一种高精度合成孔径雷达图像自动配准方法及设备与流程

文档序号:11545446阅读:167来源:国知局
一种高精度合成孔径雷达图像自动配准方法及设备与流程
本发明涉及图像配准技术,尤其涉及一种高精度合成孔径雷达(SAR,SyntheticApertureRadar)图像自动配准方法及设备。

背景技术:
在遥感图像集成分析中,图像配准是遥感数据分析和处理的基础,是图像融合、动态变化检测、三维地形重建、遥感图像镶嵌等应用技术的关键环节。近年来,遥感图像自动配准技术发展迅速,但有关SAR图像自动配准的研究却处于起步阶段。SAR图像配准是将不同时期、不同视点、或者不同传感器获得的同一地域、或者同一物体的图像进行叠加的过程,它的主要目的是消除或者减少待配准的SAR图像之间由于成像条件不同所引起的畸变,从而使待配准的SAR图像之间在灰度和几何结构上达到一致。目前,已有一些有关SAR图像的自动配准算法相继被提出,如基于相关峰值的SAR图像配准算法和基于特征点的SAR图像配准算法。但是,这些配准方法的问题在于:要获得的高精度的图像配准信息时计算量会急剧增大.,如何以较低的运算量实现高精度的亚像素级的配准是目前亟需解决的问题。

技术实现要素:
有鉴于此,本发明的主要目的在于提供一种高精度SAR图像自动配准方法及设备,可以实现亚像素级的图像配准。为达到上述目的,本发明的技术方案是这样实现的:本发明提供了一种SAR图像自动配准方法,该方法包括:根据主图像和副图像的信号获取主图像和副图像之间的像素级平移参量;根据像素级平移参量对主图像进行平移,得到平移主图像;根据所述平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵;获取归一化相位相关矩阵的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用最小二乘法、或伪奇异值分解(SVD,SingularValueDecomposition)方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移。上述方案中,获取主图像和副图像之间的像素级平移参量之前,该方法还包括:对主图像和副图像分别进行滤波;获取平移主图像和副图像之间的亚像素级平移参量之前,该方法还包括:对列向量V1和行向量V2分别进行滤波。上述方案中,所述获取主图像和副图像之间的像素级平移参量包括:对主图像和副图像的信号分别进行傅里叶变换;根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵;对归一化相位相关矩阵进行傅里叶反变换;获取傅里叶反变换结果的峰值位置,所述峰值位置即为像素级平移参量。上述方案中,所述根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵包括:对平移主图像和副图像的信号分别进行傅里叶变换;根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵。上述方案中,对所述列向量V1采用伪SVD方法具体为:构造一个二维矩阵S1,所述二维矩阵中的每一列均为列向量V1;采用SVD方法获取所述二维矩阵S1沿列方向的斜率d1;亚像素级平移参量的横坐标为d1W/2π;其中,W为二维矩阵S1的列数;对所述行向量V2采用伪SVD方法具体为:构造一个二维矩阵S2,所述二维矩阵中的每一行均为行向量V2;采用SVD方法获取所述二维矩阵S2沿行方向的斜率d2;亚像素级平移参量的纵坐标为d2L/2π;其中,L为二维矩阵S2的行数。本发明提供了一种高精度SAR图像自动配准设备,该设备包括:像素级平移模块、亚像素级平移模块;其中,所述像素级平移模块,用于根据主图像和副图像的信号获取主图像和副图像之间的像素级平移参量;根据像素级平移参量对主图像进行平移,得到平移主图像;所述亚像素级平移模块,根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵;获取所述归一化相位相关矩阵的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用最小二乘法、或伪SVD方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移。上述方案中,所述像素级平移模块,还用于在获取主图像和副图像之间的像素级平移参量之前,对主图像和副图像分别进行滤波;所述亚像素级平移模块,还用于在获取平移主图像和副图像之间的亚像素级平移参量之前,对列向量V1和行向量V2分别进行滤波。