基于灵活风险转移结构的自适应耦合系统和其对应的方法与流程

文档序号:12288249阅读:338来源:国知局
基于灵活风险转移结构的自适应耦合系统和其对应的方法与流程

本发明涉及自动化的保险系统,确切地说,用于自动化的保险系统的耦合系统,其通过借助于两个互补耦合保险系统(例如,保险系统和再保险系统)提供针对风险暴露组件的动态自给自足的风险保护来提供针对可变数目个风险暴露组件的风险共享。确切地说,本发明涉及一种事件驱动切换装置,其用于基于灵活且可适应的风险转移结构和函数互补切换两个耦合的自主操作的资源合并系统以便借助于与保险系统相关联的两个互补的启动的资源合并系统提供关于合并的风险暴露组件的风险保护。



背景技术:

风险转移已在目前先进技术中长时间地用作技术工具来管理不确定的损失的风险,确切地说,维持功能、技术或商业单元的操作。近来,显著的风险暴露与人寿和非人寿部门中的许多方面相关联。例如任何种类的物体、个人、公司团体和/或法定实体的风险暴露单元必定遭遇许多形式的主动和被动风险管理以对冲和防范某些损失和事件的风险。现有技术解决此损失风险,例如,基于损失风险从多个风险暴露的实体到专用合并实体的转移和合并。本质上,此可通过将损失风险有效地分派到此合并单元或实体来执行,因为合并暴露于某一风险的相关联单元的资源。如果所述单元中的一个由联系到转移的风险发生的事件命中,那么合并实体通过将来自所合并资源的资源转移到受影响的单元而直接拦截由事件造成的损失或损害。可通过交换待针对风险的转移而支付的保险费来达成资源的合并。这意味着针对另一单元交换预定义资源量,由此承担损失风险。

如上所述,保险系统使用资源合并系统合并相关联的风险暴露组件的资源和风险。然而,为了避免操作不稳定性,保险系统上的此类资源合并系统常常耦合到一个或更多个其它资源合并系统以便重新分配其合并的风险的部分。对应地,待涵盖的损失可由那些耦合的保险系统分段,其中为了从一个保险系统切换到另一保险系统,最优风险转移结构必须由所述系统提供。提供最优再保险解决方案的问题为保险系统的经典问题,这是由于耦合的次要资源合并系统(例如,再保险系统)的适当使用常为用于管理和减轻主要系统的风险暴露和用于保证针对必要资源的最小合并的操作稳定性和操作最佳模式实践的有效风险管理工具。然而,有关有效性取决于最优化的风险转移结构的选择。通常,最优耦合保险系统的技术难题可定义为优化的问题;意味着目标为在不同边界准则(例如,在险值或条件在险值的准则)下使保险系统的总风险暴露最小化,即,通过发现重新分配的保险风险份额的益处(通过购买再保险份额而减少风险)与成本(保险费)之间的最优平衡。因此,本发明的目标解决耦合两个资源合并系统(其中目标为合并相关联的组件的风险暴露)和基于适当的风险转移结构寻求更好且更有效的技术实施方案的技术难题。

现有技术指定解决以上所提到的问题的多个系统。举例来说,US 2004/0236698 A1描述一种用于在两个耦合的系统(确切地说,保险和再保险系统)之间的自动化的风险管理交易的系统。此系统提供直接在风险合并系统之间的保险费和损失支付的转移。另外,所述系统允许两个耦合的系统之间的交互,这允许关于再保险产品的决策功能。然而,US 2004/0236698 A1未描述应如何针对具体保险系统设计损失转移结构,或保险系统应如何针对确定其自身的风险的减轻的过程优化其自身的风险暴露。在自动化的风险转移系统的领域中的已知现有技术的另一示例为US 2011/0112870 A1。US 2011/0112870 A1公开一种用于确定用于指派的百分比(即,在保险合并中的与转移有关的风险)的系统,其中经由基于再保险合同的预定义的转移具体条件的次要资源合并系统共享转移的风险。所述系统主要允许自动提供关于转移到在保险人的系统和再保险人的系统中的受制资源合并系统的损失的信息。然而,US 2011/0112870 A1未公开用于确定实际风险转移的量的一般方法。在最优风险转移策略的领域中的现有技术专利的再一示例为US 7,970,682 B1。US 7,970,682 B1公开一种系统,其为了适应长期存在的不利条件的暴露的目的、为了达成到第三方(再保险人)的显著风险转移、为了减少对冲资产和不利条件之间的潜在财务报告不一致、为了较少运作风险和最后为了具有较少的对顺延风险的暴露(归因于对冲器具的成本的改变)而自动提供主要资源合并系统的风险转移结构;即,实际上,用于确保主要资源合并系统的操作稳定性的工具。US 7,970,682 B1不具体针对优化主要资源与风险合并系统的合并的风险的风险转移结构;取而代之,US 7,970,682 B1为用于主要保险系统的风险策略的优化的另一示例。然而,现有技术不提供用于通过在使用不同份额的若干层中的风险转移函数的分段进行灵活风险转移模型化的系统,这允许次要资源合并系统的合并的资源(保险费)与用于主要资源合并系统的操作稳定性的适当益处等级之间的个别优化。

总之,在现有技术中,其中操作至少部分基于风险转移方案或结构的现有系统以许多不同形式出现,其中其常常具有非常不同的目标和操作方法。然而,通常,现有技术系统的一系列方案或结构具体针对一个特定地点、部门或国家,支持不存在在现有技术中的“一刀切”解决方案的观点。此外,现有技术系统的优化受限于其基于的其结构,即,按比例或非比例方法。因此,现有技术系统的优化技术上按比例或非比例受束缚于其所选择的风险转移结构。因此,现有技术系统技术上不允许通过确定适当调适的风险转移函数、此外不通过借助于系统的动态或半动态自调适的风险转移结构而进行灵活、完全针对问题调适的优化。从现有技术系统开始,构建和评估风险转移结构的有效性和可持续性(确切地说,在互补耦合的系统的自适应的情况下)为技术难题。这超出了纯经济成本收益分析,且其需要包含在归因于优化风险转移结构而改变风险等级的情况下不同优化目标的辨识,例如,方案的脆弱性降低、商业可行性、可负担性和财务可持续性,但是为基于此类系统自身的构造技术的技术难题。



技术实现要素:

