通行确定方法及装置、电子设备、计算机可读存储介质与流程

文档序号:17077716发布日期:2019-03-08 23:54阅读:191来源:国知局
通行确定方法及装置、电子设备、计算机可读存储介质与流程

本公开涉及虚拟现实技术领域,尤其涉及一种通行确定方法及装置、电子设备、计算机可读存储介质。



背景技术:

增强现实技术(augmentedreality,简称ar),是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息、声音、味道、触觉等),通过电脑等科学技术,模拟仿真后将虚拟信息再叠加真实世界,即真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在,从而达到超越现实的感官体验。

然而,现有的ar设备仅能显示预先设定的虚拟信息,无法满足用户在一些特定场景下的需求。



技术实现要素:

本公开提供一种通行确定方法及装置、电子设备、计算机可读存储介质,以解决相关技术中的不足。

根据本公开实施例的第一方面,提供一种通行确定方法,包括:

基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域;

确定所述目标空间区域的实际尺寸;

根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

根据本公开实施例的第二方面,提供一种通行确定装置,包括:

目标区域确定模块,用于基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域;

实际尺寸确定模块,用于确定所述目标空间区域的实际尺寸;

通行结果确定模块,用于根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

根据本公开实施例的第三方面,提供一种电子设备,包括:

处理器;

用于存储所述处理器可执行指令的存储器;

其中,所述处理器用于从所述存储器读取可执行指令以实现第一方面所述方法的步骤。

根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现第一方面所述方法的步骤。

本公开的实施例提供的技术方案可以包括以下有益效果:

由上述实施例可知,本公开实施例中基于现实场景内行驶方向的道路实况图像,确定交通工具在行驶方向对应的目标空间区域,然后获取目标空间区域的实际尺寸,之后根据实际尺寸和交通工具的安全尺寸的大小关系确定交通工具是否能够从目标空间区域通行。可见,本实施例中通过确定交通工具是否能够从目标空间区域通行,可以保证行驶安全,从而避免出现估计偏差而引起的交通事故,提升用户驾驶体验。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。

附图说明

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。

图1是根据一示例性实施例示出的一种应用场景图;

图2是根据一示例性实施例示出的一种通行确定方法的流程示意图;

图3是根据一示例性实施例示出的确定目标空间区域的流程示意图;

图4是根据一示例性实施例示出的确定目标空间区域的流程示意图;

图5(a)、图5(b)和图5(c)是根据一示例性实施例示出的目标空间区域的效果示意图;

图5(b)是根据一示例性实施例示出的确定目标空间区域的效果示意图;

图6是根据另一示例性实施例示出的确定目标空间区域的流程示意图;

图7是根据一示例性实施例示出的目标空间区域的效果示意图;

图8是根据一示例性实施例示出的获取目标空间区域的实际尺寸的流程示意图;

图9是根据一示例性实施例示出的目标空间区域的实际尺寸的效果示意图;

图10是根据一示例性实施例示出的目标空间区域的安全尺寸的流程示意图;

图11是根据另一示例性实施例示出的一种通行确定方法的流程示意图;

图12是根据又一示例性实施例示出的一种通行确定方法的流程示意图;

图13是根据一示例性实施例示出的显示行驶路线的效果示意图;

图14是根据另一示例性实施例示出的一种通行确定方法的流程示意图;

图15~图22是根据一示例性实施例示出的一种通行确定装置的框图;

图23是根据一示例性实施例示出的一种电子设备的框图。

具体实施方式

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置例子。

增强现实技术(augmentedreality,简称ar),是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息、声音、味道、触觉等),通过电脑等科学技术,模拟仿真后将虚拟信息再叠加真实世界,即真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在,从而达到超越现实的感官体验。然而,现有的ar设备仅能显示预先设定的虚拟信息,无法满足用户在一些特定场景下的需求。

为解决上述技术问题,本公开实施例提供了一种通行确定方法,图1是根据一示例性实施例示出的一种应用场景图。参见图1,用户10佩戴增强现实设备20驾驶交通工具(例如汽车、摩托车或者自行车等,图中未示出)行驶在道路上。用户可以在增强现实设备20显示的现实场景21内看到同向行驶的交通工具、反向行驶的交通工具、标示线等目标对象22,即可以得到行驶方向的道路实况图像。然后,增强现实设备20可以确定出交通工具是否能够从行驶方向对应的目标空间区域。这样,本实施例中可以避免出现目测估计错误而引起的事故,提高佩戴增强现实设备的体验和驾驶体验。