上述方案中,所述像素级平移模块包括:第一傅里叶变换单元、第一相位相关矩阵单元、傅里叶反变换单元、像素级平移参量获取单元;其中,所述第一傅里叶变换单元,用于对主图像和副图像的信号分别进行傅里叶变换,将傅里叶变换结果发送至第一相位相关矩阵单元;所述第一相位相关矩阵单元,用于接收第一傅里叶变换单元发送的傅里叶变换结果,根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵;将所述归一化相位相关矩阵发送至傅里叶反变换单元;所述傅里叶反变换单元,用于接收相位相关矩阵单元发送的归一化相位相关矩阵,对归一化相位相关矩阵进行傅里叶反变换;将所述傅里叶反变换结果发送至像素级平移参量获取单元;所述像素级平移参量获取单元,用于接收傅里叶反变换单元发送的傅里叶反变换结果,获取傅里叶反变换结果的峰值位置,根据峰值位置获取像素级平移参量;根据像素级平移参量对主图像进行平移,得到平移主图像。上述方案中,所述亚像素级平移模块包括:第二傅里叶变换单元、第二相位相关矩阵单元、稳定相位过滤单元、SVD单元;其中,所述第二傅里叶变换单元,用于对平移主图像和副图像的信号分别进行傅里叶变换,将傅里叶变换结果发送至第二相位相关矩阵单元;所述第二相位相关矩阵单元,用于接收第二傅里叶变换单元发送的傅里叶变换结果,根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵;将所述归一化相位相关矩阵发送至稳定相位过滤单元;所述稳定相位过滤单元,用于接收第二相位相关矩阵单元发送的归一化相位相关矩阵,获取归一化相位相关矩阵的稳定相位并将其发送至SVD单元;所述SVD单元,用于接收稳定相位过滤单元的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用伪SVD方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移。上述方案中,所述像素级平移模块还包括第一滤波单元,用于对主图像和副图像分别进行滤波;所述亚像素级平移模块还包括第二滤波单元,用于对列向量V1和行向量V2分别进行滤波。本发明提供的高精度SAR图像自动配准方法及设备,根据主图像和副图像的信号获取主图像和副图像之间的像素级平移参量;根据像素级平移参量对主图像进行平移,得到平移主图像;根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵;获取归一化相位相关矩阵的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用最小二乘法、或伪SVD方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移;如此,可以实现亚像素级的图像配准。附图说明图1为本发明高精度SAR图像自动配准方法实现流程示意图;图2为本发明高精度SAR图像自动配准设备结构组成示意图。具体实施方式为了能够更加详尽地了解本发明的特点与技术内容,下面结合附图对本发明的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明。图1为本发明高精度SAR图像自动配准方法实现流程示意图,如图1所示,该方法包括步骤:步骤101:根据主图像和副图像的信号获取主图像和副图像之间的像素级平移参量;这里,所述主图像和副图像为待配准的两幅SAR图像,分别用f1(x,y)和f2(x,y)表示;所述f1(x,y)代表主图像中坐标为(x,y)处的信号,f2(x,y)代表副图像中坐标为(x,y)处的信号;在本发明中,假设待移动的图像为主图像;本步骤之前还包括:对主图像和副图像分别进行滤波;所述滤波是在保留主图像和副图像细节特征的情况下,对主图像和副图像的噪声部分进行抑制;这里,所述滤波是通过在主图像和副图像之前加窗来实现;所述窗包括:土耳其(Tukey)窗、黑人(blackman)窗、高斯(Gaussian)窗;进一步的,本步骤具体包括:对主图像和副图像的信号分别进行傅里叶变换;根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵;对归一化相位相关矩阵进行傅里叶反变换;获取傅里叶反变换结果的峰值位置,所述峰值位置即为像素级平移参量;这里,所述对主图像和副图像的信号分别进行傅里叶变换具体为:(1)公式(1)中,F1(u,v)为主图像信号f1(x,y)的傅里叶变换;F2(u,v)为副图像信号f2(x,y)的傅里叶变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表5空间变量;u的取值为0,1…M-1,v的取值为0,1…N-1;这里,所述根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵具体为:公式(2)中,Q(u,v)代表归一化相位相关矩阵,F2(u,v)*代表F2(u,v)的复共轭;这里,所述对归一化相位相关矩阵进行傅里叶反变换具体为:公式(3)中,L(x,y)为归一化相位相关矩阵Q(u,v)的傅里叶反变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表空间变量;x的取值为0,1…M-1,y的取值为0,1…N-1;这里,所述获取傅里叶反变换结果的峰值位置具体为:获取L(x,y)的绝对值,确定绝对值为最大时的位置(x,y),所述(x,y)即为峰值位置。