本发明的一个目标为提供一种用于通过提供针对风险暴露组件的动态、自给自足的风险保护来共享可变数目个风险暴露组件的风险事件的风险的系统和方法;这借助于主要资源合并系统达成,主要资源合并系统通过使用优化的风险转移结构到至少一个次要资源和风险合并系统的适当部分风险转移来稳定化和优化。确切地说,所述系统提供在两个耦合的系统之间的自动化的切换机制且提供用于系统的优化的措施。本发明的再一目标设法提供技术捕获、处置和自动化复杂的有关风险转移结构和与最优共享的风险和转移操作有关的保险行业的切换操作的方式。本发明的另一目标设法基于技术方式同步和调整此类操作。与标准实践不同,资源合并系统按依赖于技术方式、过程流程和过程控制/操作的所要的基于技术的重复准确性来创造可再生的操作。

根据本发明,这些目标确切地说通过独立权利要求的特征而达成。此外,可从从属权利要求和有关描述得出进一步有利的实施例。

根据本发明,达成用于互补切换两个耦合的自主操作的保险系统的以上所提到的目标,所述保险系统是为了可变数目个风险暴露组件的自给自足的风险保护的目的而提供,确切地说,其中预见到包含事件触发的切换装置的系统;且所述切换装置用与保险系统相关联的两个耦合的自动化的资源合并系统操作,且其中风险暴露组件借助于多个第一支付转移模块连接到第一保险系统的系统,第一支付转移模块被配置为接收且存储来自风险暴露组件的支付以用于合并其风险,且其中第一资源合并系统借助于第二支付转移模块连接到第二保险系统的第二资源合并系统,第二支付转移模块被配置为接收和存储来自第一保险系统的资源合并系统的支付以用于将风险暴露组件的合并的风险的分段层从第一保险系统转移到第二保险系统;且其中切换装置包括自上而下表,其提供用于存储包括指派的段值的多个可变风险转移段的数据结构,且其中可适应的风险转移函数由多个可变风险转移段的结构借助于组合件模块提供;且其中借助于切换装置的芯引擎,将支付参数指派到自上而下表的每一可变风险转移段且累积以形成总支付总和,且其中切换装置包括捕获装置用于捕获从第一支付转移模块到第二支付转移模块的支付转移参数,且其中,在于第二支付转移模块处触发了总支付总和的转移后,与可变风险转移段相关联的第一保险系统的风险暴露被转移到第二保险系统;其中芯引擎包括在与风险暴露组件相关联的测量装置的数据流路径中触发用于风险事件的发生的信号的事件驱动触发器,且其中,在数据流路径中的风险事件的发生的触发的情况下,对应的可变风险段在自上而下表内借助于芯引擎确定,确切地说,基于测量的实际损失;且其中,在风险事件的发生的情况下,基于确定的可变风险段和测量的实际损失借助于切换装置产生启动信号,且其中切换装置通过将启动转移到第一和/或第二资源合并系统以提供针对风险暴露组件的风险保护,借助于产生的启动信号来触发第一和第二资源合并系统的互补启动。对于存储的风险段中的每一个,用于存储可变风险转移段的自上而下表的数据结构可至少(例如)包括指示可变风险转移段的大小的参数和指派到自上而下表的每一可变风险转移段的支付参数。另外,数据结构可例如包括指示累积的总支付总和的参数,第二资源合并系统需要来自第一资源合并系统的所述累积的总支付总和以用于借助于可变风险转移段转移对应于定义的风险转移结构的风险。与风险事件相关联且分派有合并的风险暴露组件的损失可例如明显地由第一保险系统的第一资源合并系统涵盖,例如,借助于支付从第一资源合并系统到所述风险暴露组件的转移,且其中支付从第二资源合并系统到第一资源合并系统的第二转移是基于自上而下表内的确定的可变风险段和由组合件模块提供的风险暴露组件或可适应的风险转移函数的测量的实际损失借助于产生的启动信号来触发。然而,作为体现的变型,还有可能对应于如由对应的风险段定义的转移到第二资源合并系统的风险的损失直接由第二资源合并系统涵盖,其中资源从第二资源合并系统转移到所关注的风险暴露组件。本发明尤其具有以下优势:系统提供用于优化耦合的资源合并系统的耦合和切换的技术方式,由此提供风险暴露的组件的有效风险保护。本发明的系统进一步允许更灵活的风险转移结构;这是通过将风险转移函数分段到具有不同份额的若干层内来达成,而非使用纯粹的比例或非比例风险转移结构。此外,风险结构易于通过第一和/或第二资源合并系统而可适应于技术或其另外个别条件和要求。分段允许风险转移结构到保险系统的具体要求的优化的调整;即,主要保险系统的风险暴露。归因于风险转移结构和/或函数的更好的调整,提供的解决方案可提供比例和非比例风险转移的优势。对于优化的保险系统耦合和切换的需求为保险技术的领域中的典型技术难题;且风险转移耦合结构的适当使用为用于有效且优化的风险管理工具的必要要求,以为了管理和减轻主要资源合并的风险暴露的目的。然而,有效性取决于最优化的风险转移结构的选择,其在两个耦合的系统的切换功能性的情况下实施。本发明基于管理两个耦合的风险转移系统的经典流行的利益来提供优化的耦合,从而寻求基于适当风险转移结构的更好且更有效的操作和策略。此外,系统具有较小合并的资源(与传统耦合的资源合并系统大不相同)足够允许系统的安全操作的优势。此外,系统的操作方面对操作者以及涵盖的风险单元透明,这是由于支付是响应于个别可适应的风险转移结构转移且在信息路径的情况下与某些可定义的触发器有关。最后,本发明的系统提供用于优化风险转移的服务中下面的风险转移结构和通过使用不同共享的若干层共享两个耦合的保险系统的新模态,由此允许(例如)组合比例与非比例风险转移的优势。

在一个体现的变型中,切换装置可例如包括捕获构件,其捕获从第二支付转移模块处的第一保险系统指派到可变风险转移段中的一个的支付的转移,其中指派的可变风险转移段被启动,且其中与指派的可变风险转移段相关联的第一保险系统的风险暴露被转移到第二保险系统。此实施例变型尤其具有以下优势:还可启动单一风险段,从而允许从第一到第二资源合并系统的截然不同且离散的风险转移。

在另一体现的变型中,仅如果无缝风险转移函数可由风险转移段的结构提供,那么与自上而下表的可变风险转移段相关联的第一保险系统的风险暴露转移到第二保险系统,风险转移段借助于组合件模块提供风险转移函数性。此体现的变型尤其具有以下优势:避免了非连续风险转移结构的问题,例如,其可为当借助于组合件模块处理系统的风险转移结构(即,下面的风险转移函数性)的优化时的问题。

在再一体现的变型中,风险转移函数性由多个存储的可变风险转移段组成,其中所述第一资源合并系统包括在将支付总和从第一资源合并系统转移到第二资源合并系统前存取和调适可变风险转移段中的每一个的指派的段值的接口模块。此体现的变型尤其具有以下优势:风险转移结构可动态地调整,且此外,由第一资源合并系统或相关联的保险系统直接地选择和/或优化。