图2是根据一示例性实施例示出的一种通行确定方法的流程示意图。在一实施例中,一种通行确定方法可以应用于增强现实设备,由增强现实设备执行该通行确定方法。在另一实施例中,一种通行确定方法可以应用于增强现实设备和服务器构成的系统中,由系统执行该通行确定方法,执行过程中的消息可以显示在现实场景内,方便用户查阅。为方便说明,后续实施例以增强现实设备执行该通行确定方法为例进行描述。参见图2,一种通行确定方法,包括步骤201~步骤203,其中:

201,基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域。

本步骤中,在驾驶交通工具的过程中,增强现实设备上的摄像头可以实时采集现实场景内的道路实况图像,然后将每一帧道路实况图像发送给处理器,或者预先存储在指定位置,然后由处理器从指定位置读取道路实况图像。其中指定位置可以为增强现实设备的存储器或者缓存器。

处理器基于所采集的道路实况图像可以确定出目标空间区域,参见图3,处理器读取到现实场景内行驶方向的道路实况图像,确定图像内待通行道路存在目标对象侧的至少一个目标对象的边界(对应步骤301)。其中目标对象可以为现实场景中的交通工具、道路路面、行驶标识、限高杆、桥梁等,目标对象的种类和数量可以根据具体场景作相应的调整。然后,处理器基于至少一个目标对象的边界确定目标空间区域(对应步骤302)。

在一实施例中,处理器基于至少一个目标对象的边界确定目标空间区域,参见图4,包括:

针对至少一个目标对象,处理器可以确定目标对象边界上的预设关键位置点(对应步骤401)。然后,处理器基于预设关键位置点生成与地面垂直的垂线段(对应步骤402)。之后,处理器将行驶方向上位于道路两侧的且处于同一深度的垂线段,位于地面的一端相连,以及位于非地面的一端相连,生成行驶方向的同一深度处的截面(对应步骤403)。最后,处理器将多个深度处的截面连通,生成目标空间区域(对应步骤404)。

例如,参见图5(a)和图5(b),道路实况图像中存在多个目标对象,反向行驶的汽车、道路标示线。由于汽车未过道路标示线,也就是说与反向行驶的汽车相比,道路标示线更靠近行驶方向对应的目标空间区域,因此本实施例中可以以道路标示线上靠近汽车的一侧选取预设关键位置点a和e点,线段ba为生成的预设关键位置点b与地面的垂线段,线段ce为生成的预设关键位置点e与地面的垂线段,因此连接两个垂线段位于地面的一端a和e,以及两个垂线段位于非地面的一端b和c,这样可以得到行驶方向在同一深度处的截面abce。基于相同的方式,可以生成行驶方向在另一个深度处的截面a’b’c’e’。最后,处理器可以将截面abce和截面a’b’c’e’连通,形成一个目标空间区域。其中,垂线段的长度可以根据待通行交通工具的安全高度来设置。

进一步地,预设关键位置点可以在距离待确定目标空间区域最近的目标对象上确定,在确定预设关键位置点时可以按照需求每隔预设距离取一个预设关键点,或者若目标对象附近存在障碍物体,则可以在障碍物体对应于目标对象的位置预设关键点;另外,针对确定的某一预设关键位置点,若在生成截面时,该预设关键位置点在所处深度处,在道路对端不存在对应的垂线,则可以为该预设关键位置点,在所处深度处生成对应垂线,以生成该深度处的截面。

又如,参见图5(a)和图5(c),处理器可以将各目标对象的边界进行延伸,延伸到接触其他目标对象为止。参见图5(c),道路上设置有行车线41,该行车线41可以视为一栅栏,栅栏的上端可以延伸到现实场景的上部边界,下端与地面接触,这样得到目标空间区域的左侧边界42。现实场景的右侧边界可以作为目标空间区域的右侧边界43。左侧边界42和右侧边界43与路面接触的地方相连,可以得到目标空间区域的下部边界44。现实场景的上部边界可以作为目标空间区域的上部边界45。这样,本实施例中,左侧边界42、右侧边界43、上部边界45和下部边界44可以围成一个矩形。多次处理可以得到多个矩形,多个矩形连通可以形成目标空间区域。