步骤102:根据像素级平移参量对主图像进行平移,得到平移主图像;根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵;这里,假设像素级平移参量(x,y)为(a,b),则所述根据像素级平移参量对主图像进行平移具体为:f1′(x,y)=f1(x-a,y-b)(4)公式(4)中,f1’(x,y)代表平移主图像在(x,y)处的信号;f1(x-a,y-b)代表将主图像在(x,y)处的信号f1(x,y)平移到(x-a,y-b)处;进一步的,所述根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵包括:对平移主图像和副图像的信号分别进行傅里叶变换;根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵;这里,所述对平移主图像和副图像的信号分别进行傅里叶变换具体为:(5)公式(5)中,F1’(u,v)为主图像信号f1(x,y)的傅里叶变换;F2(u,v)为副图像信号f2(x,y)的傅里叶变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表空间变量;u的取值为0,1…M-1,v的取值为0,1…N-1;这里,所述根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵具体为:公式(6)中,Q’(u,v)代表归一化相位相关矩阵,F2(u,v)*代表F2(u,v)的复共轭;假设Q’(u,v)表示为公式(7):这里,根据相位相关法,a’和b’代表亚像素级平移参量;所述a’和b’为待求解参量。步骤103:获取归一化相位相关矩阵的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,分别得到列向量V1和行向量V2;这里,归一化相位相关矩阵的相位具体为:公式(8)中,A表示归一化相位相关矩阵的相位;这里,所述归一化相位相关矩阵的稳定相位为:A的稳定部分;进一步的,所述A的稳定部分对应Q’(u,v)的低频部分;这里,所述获取归一化相位相关矩阵的稳定相位为:获取Q’(u,v)的低频部分;所述低频部分对应的相位即为稳定相位;具体的,假设Q’(u,v)的低频部分在Q’(u,v)的中心位置,且假设A的中心距其边界最小的距离为r;如此,A的稳定部分即为以Q’(u,v)中心为起点,半径为C×r内的数据;其中,C为常数,且0<C<0.5;优选的,C取0.3;这里,将稳定相位沿像素的行向求平均具体为:公式(9)中,V1为列向量,u、v的取值与A的稳定部分数据对应,即半径为C×r内的数据;进一步的,所述V1为L行一列的列向量,L为v取值的个数;这里,将稳定相位沿像素的列向求平均具体为:公式(10)中,V2为行向量,v、u的取值与A的稳定部分数据对应,即半径为C×r内的数据;进一步的,所述V2为W列一行的行向量,W为u取值的个数。步骤104:通过对所述列向量V1和行向量V2采用最小二乘法、或伪SVD等方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移。本步骤之前还包括:对列向量V1和行向量V2分别进行滤波;这里,可以采用平滑滤波器等对所述列向量V1和行向量V2分别进行滤波;进一步的,对所述列向量V1采用伪SVD方法具体为:构造一个L行M列的二维矩阵S1,所述二维矩阵中的每一列均为列向量V1;采用SVD方法获取所述二维矩阵S1沿列方向的斜率d1;亚像素级平移参量的横坐标为:a’=d1W/2π;这里,对图像的插值倍数假设为1;这里,所述二维矩阵S1具体为:其中,列向量V1具体为:进一步的,对所述行向量V2采用伪SVD方法具体为:构造一个L行W列的二维矩阵S2,所述二维矩阵中的每一行均为行向量V2;采用SVD方法获取所述二维矩阵S2沿行方向的斜率d2;亚像素级平移参量的纵坐标为:b’=d2L/2π;这里,对图像的插值倍数假设为1;这里,所述二维矩阵S2具体为:其中,行向量V2具体为:v2=[v21v22…v2W]进一步的,所述根据亚像素级平移参量对副图像进行平移具体为:f′2(x,y)=f2(x+a+a′,y+b+b′)其中,f2’(x,y)代表平移副图像在(x,y)处的信号;f2(x+a+a’,y+b+b’)代表将副图像在(x,y)处的信号f2(x,y)平移到(x+a+a’,y+b+b’)处;如此,f2’(x,y)与f1(x,y)完成了亚像素级的匹配。