在再一体现的变型中,切换装置的组合件模块包括用于处理与风险有关的组分数据和用于为合并的风险暴露组件中的一个或多个提供关于所述风险暴露的可能性的数据(确切地说,基于与风险有关的组分数据)的构件,且其中可基于总的风险和/或合并的风险暴露组件的风险暴露的可能性动态确定为了其风险的合并而来自风险暴露组件的支付的接收和预调节的存储。此体现的变型尤其具有以下优势:可将第一和/或第二资源合并系统的操作动态调整到关于合并的风险组件的合并的风险(例如,环境条件或风险分配的改变或类似者)的改变条件。再一优势是系统当在不同环境、地点或国家中操作时不需要任何手动调整,因为风险暴露组件的支付的大小直接与总合并的风险有关。

在一个体现的变型中,切换装置的组合件模块包括用于处理与风险有关的组分数据和用于为合并的风险暴露组件中的一个或多个提供关于所述风险暴露的可能性的信息(确切地说,基于与风险有关的组分数据)的构件,且其中可基于总风险和/或合并的风险暴露组件的风险暴露的可能性动态确定用于其风险的转移的从第一资源合并系统到第二资源合并系统的支付的接收和预调节的存储。此体现的变型尤其具有以下优势:可将第一和/或第二资源合并系统的操作动态调整到合并的风险组件的合并的风险(例如,环境条件或风险分配的改变或类似者)的改变条件。再一优势是以下事实:系统当在不同环境、地点或国家中操作时不需要任何手动调整,因为风险暴露组件的支付的大小直接与总合并的风险有关。

在一个体现的变型中,借助于第一资源合并系统将合并的风险暴露组件的数目动态调整到一个范围,在所述范围中,由资源合并系统涵盖的非协变发生的风险在任何给定时间只影响总的所合并风险暴露组件中的相对小的比例。类似地,第二资源合并系统可例如动态调整从第一资源合并系统转移到一个范围的合并的风险的数目,在所述范围中,由第二资源合并系统涵盖的非协变发生的风险在任何给定时间只影响从第一资源合并系统的总的所合并风险转移中的相对小的比例。此变型尤其具有以下优势:系统的操作和财务稳定性可得以改善。

在一个体现的变型中,基于用于一个或多个风险事件的与时间相关的发生率数据借助于操作模块动态调整风险事件触发器。此体现的变型尤其具有以下优势:捕获风险事件或避免此类事件的发生的改善(例如,通过改善的预报系统等)可由系统动态捕获,且基于合并的风险暴露组件的总风险动态影响系统的总体操作。

在另一体现的变型中,在发生的每一触发后,其中指示风险事件的参数借助于至少一个风险事件触发器测量,对总参数支付分派触发,且其中在发生的触发后,总分派的支付可转移。预定义的总支付可例如调平到任何适当总额,例如,预定义值,或与风险暴露组件的总的总转移的风险和周期性支付的量有关的任何其它总和。此变型尤其具有以下优势:参数支付或预定义量的支付,如在体现的变型中,其也可取决于第一、第二、第三或多个触发等级,即,不同的触发阶段,且允许总和的被调整的支付,其可例如取决于如由系统触发的风险事件的发生的阶段。

在一个体现的变型中,借助于资源合并系统的监控模块请求经由多个支付接收模块从风险暴露组件到资源合并系统的周期性支付转移,其中当周期性转移不再可借助于监测模块检测时,针对风险暴露组件的风险转移或保护由监测模块中断。作为变型,当在风险暴露组件的数据流路径中触发用于风险事件的指示器的出现时,对周期性支付转移的请求可借助于监测模块来自动中断或放弃。这些体现的变型尤其具有以下优势:所述系统允许监视操作(尤其其关于合并的资源的操作)的进一步自动化。

在再一体现的变型中,在风险暴露组件的数据流路径中借助于风险事件触发器而触发用于风险事件的指示器的出现的情况下,启动第一和/或第二资源合并系统的独立验证风险事件触发器,且其中在关于风险事件的指示器在替代数据流路径中出现的情况下,独立验证风险事件触发器另外用来自主要数据流路径的独立测量参数发出触发,以便验证在风险暴露组件处的风险事件的发生。在此变型中,如果在风险暴露组件处的风险事件的发生由独立验证风险事件触发器验证,那么支付的转移只指派到对应的风险暴露组件。这些体现的变型尤其具有以下优势:系统的操作和财务稳定性可因此得以改善。此外,所述系统相对于欺诈和伪造不太容易受影响。

在体现的变型中,提供一种系统,其用于通过借助于能够合并资源和吸收转移的风险的自动化的资源合并系统提供可变数目个风险暴露组件的自给自足的风险保护而进行自主操作的风险转移系统的自适应操作,其中所述风险暴露组件借助于经配置用于接收和存储来自风险暴露组件的支付以用于其风险的合并的支付转移模块连接到资源合并系统。风险转移系统可包括或相关联于保险系统(例如,主要保险系统),或能够吸收转移的风险的任何种类的财务系统或商业单元。举例来说,用于风险转移的本发明的系统可适用于或扩展到基于资产的系统,如金融机构的操作单元等。在此体现的变型中,切换装置包括自上而下表,其提供用于存储多个可变风险转移段的数据结构,所述多个可变风险转移段包括提供用于合并的风险的分段的部分的度量的指派的段值,其中可适应的风险转移函数由所述多个可变风险转移段的结构借助于组合件模块提供。借助于切换装置的芯引擎,支付参数被指派到自上而下表的每一可变风险转移段且在所有可变风险转移段上累积到总支付总和,其中切换装置包括用于从风险暴露组件到支付转移模块捕获支付转移参数的捕获装置,且其中,在于支付转移模块处触发了总支付总和的转移后,指派到支付总和的转移的风险暴露组件的风险暴露被转移到保险系统。芯引擎包括用于在数据流路径中触发与用于风险事件的发生的风险暴露组件相关联的测量装置的事件驱动触发器,且其中,在风险事件在数据流路径中发生的触发的情况下,基于测量的实际损失,借助于芯引擎,在自上而下表内确定对应的可变风险段。在风险事件的发生的情况下,基于确定的可变风险段和测量的实际损失,借助于切换装置产生启动信号,其中切换装置通过将启动转移到资源合并系统来借助于产生的启动信号触发资源合并系统的启动以将风险保护提供到风险暴露组件,且其中资源合并系统的启动是基于可适应的风险转移函数。

除如上文所描述的系统和对应方法之外,本发明还涉及一种计算机程序产品,其包含用于以使得控制系统执行所提议的方法的方式控制控制系统的一个或更多个处理器的计算机程序代码构件;且其确切地说涉及一种包含计算机可读媒体的计算机程序产品,所述计算机可读媒体在其中含有用于处理器的计算机程序代码构件。

