感测板上所感应的所述电荷;以及产生信号样本值,以表示在所述测量循环的所述信号测量部分期间从所述键中的每一者测得的所述电荷,将所述测量突发的多个所述信号样本值的值同所确定的最大值与所确定的最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可仅从所述多个信号样本中在所述所确定接受范围内的一者或一者以上的所述值的改变来确定人体的存在。
全文摘要
本发明为减少高频噪声的电容性感测。一种用于从被电容性充电的键上所存在的电荷量的改变来感测人体的存在的方法和设备,其包含执行测量突发,所述测量突发从多个测量循环产生多个信号样本值。所述测量循环中的每一者包含在所述测量循环的驱动部分期间,将电荷感应到所述键上;在所述测量循环的信号测量部分期间,测量在所述测量循环的所述驱动部分期间所述键上所感应的所述电荷;以及产生信号样本值以表示在所述测量循环的所述信号测量部分期间从所述键测得的所述电荷。所述方法包含将所述测量突发的多个所述信号样本值的值同所确定的最大值和最小值之间的所确定接受值范围进行比较;以及处理所述多个信号样本值中在所述所确定接受范围之外的任一者,使得可仅从所述多个信号样本中在所述所确定接受值内的一者或一者以上的所述值的改变来确定所述人体的存在。通过去除在所述所确定接受值范围之外的信号样本值的影响,可实质上减少原本可能会导致错误地检测到人体的例如矩形噪声等噪声的影响。
文档编号G06F3/041GK101644973SQ20091020341
公开日2010年2月10日 申请日期2009年5月19日 优先权日2008年5月19日
发明者哈拉尔德·菲利普, 埃萨特·伊尔马兹 申请人:爱特梅尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1