需要说明的是,目标空间区域内应该为一个“干净”的区域,即此区域内不存在可以影响交通工具行驶的障碍物。进一步的,该目标空间区域还可以包括一定的深度d,从而避免发生事故,以及用户对前方情况有足够的反应时间。

在一实施例中,处理器基于至少一个目标对象的边界确定目标空间区域,参见图6,包括:处理器可以确定交通工具能够通行的宽度(对应步骤601)。然后,处理器将宽度向行驶方向延伸,形成目标路面区域(对应步骤602)。之后,处理器基于目标路面区域左右边界分别作垂直于路面的重于垂面,形成目标空间区域(对应步骤603)。再者,处理器基于现实场景内行驶方向的道路实况图像,确定目标空间区域内是否存在障碍物(对应步骤604)。最后,处理器在确定不存在障碍物时,将形成的目标空间区域确定为交通工具在行驶方向对应的目标空间区域(对应步骤605)。

例如,参见图7,处理器确定交通工具能够通行的宽度mn,然后将宽度向行驶方向延伸到m’n’,得到目标路面区域mm’n’n。之后,处理器以目标路面区域mm’n’n的左边界mm’和右边界n’n分别作垂直于路面的垂面,即垂面m和垂面n,目标路面区域mm’n’n、垂面m和垂面n所围成的区域即是目标空间区域。最后,处理器基于现实场景内行驶方向的道路实况图像,确定目标空间区域内是否存在障碍物,如图7中目标空间区域内不存在障碍物,则处理器将形成的目标空间区域确定为交通工具在行驶方向对应的目标空间区域。

202,确定所述目标空间区域的实际尺寸。

本实施例中,处理器可以获取目标空间区域的实际尺寸,包括以下方式:

方式一,若处理器基于图6所示方式生成目标空间区域,则该目标空间区域的宽度和高度是确定的,即处理器可以直接得到目标空间区域的实际尺寸。

方式二,参见图8,处理器可以获取目标空间区域的多个关键位置点(对应步骤801),其中关键位置点可以为目标空间区域的顶点、边界的中间点、一条边界上的关键位置点在另一个边界上的投影点或者目标空间区域形状变化位置,可以根据具体场景调整关键位置点的种类。然后,处理器可以根据各关键位置点的空间坐标确定目标空间区域的宽度w和高度l,从而得到目标空间区域的实际尺寸(对应步骤802)。其中,各关键位置点的坐标可以根据以下方式获取:参见图9,以目标空间区域的顶点a为例,在xoy平面(可以为ar设备进行计算时基于的基准面)上的投影点a’,则投影点a’与x轴、y轴的距离可以作为顶点a的纵坐标y0和横坐标x0,顶点a和投影点a’之间的距离d可以由图像识别算法计算得出,即a(x0,y0,d)。顶点b、c和e的空间坐标的获取方法与a点的空间坐标的获取方法相同,不再赘述。然后基于相邻两个顶点的空间坐标,可以计算出目标空间区域各边界的长度。

方式三,目标空间区域有可能不是规则的,此情况下,处理器可以获取形状发生变化的关键点与其他边界的距离,这样可以得到目标空间区域的多个宽度和多个长度,即实际尺寸包括多个宽度和多个长度。

方式四,由于现实场景是非线性的,因此可以基于参考点设置一个非线性转化为线性的距离对照表,处理器获取到目标空间区域各边界的长度后,结合边界的位置、长度查询距离对照表,从而可以得到目标空间区域各边界实际的长度,同样可以实现本步骤的方案。