附图说明

将借助于示例参看附图更详细解释本发明,在附图中:

图1示出了示意性地说明具有事件触发的切换装置11的示范性系统1的框图,事件触发的切换装置11用于通过借助于两个自动化的资源合并系统10、12提供可变数目个风险暴露组件21、22、23的自给自足的风险保护来互补切换两个耦合的自主操作的保险系统。切换装置11包括可适应自上而下表7,其提供用于存储包括指派的段值511、512、513的多个可变风险转移段721、722、723的数据结构711、712、713,其中可适应的风险转移函数73由段721、722、723的结构74提供。

图2示出了示意性地说明使用比例或非比例切换结构的现有技术系统的耦合结构的框图。

图3示出了示意性地说明与基于优化的风险转移函数的优化的耦合结构不同的使用比例或非比例切换结构的现有技术系统的耦合结构的框图。

图4和图5示出了示意性地说明由多个可变风险转移段721、722、723借助于切换装置11的自上而下表7进行的风险转移结构的示范性分段的框图,所述示范性分段包括用于合并的风险的分段的部分的指派的段值511、512、513,即,到第一资源合并系统的总合并的风险的特定风险比重51i。

图6示出了示意性地说明如由组合件模块5的计算引擎进行的示范性总体优化过程的框图。为了借助于组合件模块5的计算引擎开始优化过程,可例如使用作为如总风险转移成本除以资本成本的比率的广泛公认的量的标准值。

具体实施方式

图1示意性地说明用于具有事件触发的切换装置11的系统1的实施例的可能实施方案的架构,所述事件触发的切换装置11用于通过借助于与保险系统相关联的两个自动化的资源合并系统10、12提供可变数目个风险暴露组件21、22、23的自给自足的风险保护来进行两个耦合的自主操作的保险系统的互补切换。在图1中,参考数字1指用于向与风险暴露组件21、22、23……有关的优化的风险保护提供相关联的耦合的资源合并系统10、12的系统。借助于切换装置11耦合、操控和/或操作的资源合并系统10、12提供用于可变数目个风险暴露组件21、22、23的动态自给自足的风险保护和对应的风险保护结构;即,暴露于定义的风险事件的单元,其中借助于适当测量装置和/或在输出数据的数据流路径中触发的触发器模块,此类风险事件的发生是可测量且可触发的;即,测量测量装置的参数。系统1包含至少一个处理器和相关联的存储器模块。系统1还可包含一个或更多个显示单元和操作元件,例如,键盘和/或图形指向装置(例如,计算机鼠标)。资源合并系统10和12为包括可由服务提供商出于风险转移的目的在风险转移或保险技术的领域中使用的电子构件的技术装置,因为其涉及可测量的风险事件的发生。本发明设法通过技术方式捕获、处置和自动化自动化的保险系统的复杂的有关操作,确切地说,尽力优化耦合的系统的交互,且减少操作要求。提出的另一方面为发现同步和调整与资源合并系统的耦合或切换有关的此类操作的方式,基于技术方式在风险暴露单元的经证明的风险保护下引导所述操作。与标准实践不同,资源合并系统还按所要的技术重复准确性达成可再生的动态可调整操作,因为其完全基于技术方式、过程流程和过程控制/操作。

切换装置11和/或资源合并系统10和12包括组合件模块5,其用于处理与风险有关的组分数据211、221、231和用于基于与风险有关的组分数据211、221、231提供用于合并的风险暴露组件21、22、23中的一个或多个的所述风险暴露的可能性212、222、232。资源合并系统10和12以及切换装置11可实施为被开发和实施以通过多个(但至少一个)支付转移模块41和42提供风险转移的技术平台。风险暴露组件21、22、23等借助于多个支付转移模块41连接到资源合并系统10,所述多个支付转移模块被配置为接收和存储来自风险暴露组件21、22、23的支付214、224、234以用于其风险在支付数据存储装置61中的合并。可通过转移和存储组件特定支付参数来实施支付的存储。可基于总体合并的风险暴露组件21、22、23的总风险借助于资源合并系统10动态确定支付金额。为了资源的合并,系统1可包括监测模块8,其借助于支付转移模块41请求从风险暴露组件21、22、23等到资源合并系统1的周期性支付转移,其中当周期性转移不再借助于监测模块8可检测时,对于风险暴露组件21、22、23的风险保护由监测模块8中断。在一个体现的变型中,当在风险暴露组件21、22、23的数据流路径中触发用于风险事件的指示器的出现时,对于周期性支付转移的请求借助于监测模块8自动中断或放弃。类似地,第一资源合并系统10借助于第二支付转移模块42连接到第二保险系统的第二资源合并系统12,所述第二支付转移模块42经配置用于接收和存储来自第一保险系统的资源合并系统10的支付以用于与风险暴露组件21、22、23的合并的风险50相关联的风险从第一保险系统10转移到第二保险系统12。两个互补的自主操作的资源合并系统10、12的耦合和切换由事件触发的切换装置11达成,以用于产生适当的操控信号且将其传输到第一和第二资源合并系统10、12。

如图1中所指示,系统1包含用于捕获与风险有关的组分数据的数据存储模块和多个功能模块;例如,即,支付转移模块41和42、具有风险事件触发器31、32的芯引擎3、组合件模块5或操作模块30。功能模块可至少部分实施为存储在计算机可读媒体上的被编程的软件模块,固定或可去除地连接到系统1的处理器或到相关联的自动化的系统。然而,所属领域的技术人员应理解,所述功能模块还可完全借助于硬件组件、单元和/或适当实施的模块实施。如图1中所说明,系统1和其组件(确切地说,第一和第二资源合并系统10、12、切换装置11、触发模块31、32、具有接口213、223、232的测量装置215、225、235、组合件模块5和支付转移模块41、42)可经由网络91(例如,电信网络)连接。所述网络91可包含硬连线或无线网络;例如因特网、GSM网络(全球移动通信系统)、UMTS网络(通用移动电信系统)和/或WLAN(无线本地区域网络)和/或专门点对点通信线路。在任何情况下,用于目前系统的与技术电子货币有关的设置包括充分的技术、组织和程序保障以防止、含有和检测对结构的安全的威胁,确切地说,伪造威胁。此外,资源合并系统10、12包括用于电子货币转移和联系关联的所有必要技术方式;例如,如由一个或更多个相关联的支付转移模块41、42经由电子网络起始。货币化参数可基于任何可能的电子和转移方式,例如,e货币、e钱币、电子现金、电子货币、数字钱币、数字现金、数字货币或网络货币等,其仅可电子交换。第一和第二支付数据储存装置61、62提供用于关联和存储与合并的风险暴露组件21、22、23中的单个风险暴露组件相关联的货币化参数的方式。本发明可涉及使用提到的网络,例如,计算机网络或电信网络,和/或因特网和数字存储的价值体系。电子资金转移(EFT)、直接存款、数字金币和虚拟货币为电子货币模态的另外示例。并且,转移可涉及例如财务密码术和用于实现此类转移的技术的技术。对于货币化参数的交易,优选的是,使用硬电子货币,而无争论或退回收费的技术可能性。资源合并系统10、12支持(例如)不可逆的交易。此布置的优势是,电子货币系统的操作成本因不必解决支付争端而大大减少。然而,以此方式,电子货币交易立即兑现也是可能的,从而使资金可立即为系统10、12可用。这意味着使用硬电子货币相当类似于现金交易。然而,还可设想使用软电子币种,例如,允许支付撤销的货币,例如,具有72小时或类似者的“兑现时间”。电子货币化参数交换的方式适用于与本发明的资源合并系统10、12有关的所有连接的系统和模块,例如,第一和第二支付转移模块41、42。到第一和第二资源合并系统10、12的货币化参数转移可分别由支付转移模块41、42或在由有关资源合并系统10或12请求后起始。