图2为本发明高精度SAR图像自动配准设备结构组成示意图,如图2所示,该设备包括:像素级平移模块21、亚像素级平移模块22;其中,所述像素级平移模块21,用于根据主图像和副图像的信号获取主图像和副图像的归一化相位相关矩阵;根据所述归一化相位相关矩阵获取主图像和副图像之间的像素级平移参量;再根据像素级平移参量对主图像进行平移,得到平移主图像;这里,所述主图像和副图像为待配准的两幅SAR图像,分别用f1(x,y)和f2(x,y)表示;所述f1(x,y)代表主图像中坐标为(x,y)处的信号,f2(x,y)代表副图像中坐标为(x,y)处的信号;所述亚像素级平移模块22,用于根据平移主图像和副图像的信号获取平移主图像和副图像的归一化相位相关矩阵;获取所述归一化相位相关矩阵的稳定相位,并将所述稳定相位分别沿像素的行向和列项求均值,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用最小二乘法、或伪SVD等方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移;进一步的,所述像素级平移模块21,在获取主图像和副图像的归一化相位相关矩阵之前,还用于对主图像和副图像分别进行滤波;其中,所述滤波是在保留主图像和副图像细节特征的情况下,对主图像和副图像的噪声部分进行抑制;这里,所述滤波是通过在主图像和副图像之前加窗来实现;所述窗包括:Tukey窗、blackman窗、Gaussian窗;进一步的,所述亚像素级平移模块22,在获取平移主图像和副图像之间的亚像素级平移参量之前,还用于对列向量V1和行向量V2分别进行滤波;这里,可以采用平滑滤波器等对所述列向量V1和行向量V2分别进行滤波。进一步的,所述像素级平移模块21包括:第一傅里叶变换单元211、第一相位相关矩阵单元212、傅里叶反变换单元213、像素级平移参量获取单元214;其中,所述第一傅里叶变换单元211,用于对主图像和副图像的信号分别进行傅里叶变换,将傅里叶变换结果发送至第一相位相关矩阵单元212;这里,所述对主图像和副图像的信号分别进行傅里叶变换具体为:(13)公式(13)中,F1(u,v)为主图像信号f1(x,y)的傅里叶变换;F2(u,v)为副图像信号f2(x,y)的傅里叶变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表空间变量;u的取值为0,1…M-1,v的取值为0,1…N-1;所述第一相位相关矩阵单元212,用于接收第一傅里叶变换单元211发送的傅里叶变换结果,根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵;将所述归一化相位相关矩阵发送至傅里叶反变换单元213;这里,所述根据傅里叶变换结果获取主图像和副图像的归一化相位相关矩阵具体为:公式(14)中,Q(u,v)代表归一化相位相关矩阵,F2(u,v)*代表F2(u,v)的复共轭;所述傅里叶反变换单元213,用于接收相位相关矩阵单元212发送的归一化相位相关矩阵,对归一化相位相关矩阵进行傅里叶反变换;将所述傅里叶反变换结果发送至像素级平移参量获取单元214;这里,所述对归一化相位相关矩阵进行傅里叶反变换具体为:其中,L(x,y)为归一化相位相关矩阵Q(u,v)的傅里叶反变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表空间变量;x的取值为0,1…M-1,y的取值为0,1…N-1;所述像素级平移参量获取单元214,用于接收傅里叶反变换单元213发送的傅里叶反变换结果,获取傅里叶反变换结果的峰值位置,所述峰值位置即为像素级平移参量;根据像素级平移参量对主图像进行平移,得到平移主图像;这里,所述获取傅里叶反变换结果的峰值位置具体为:获取L(x,y)的绝对值,确定绝对值为最大时的位置(x,y),所述(x,y)即为峰值位置;或者,取L(x,y)的实数部分,确定实数部分为最大时的位置(x,y),所述(x,y)即为峰值位置;这里,两种方式确定峰值位置的结果相同;这里,假设像素级平移参量(x,y)为(a,b),则所述根据像素级平移参量对主图像进行平移具体为:f′1(x,y)=f1(x-a,y-b)(16)公式(16)中,f1’(x,y)代表平移主图像在(x,y)处的信号;f1(x-a,y-b)代表将主图像在(x,y)处的信号f1(x,y)平移到(x-a,y-b)处;进一步