203,根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

本实施例中,处理器还可以预先获取交通工具的安全尺寸。其中,该安全尺寸可以由处理器直接计算得到,还可以由处理器从指定位置读取。

方式一,用户在使用增强现实设备时,可以通过控制菜单调整其工作模式,例如驾驶模式,这样增强现实设备可以执行本公开提供的一种通行确定方法。当然,在进行驾驶之前可以采用如下方式确定交通工具的安全尺寸,参见图10,处理器显示用于指示用户调整现实场景覆盖范围的指示信息,直到覆盖范围内至少包含交通工具(对应步骤1001)。处理器可以检测道路实况图像是否包含交通工具,在检测到交通工具后,可以根据交通工具在道路实况图像中的比例,计算出交通工具的安全尺寸(对应步骤1002)。这里只要能够确定出交通工具的尺寸,覆盖范围可以包含交通工具的部分或全部。其中安全尺寸可以包括交通工具的实际尺寸和增加尺寸。本实施例中设置增加尺寸是为了保证交通工具的行驶安全,该增加尺寸可以根据具体场景进行调整,例如10cm。最后,处理器将交通工具的安全尺寸存储至指定位置,指定位置可以为增强现实设备本地的存储器、缓存,还可以为能够与增强现实设备通信的云端,还可以为能够与增强现实设备通信的服务器。本实施例中,通过预先获取交通工具的安全尺寸,减少处理器的计算时间,可以提高后续获取提醒消息的实时性,进而提升用户使用增强现实设备和驾驶的体验。

方式二,用户可以通过控制菜单调整其工作模式,在调整工作模式的过程中,用户可以将交通工具的安全尺寸输入到增强现实设备中。

方式三,用户可以调整增强现实设备视野的覆盖范围,使其覆盖交通工具的铭牌,该铭牌上可以包括交通工具的型号、实际尺寸、安全尺寸等。之后,处理器可以获取到交通工具的安全尺寸,例如,处理器基于型号可以在互联网上查找到交通工具的安全尺寸。又如,处理器基于实际尺寸和安全距离可以得到安全尺寸。再如,处理器可以直接从铭牌上读取到安全尺寸。在一些实施例中,处理器在确定实际尺寸和安全尺寸的过程中,可以确定是实时获取还是从指定位置读取,例如处理器实时获取交通工具的实际尺寸和安全尺寸,还可以将从指定位置读取实际尺寸和安全尺寸,都可以实现本申请的方案。

在确定交通工具的安全尺寸之后,处理器可以比对目标空间区域实际尺寸和安全尺寸,得到两者的大小关系。然后,处理器根据大小关系可以确定交通工具是否能够从目标空间区域通行。

进一步地,确定交通工具安全尺寸的步骤可以在用户实际驾驶之前执行,在执行一次确定了安全尺寸之后,可以存储在相应位置,不需要每次驾驶之前均重新确定,可以按照自身的需求启动再次确定的步骤。

至此,本公开实施例中基于现实场景内行驶方向的道路实况图像,确定交通工具在行驶方向对应的目标空间区域,然后获取目标空间区域的实际尺寸,之后根据实际尺寸和交通工具的安全尺寸的大小关系确定交通工具是否能够从目标空间区域通行。可见,本实施例中通过确定交通工具是否能够从目标空间区域通行,可以保证行驶安全,从而避免出现估计偏差而引起的交通事故,提升用户驾驶体验。

图11是根据另一示例性实施例示出的一种通行确定方法的流程示意图。参见图11,一种通行确定方法包括:

1101,基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域。

步骤1101和步骤201的具体方法和原理一致,详细描述请参考图2及步骤201的相关内容,此处不再赘述。

1102,确定所述目标空间区域的实际尺寸。

步骤1102和步骤202的具体方法和原理一致,详细描述请参考图2及步骤202的相关内容,此处不再赘述。

1103,根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

步骤1103和步骤203的具体方法和原理一致,详细描述请参考图2及步骤203的相关内容,此处不再赘述。

1104,基于所述交通工具是否能够从所述目标空间区域通行的判断结果,生成提醒消息。

本实施例中,处理器根据步骤1103中交通工具是否能够从目标空间区域通行的判断结果,可以生成提醒消息。例如,若交通工具能够从目标空间区域通行,则提醒消息可以为:能够通过此区域。其中,提醒消息可以为弹框、文本、颜色标识等,提醒消息的显示方式不作限定。