系统1包括事件驱动的芯引擎3,其包括用于触发指派的风险暴露组件21、22、23的数据流路径213、223、233中的组件特定测量参数的风险事件触发器31、32。数据流路径213、223、233可例如由系统借助于经由接口213、223、233连接到数据流路径9的测量装置215、225、235监测;确切地说,其可由资源合并系统10和/或12和/或切换装置11监测,由此至少周期性地和/或在预定义时间周期内捕获数据流路径213、223、233的与组件有关的测量参数。根据体现的变型,数据流路径213、223、233也可例如由系统1动态监测,例如,通过触发从相关联的测量系统215、225、235传输的数据流路径213、223、233的组件测量参数。触发数据流路径213、223、233(包括关注的风险暴露组件21、22、23的动态记录的测量参数),系统1能够基于预定义的触发参数检测预定义的风险事件的发生。另外,系统1也可例如在风险事件对风险暴露组件21、22、23的影响的发展期间动态监测不同阶段,以便提供针对具体风险暴露组件21、22、23的适当调适和降级的风险保护。基于所有合并的风险暴露组件21、22、23的总体转移风险,此风险保护结构是基于来自有关风险暴露组件21、22、23的接收和存储的支付214、224、234,和/或与资源合并系统10的总风险50有关。

切换装置11包括自上而下表7,例如,实现为可搜索的、层级结构的数据散列表。自上而下表7提供阶层式数据结构711、712、713以用于借助于指派的段值511、512、513存储多个可变风险转移段721、722、723。以此方式,第i个可变风险转移段721、722、723包括用于总合并的风险50的分段的层的一部分(即,第i个风险比重的一部分)的第i个测量。借助于合并的风险的分段的风险层的部分的测量,可适应的风险转移函数73由多个可变风险转移段721、722、723的结构74借助于组合件模块5提供。举例来说,风险转移函数73可通过内插指派的段值511、512、513作为支持点或内插点借助于组合件模块5来产生。为了连接由可变风险转移段721、722、723的自上而下结构结构化的支持内插点(即,段值511、512、513),组合件模块5可提供用于风险转移函数73的多项式或任何其它适当方法,从而使不同段值511、512、513相互有联系。由组合件模块5产生且应用于结构74的风险转移函数73可例如包括适当的参数化或内插函数,例如,任何适当的连续和/或无级和/或平滑和/或分析和/或多项式和/或拉格朗日函数。然而,组合件模块5还可选择到结构74的更简单的函数,例如,分别凸和/或凹和/或指数结构和函数,以便提供正确的风险转移。作为边界情况,风险转移结构可甚至例如采用基于段值511、512、513的典型的免损限度结构。适当风险转移函数73的选择可例如由系统1基于例如可定义的选择准则从风险转移函数的预定义的集合半自动或全自动的执行。作为变型,组合件模块5也可通过连接指派的段值511、512、513(作为在所有指派的段值511、512、513上内插或另外构建平滑连接的风险转移的支持点,例如,以连续可调整方式)来提供风险转移,即,适当转移函数73。作为额外实施例变型,用于提供风险转移函数73的到组合件模块5的输入可例如直接为风险转移函数73的可参数化形式的参数,即,任何适当连续和/或无级和/或平滑和/或分析和/或多项式和/或拉格朗日和/或凸/凹入和/或指数函数。在后者实施例变型中,系统1的风险转移函数73不基于具有指派的段值511、512、513的风险转移段721、722、723,而直接基于表示风险转移结构73的函数的参数。因此,在此情况下,由第一保险系统10和/或风险暴露组件进行的风险转移的调整或优化直接由适当风险转移函数73的操作参数达成。相比之下,作为再一变型,由系统1执行的风险转移可例如借助于指派的段值511、512、513直接基于可变风险转移段721、722、723,其中指派的段值511、512、513的值表示将高于或低于段值511、512、513的风险转移到第二保险系统12的风险转移的切换阈值。在此实施例变型中,由结构74提供的风险转移并非无级,然而,在可变风险转移段721、722、723的边界(边缘)到非常小的宽度中,风险转移段721、722、723越来越借助于指派的段值511、512、513接近无缝和/或无级风险转移函数。