的,所述像素级平移模块21还包括第一滤波单元210;所述第一滤波单元210,获取主图像和副图像的归一化相位相关矩阵之前,用于对主图像和副图像分别进行滤波;所述滤波是在保留主图像和副图像细节特征的情况下,对主图像和副图像的噪声部分进行抑制;这里,所述滤波是通过在主图像和副图像之前加窗来实现;所述窗包括:Tukey窗、blackman窗、Gaussian窗;进一步的,所述亚像素级平移模块22包括:第二傅里叶变换单元221、第二相位相关矩阵单元222、稳定相位过滤单元223、SVD单元224;其中,所述第二傅里叶变换单元221,用于对平移主图像和副图像的信号分别进行傅里叶变换,将傅里叶变换结果发送至第二相位相关矩阵单元222;这里,所述对平移主图像和副图像的信号分别进行傅里叶变换具体为:(17)公式(17)中,F1’(u,v)为主图像信号f1(x,y)的傅里叶变换;F2(u,v)为副图像信号f2(x,y)的傅里叶变换;进一步的,M代表像素的行数,N代表像素的列数,像素的尺寸大小为M×N;u和v代表频率变量,x和y代表空间变量;u的取值为0,1…M-1,v的取值为0,1…N-1;所述第二相位相关矩阵单元222,用于接收第二傅里叶变换单元221发送的傅里叶变换结果,根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵;将所述归一化相位相关矩阵发送至稳定相位过滤单元223;这里,所述根据傅里叶变换结果获取平移主图像和副图像的归一化相位相关矩阵具体为:公式(18)中,Q’(u,v)代表归一化相位相关矩阵,F2(u,v)*代表F2(u,v)的复共轭;进一步的,根据相位相关法,Q’(u,v)的表达式可以表示为:公式(19)中,a’和b’代表亚像素级平移参量;所述a’和b’为待求解参量;所述稳定相位过滤单元223,用于接收第二相位相关矩阵单元222发送的归一化相位相关矩阵,获取归一化相位相关矩阵的稳定相位并将其发送至SVD单元224;这里,归一化相位相关矩阵的相位具体为:公式(20)中,A表示归一化相位相关矩阵的相位;这里,所述归一化相位相关矩阵的稳定相位为:A的稳定部分;进一步的,所述A的稳定部分对应Q’(u,v)的低频部分;这里,所述获取归一化相位相关矩阵的稳定相位为:获取Q’(u,v)的低频部分;所述低频部分对应的相位即为稳定相位;具体的,假设Q’(u,v)的低频部分在Q’(u,v)的中心位置,且假设A的中心距其边界最小的距离为r;如此,A的稳定部分即为以Q’(u,v)中心为起点,半径为C×r内的数据;其中,C为常数,且0<C<0.5;优选的,C取0.3;所述SVD单元224,用于接收稳定相位过滤单元223的稳定相位,并将所述稳定相位分别沿像素的行向和列项求平均,得到列向量V1和行向量V2;通过对所述列向量V1和行向量V2采用伪SVD方法,获取平移主图像和副图像之间的亚像素级平移参量;根据亚像素级平移参量对副图像进行平移;这里,将稳定相位沿像素的行向求平均具体为:公式(21)中,V1为列向量,u、v的取值与A的稳定部分数据对应,即半径为C×r内的数据;进一步的,所述V1为L行一列的列向量,L为v取值的个数;这里,将稳定相位沿像素的列向求平均具体为:公式(22)中,V2为行向量,v、u的取值与A的稳定部分数据对应,即半径为C×r内的数据;进一步的,所述V2为W列一行的行向量,W为u取值的个数;这里,对所述列向量V1采用伪SVD方法具体为:构造一个L行W列的二维矩阵S1,所述二维矩阵中的每一列均为列向量V1;采用SVD方法获取所述二维矩阵S1沿列方向的斜率d1;亚像素级平移参量的横坐标为:a’=d1W/2π;这里,对图像的插值倍数假设为1;这里,对所述行向量V2采用伪SVD方法具体为:构造一个L行W列的二维矩阵S2,所述二维矩阵中的每一行均为行向量V2;采用SVD方法获取所述二维矩阵S2沿行方向的斜率d2;亚像素级平移参量的纵坐标为:b’=d2L/2π;这里,对图像的插值倍数假设为1;这里,所述根据亚像素级平移参量对副图像进行平移具体为:f′2(x,y)=f2(x+a+a′,y+b+b′)其中,f2’(x,y)代表平移副图像在(x,y)处的信号;f2(x+a+a’,y+b+b’)代表将副图像在(x,y)处的信号f2(x,y)平移到(x+a+a’,y+b+b’)处;如此,f2’(x,y)与f1(x,y)完成了亚像素级的匹配;进一步的,所述亚像素级平移模块22还包括第二滤波单元220;所述第二滤波单元220,获取平移主图像和副图像之间的亚像素级平移参量之前,用于对列向量V1和行向量V2分别进行滤波;这里,可以采用平滑滤波器等对所述列向量V1和行向量V2分别进行滤波。以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1