在再一实施例变型中,风险转移段721、722、723的段值511、512、513借助于系统1自调适,由此优化所得风险转移函数73。然而,优化也可由专用外部构件执行。系统1和/或专用外部构件可例如操作优化,直到分别达成局部或全局最大值或最小值,或直到达成预定义的目标值。最后,优化可基于优化准则的不同集合或通过具体选择优化准则的某一集合。作为用于优化的条件,显然,风险转移结构74和指派的风险转移函数73应与假定或预测的风险有关,并且优选地,如果风险评估正确,风险转移结构74和指派的风险转移函数73应与对应的风险事件在定义的时间框内发生有关。在实施例变型中,可考虑频率与严重性之间的折衷作为边界条件,以达成优选的或优化的风险转移,其中严重性为随风险事件的发生而来的条件预期损失(CEL),且风险事件的发生的频率和/或损失的频率为第一经济损失的概率(PFL)。一般来说,为了定义优化参数,可例如选择方法,其中X表示由在不存在耦合的第二保险系统12的情况下的第一保险系统10评估的损失,其中假定X为概率空间上的非负随机变量,其中累积分布函数且E[X]<∞。优化参数与将X最优分割成f(X)和Rf有关,其中X=f(X)+Rf(X)。此处,f(X)满足0≤f(X)≤X,捕获转移到耦合的第二保险系统12的损失的部分,而Rf为由第一保险系统10保留的残余损失,即,其中第二保险系统12的启动不借助于切换装置11而发生。换句话说,f(X)可被作为放弃的损失函数参考,而Rf(x)为保留的损失函数。优化准则可例如为变化参数以便最小化第一保险系统10的保留的损失的方差,例如,在从第一保险系统10转移到第二保险系统12的支付通过预期值原理产生的假定下。然而,可例如在任何方向上扩展优化准则,包含进一步优化准则或支付转移原理,例如,考虑包含标准差原理和方差原理的平均方差保险费原理。其它优化准则可例如通过应用风险测量(例如,用于量化风险的在险值(VaR)或条件在险值(CVaR))来达成,确切地说,例如,通过在预期值保险费原理的假定下最小化第一保险系统10的总风险暴露的VaR或CVaR。另外,可例如合并约束,反映收益性保证或从第一保险系统10到第二保险系统12的最大可转移支付量。然而,可以借助于系统1研究具体风险转移问题所需要的任何形式应用进一步优化准则和约束。最后,在体现的变型中,当无缝风险转移函数73可由风险转移段721、722、723的结构74提供时,与自上而下表7的可变风险转移段721、722、723相关联的第一保险系统10的风险暴露仅转移到第二保险系统12,因此借助于组合件模块5提供风险转移函数73。用于存储可变风险转移段721、722、723的自上而下表7的数据结构711、712、713可至少例如包括用于存储的风险段721、722、723中的每一个的参数(指示可变风险转移段721、722、723的大小)和指派到自上而下表7的每一可变风险转移段721、722、723的支付参数731、732、733,且其中数据结构711、712、713包括指示累积的总支付总和的参数。

借助于切换装置11的芯引擎3,基于到第二资源合并系统12的风险转移函数,将支付参数731、732、733指派到自上而下表7的每一可变风险转移段721、722、723用于第一资源合并系统10的合并的风险的具体部分的转移。使支付参数731、732、733累积到总支付总和,其中切换装置11包括捕获装置111,用于捕获从第一支付转移模块41到第二支付转移模块42的支付转移参数731、732、733。在于第二支付转移模块42处触发总支付总和的转移后,与可变风险转移段721、722、723相关联的第一保险系统10的风险暴露已转移到第二保险系统12。在体现的变型中,切换装置11可进一步包含捕获构件11,用于捕获从在第二支付转移模块42处的第一保险系统10指派到可变风险转移段721、722、723中的一个的支付的转移,且其中指派的可变风险转移段721、722、723被启动,且其中与指派的可变风险转移段721、722、723相关联的第一保险系统10的风险暴露转移到第二保险系统12。

另外,芯引擎3包括事件驱动触发器31、32,用于在风险事件发生时触发与风险暴露组件21、22、23相关联的测量装置215、225、235的数据流路径213、223、233中的动作。数据流路径213、223、233可连接到总体数据流路径9和/或连接到网络91,如上所述。出于允许对测量装置215、225、235的数据存取的目的,测量装置215、225、235包括接口213、223、233。如果在数据流路径9中触发风险事件的发生,那么基于测量的实际损失借助于芯引擎3在自上而下表7内确定对应的可变风险段721、722、723,且基于确定的可变风险段721、722、723和测量的实际损失借助于切换装置11产生对应的启动信号,其中切换装置11通过转移启动到第一和/或第二资源合并系统10、12借助于产生的启动信号触发第一和第二资源合并系统10、12的互补启动,以便对风险暴露组件21、22、23提供风险保护。以此方式,本发明提供具有相关联的资源合并系统10、12的耦合且互补切换式保险系统的最大的灵活性和最优技术解决方案。本发明允许组合比例与非比例风险转移结构的优势。另外,如上所述,本发明的系统1是基于明确的优化过程,其中优化准则也可针对边界准则的考虑来实施,如由风险暴露组件21、22、23和/或第一和/或第二资源合并系统的要求提供。此外,系统的一个基本方面为可使转移的风险份额仅取决于与关于风险暴露组件21、22、23的风险事件的影响相关联的损失大小。风险份额取决于损失大小的操作模式可由系统1的适当构件优化。对于优化的风险转移的需求随增大的损失大小而强化;因此,为了风险转移系统的操作稳定性,可技术上有利地确保风险转移被实施为损失大小的单调增加函数。在风险转移前后,也可例如将优化准则与转移到第一资源合并系统10的总体风险(即,第一资源合并系统10的风险组合)比较。以此方式,系统1能够借助于经调适的优化准则和/或可变风险转移段721、722、723,用段值511、512、513优化转移的支付参数(保险费)之间的支付和用于到第一资源合并系统的权益(例如,减小的易失性、减小的资本成本等)的适当测量,其中其对系统1或耦合的保险系统10、12的操作稳定性可能有影响。用于优化过程的另外边界准则可包括易失性减少对转移到第二资源合并系统的支付(例如,再保险保险费)、合并的资源减少的成本(第一资源合并系统10处的资本减少)对再保险保险费、第一资源合并系统10的合并的风险(风险组合)的平衡的增大对转移的支付(再保险保险费)和其任何组合等。确切地说,本发明可为用于仅耦合到一个次要保险系统的保险系统和/或在当总体保留为易失性和/或组合(部分)不平稳和/或规章约束妨碍符合保险系统的收益性操作的情况下的技术解决方案。

一个体现的变型提供分段直接由第一资源合并系统10可定义和/或可适应。因此,对于由多个存储的可变风险转移段721、722、723构成的风险转移函数73,第一资源合并系统10可包括接口模块,其用于在支付总和从第一资源合并系统10转移到第二资源合并系统12前存取且调适可变风险转移段721、722、723中的每一个的指派的段值。切换装置11的组合件模块5可包括用于处理与风险有关的组分数据211、221、231和用于基于与风险有关的组分数据211、221、231提供用于合并的风险暴露组件21、22、23中的一个或多个的所述风险暴露的可能性212、222、232的构件,且其中可基于总风险(50)和/或合并的风险暴露组件21、22、23的风险暴露212、222、232的可能性动态确定来自风险暴露组件21、22、23的用于其风险的合并的支付214、224、234的接收和预调节的存储61。切换装置11的组合件模块5也可包括用于处理与风险有关的组分数据211、221、231和用于基于与风险有关的组分数据211、221、231提供关于合并的风险暴露组件21、22、23中的一个或多个的所述风险暴露的可能性212、222、232的构件,且其中可基于总风险50和/或合并的风险暴露组件21、22、23的风险暴露212、222、232的可能性动态确定从第一资源合并系统10到第二资源合并系统12用于其风险的转移的支付214、224、234的接收和预调节的存储6。在一个体现的变型中,可基于用于一个或多个风险事件的与时间相关的发生率数据借助于操作模块30动态调适风险事件触发器31、32。在借助于至少一个风险事件触发器31、32测量指示风险事件的参数的发生的每一触发31、32后,总参数支付由触发分派,且其中在发生的触发事件后,总分派的支付可转移。

本发明的一个关键点解决如何在低调水平上借助于系统1确定最优风险转移函数的问题;即,寻求优化函数放弃的份额=f(Loss Size)。从现有技术系统,已知风险转移的两个基本概念;即,耦合独立操作的保险系统10、12:其为借助于比例或配额(QS)结构的风险转移,和借助于非比例(NP)结构的风险转移。图2示出了作为放弃的份额的函数的损失大小(有时也由相反情况表示:放弃的份额=f(Loss Size))。就操作不稳定性来说,两个概念易于有缺点;此外,其不灵活以便允许实施关于耦合的系统10、12的真正优化的风险转移结构。另外,虽然从经济和操作性观点看来,NP风险转移结构似乎更靠近符合适当风险转移的目的,QS解决方案在风险转移技术的许多领域中仍然是标准。在现有技术中,关于应选择哪一系统的决策只是基于两个风险转移结构的利弊。虽然QS风险转移结构具有关于灭失记录和绝对免赔额的更多透明度,且其更简单且更透明,但基于QS结构的系统中的风险转移处于接近频率区中,由此不经济;另外,操作步骤和成本繁琐,甚至无触发的损失;这伴有在偏离的风险评估的情况下冲突可能性的风险的大大增大。相比之下,NP风险转移结构化的系统能够考虑个别风险评估,需要较少操作步骤、较少精力和成本,且证实了与优化的资本管理的概念的优越遵从性。然而,NP结构化的系统从直接损失测量和控制分开第二资源合并系统12(即,风险转移接受者)的操作。另外,在一些方面,归因于xs点(即,风险转移的点)的确定,其为任意的,且损失减轻成本共享常为不能通过技术方式恰当解决的问题。最后,这些系统限于非连续风险转移结构。如先前所提到,对于风险转移的需求随增大的损失大小而强化。因此,如图3所示,例如基于单调增加的风险转移结构实施风险转移结构应为可能的。然而,不存在克服现有技术系统的前述缺点的方式。确切地说,用于实施与风险转移有关的明确(至少分段)连续结构的系统性方法通过现有技术是不可能的。此外,现有技术系统不能够考虑用于确定最优风险转移结构的给定适当优化准则,或动态地使结构适应改变的环境条件。

在一个体现的变型中,组合件模块5可例如基于在第一保险系统10处的总的合并的风险定义适当优化准则(即,作用于收益-损失分布函数的函数项),使得一旦已确定“最优”风险转移函数,那么可借助于组合件模块5使准则最小化。因此,两者都借助于组合件模块5、在经由风险转移结构风险转移前后的收益-损失分布函数确定。风险转移与转移成本(即,保险费)有联系,其中支付转移可包括用于风险转移自身的任何预期的损失(EL),还有所有类型的成本组分(资本成本、操作成本等)。需要将这些成本与合理的权益测量参数(例如,在给定规章框架下的资本减轻成本-权益、财务等级目标、易失性成本或类似者)比较。通常,由于描述合并的风险的数据(即,组合数据)在“关闭”格式下通常不可用,因此不可能达到分析解决方案。因此,组合件模块5开始基于纯数字方法的优化。然而,借助于组合件模块5的优化可例如也基于可能边界条件(如由第一资源合并系统10的操作条件给出)的分析,连同在第一资源合并系统处的总合并的风险中的单一风险的组成的分析。在再一体现的变型中,可针对最优风险转移结构的确定来组合两个描述的解决方案。

除了一些基本边界条件(如规章主体的可接受性、一般法律约束)外,组合件模块5可例如包括首先基于模拟的参数进行操作以便评定潜在的应力测试模型质量、参数和优化准则敏感度等的方式。这些模拟的参数可例如通过基于统计模型的参数的变化来优化。

正因为这个原因,组合件模块5可包括计算引擎51。此计算引擎51的任务是在基于给定风险转移结构或函数的风险转移前后产生收益-损失分布。在这些所得P-L分布中,由优化准则(函数)使用的相应财务关键数字可由组合件模块5确定。此外,产生定价模拟,定价模拟产生从第一资源合并系统10转移到第二资源合并系统12以用于相应的风险转移的总保险费的真实估计。鉴于另外的技术方面,组合件模块5确定“可参数化”的风险转移函数。分别由组合件模块5或计算引擎将参数的数目保持得尽可能低为有利的,这是归因于随增加数目个参数出现的复杂性的高度过比例增长。举例来说,在一个体现的变型中,选择多项式方法。在另一体现的变型中,选择参数化,由此两个确立的风险转移函数(一个基于比例结构且一个基于非比例结构)在解决方案当中,且其中组合件模块5的下面的优化算法可收敛。然而,针对本发明,取决于下面的组合,即,在总合并的风险的结构上,最优解决方案连续并无必要。甚至可设想使优化过程基于非单调(增加的)风险转移结构。在一个体现的变型中,可使用标准且稳固的数字优化算法以便确保无条件承兑和成本控制。明显地,对于基于迭代的此优化,借助于组合件模块5进行的确定需要与分批过程兼容,且其必须提供在快速硬件平台上运行的可能性,这可为有利的。举例来说,为了开始借助于组合件模块5的计算引擎51的优化过程,可使用可用的标准值作为广泛公认的量,如总风险转移成本除以资本成本之间的比率。由组合件模块5的计算引擎51进行的总体优化过程说明于图6中。

触发器31、32可包括借助于测量装置215、225、235针对预定义的风险事件的发生或预定义的风险事件的影响的阶段触发。风险事件可例如为符合用于风险转移或保险可操作性的准则的任何可转移风险。保险的风险的概念位于如分别由系统1和切换装置11进行的所有决策和信令之下。总之,由系统1捕获的用于定义可能风险事件的准则可例如基于需要足够大量的类似暴露单元、明确的损失、意外损失(即,在风险暴露组件21、22、23的控制外的损失的大小;即,从风险暴露组件21、22、23的角度看来,损失是有意义的)、负担得起的保险费、可计算的和/或可测量的和/或可参数化的损失、灾难性大损失的有限风险(即,需要可转移风险关注独立且非灾难性的损失)。此外,为了风险可转移,即,由系统1捕获,可预调节若干事情:(i)资源合并系统1必须能够确定高到足以涵盖索赔花费而且涵盖第一资源合并系统的努力的保险费。举例来说,有可能不包含灾难性或如此之大使得无孤立的资源合并系统可涵盖损失的风险。(ii)损失的本质必须明确且可测量。(iii)在本质上可将损失定义为随机,否则转移的风险可参加不利选择(反选择)。在任何情况下,风险事件可包括其发生可由测量装置215、225、235测量的任何可转移风险。触发器31、32可例如还包括此处未提到的额外触发器,从而在其它准则和边界条件中触发。当新测量装置215、225、235由系统1检测到和/或新风险事件必须由系统1涵盖(即,新风险由第一资源合并系统10合并)时,触发器31、32借助于系统1动态调适也是可能的。

除了触发器31、32、33的调适之外,来自风险暴露组件21、22、23的请求的支付的量还因此由系统1和/或资源合并系统11调整。因此,可基于总风险50和/或合并的风险暴露组件21、22、23的风险暴露的可能性动态确定来自风险暴露组件21、22、23的用于其风险的合并的支付214、224、234的接收和预调节的存储61,以甚至进一步改善系统1的操作和功能安全。合并的风险暴露组件21、22、23的数目可借助于系统1和/或资源合并系统10动态调适到一个范围,在所述范围中,由资源合并系统1涵盖的非协变发生的风险在任何给定时间只影响总合并的风险暴露组件21、22、23的相对小的比例。在另一变型中,从第一资源合并系统10的合并的风险转移也可借助于第二资源合并系统12动态可调适到一个范围,在所述范围中,由第二资源合并系统12涵盖的非协变发生的风险在任何给定时间只影响从第一资源合并系统10的总合并的风险转移的相对小的比例。合并的风险暴露组件21、22、23的总风险50包括到风险暴露组件21、22、23的每一合并的风险的不同可分段风险比重511、521、531,其与关于风险事件的发生的风险暴露相关联。涵盖的风险事件的触发参数可含于和存储在预定义的风险事件的预定义的可搜索表(例如,适当结构化散列表)中,分别为风险事件参数。作为在风险暴露组件21、22、23……处的风险事件关于可搜索的风险事件中的一个的发生的结果,出现对应的损失;即,待由资源合并系统10、12的合并的资源涵盖的风险暴露组件21、22、23……的可能需求与需要解决损失以便避免操作中断或类似者的风险事件的发生的风险相联系。

在触发风险暴露组件21、22、23的数据流路径213、223、233上的风险事件的发生的情况下,即,如果风险事件的发生的触发在数据流路径213、223、233中施行,那么对应的触发器标志(例如)可借助于资源合并系统10启动,且可将支付的参数或另外预定义的转移指派到此对应的触发标志。与风险事件的发生相关联的损失可例如明显地由资源合并系统10涵盖,这是基于相应的触发器标志且基于经由从资源合并系统10到风险暴露组件21、22、23等的参数或另外预定义的转移来自风险暴露组件21、22、23的接收且存储的支付参数214、224、234。支付转移模块41、42可包括一个或更多个数据处理单元、显示器和其它操作元件(例如,键盘和/或计算机鼠标或另一种类的指标装置),作为输入装置。如先前所提到,关于风险暴露组件21、22、23的支付的接收操作是基于支付数据存储装置61中的存储的组件特定支付参数监测。系统1的不同组件(例如,资源合并系统10、12、切换装置11、支付转移模块41、42、芯引擎3和组合件模块5)可经由网络91连接以供信号传输。网络91可包括例如电信网络,例如,有线或无线网络,例如,因特网、GSM网络(全球移动通信系统)、UMTS网络(通用移动电信系统)和/或WLAN(无线局域网)、公共交换电话网络(PSTN)和/或专用点对点通信线路。支付转移模块41、42和/或芯引擎3和组合件模块5还可包括多个接口,用于连接到服从传输标准或协议的电信网络。在一个体现的变型中,支付转移模块41、42也可实施为相对于系统1的外部装置,其经由网络提供风险转移服务供信号传输,例如,通过安全的数据传输线。

如所提到,与风险事件相关联且由合并的风险暴露组件21、22、23分派的损失可例如明显地由第一保险系统的资源合并系统10借助于从第一资源合并系统10到所述风险暴露组件21、22、23的支付的转移来涵盖,其中从第二资源合并系统12到第一资源合并系统的支付的第二转移是借助于产生启动信号基于在自上而下表内的确定的可变风险段和风险暴露组件21、22、23或可适应的风险转移函数73的测量的实际损失(如由组合件模块5提供)来触发。然而,在相对于上文的体现的变型中,如由自上而下表7的对应的可变风险转移段721、722、723定义的对应于转移到第二资源合并系统12的风险的损失也可例如直接由第二资源合并系统12通过借助于第二支付转移模块42将资源从第二资源合并系统12转移到关注的风险暴露组件21、22、23来定义。

最后,在再一指定的体现的变型中,在借助于风险事件触发器31、32在风险暴露组件21、22、23等的数据流路径213、223、233中触发用于预定义的风险事件中的一个的指示器的出现的情况下,可启动系统1的独立验证风险事件触发器,且其中独立验证风险事件触发器另外正关于用于在具有来自主要数据流路径213、223、233的独立测量参数的替代数据流路径215、225、235中的预定义的风险事件中的一个发生指示器触发,以便验证在风险暴露组件21、22、23等处的风险事件的发生。作为一个变型,当在风险暴露组件21、22、23等处的风险事件的发生已由独立验证风险事件触发器验证时,只将支付的参数或另外预定义的转移指派到对应的触发器标志。

参考标记列表

1 用于提供风险暴露组件的优化的风险保护的系统

10 第一资源合并系统/第一保险系统

11 切换装置

111 捕获装置

12 第二资源合并系统/第二保险系统

21、22、23、24 风险暴露组件

211、221、231 与风险有关的组分数据

212、222、232 合并的风险暴露组件的风险暴露的可能性

213、223、233 到数据流路径的接口

214、224、234 存储的支付参数

215、225、235 测量装置

3 芯引擎

30 操作模块

31、32 风险事件触发器

41 第一支付转移模块

42 第二支付转移模块

5 组合件模块

50 总风险

511 第一风险比重的分段层

512 第二风险比重的分段层

513 第三风险比重的分段层

51i 第i个风险比重的分段层

51 组合件模块的计算引擎

61 第一支付数据存储装置

62 第二支付数据存储装置

7 具有可变风险转移段的自上而下表

711、712、713 用于存储可变风险转移段的数据结构

721、722、723 可变风险转移段

731、732、733 指派到段中的每一个支付参数

73 可适应的风险转移函数

74 提供风险转移函数的风险转移段的结构

8 监测模块

9 测量装置的数据流路径

91 网络

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1