1105,在现实场景内显示虚拟出的提醒消息的影像。

本实施例中,处理器可以将提醒消息发送给增强现实设备的显示器,在现实场景中显示虚拟出的提醒消息的影像。

在一些实施例中,参见图12,在确定能够从目标空间区域通行后,处理器可以规划驶往目标空间区域的行驶路线(对应步骤1201)。然后,处理器在现实场景显示该行驶路线(对应步骤1202),行驶路线可以如图13中的箭头所示。

至此,本实施例中通过向用户显示提醒消息,可以使用户及时了解到交通工具能否通过目标空间区域,避免出现估计偏差而引起的交通事故,提升用户的驾驶安全和体验。另外,本实施例中向用户显示行驶路线,可以方便用户参照行驶路线行驶,可以减少用户的驾驶时间。

图14是根据另一示例性实施例示出的一种通行确定方法的流程示意图。参见图14,一种通行确定方法包括:

1401,基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域。

步骤1401和步骤201的具体方法和原理一致,详细描述请参考图2及步骤201的相关内容,此处不再赘述。

1402,确定所述目标空间区域的实际尺寸。

步骤1402和步骤202的具体方法和原理一致,详细描述请参考图2及步骤202的相关内容,此处不再赘述。

1403,根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

步骤1403和步骤203的具体方法和原理一致,详细描述请参考图2及步骤203的相关内容,此处不再赘述。

1404,若所述交通工具不能通过所述目标空间区域,则向所述交通工具发送控制指令;所述交通工具根据所述控制指令调整行驶速度。

本实施例中,在佩戴增强现实设备之前,可以采用蓝牙、wifi等无线方式,或者有线方式,将佩戴增强现实设备连接至交通工具。这样,处理器与实时与交通工具进行数据交互。在确定交通工具不能够通过目标空间区域后,处理器可以向交通工具发送控制指令,这样交通工具可以根据控制指令调整交通工具的行驶速度,甚至停止行驶。

进一步地,如果造成交通工具不能向行驶方向通行的原因是行驶方向的存在可移动障碍物(例如:车辆、行人等),即可移动障碍物使得目标空间区域不够大到使得交通工具通行,在检测到障碍物发生位置变化时,可以触发再次执行该通行确定方法,重新确定能否通过新确定的目标空间区域。

至此,本实施例中处理器在交通工具不能通过目标空间区域后,与交通工具交互,以控制交通工具的行驶速度,从而保证行驶安全。并且,本实施例中,通过向用户显示行驶路线,可以方便用户参照行驶路线行驶,可以减少用户的驾驶时间。另外,本实施例中通过向用户显示提醒消息,可以使用户及时了解到交通工具能否通过目标空间区域,避免出现估计偏差而引起的交通事故,提升用户的驾驶安全和体验。

图15是根据一示例性实施例示出的一种通行确定装置的框图,参见图15,一种通行确定装置1500,包括:

目标区域确定模块1501,用于基于现实场景内行驶方向的道路实况图像,确定交通工具在所述行驶方向对应的目标空间区域;

实际尺寸确定模块1502,用于确定所述目标空间区域的实际尺寸;

通行结果确定模块1503,用于根据所述实际尺寸和所述交通工具的安全尺寸的大小关系确定所述交通工具是否能够从所述目标空间区域通行。

本实施例中,通过确定是否能够从目标空间区域通行,可以使用户及时了解到交通工具能否通过目标空间区域,避免出现估计偏差而引起的交通事故,提升用户的驾驶安全和体验

图16是根据一示例性实施例示出的一种通行确定装置的框图,参见图16,在图15所示通行确定装置1500的基础上,还包括:安全尺寸确定模块1504;所述安全尺寸确定模块1504包括:

指示信息显示单元1601,用于显示用于指示用户调整现实场景覆盖范围的指示信息,直到所述覆盖范围内至少包含所述交通工具;

安全尺寸确定单元1602,用于响应于检测到所述交通工具,确定所述交通工具的安全尺寸。

本实施例中,通过预先获取交通工具的安全尺寸,减少处理器的计算时间,进而提升用户使用增强现实设备和驾驶的体验。

图17是根据一示例性实施例示出的一种通行确定装置的框图,参见图17,在图15所示通行确定装置1500的基础上,所述目标区域确定模块1501包括:

边界确定单元1701,用于基于现实场景内行驶方向的道路实况图像,确定所述图像内待通行道路存在目标对象侧的至少一个目标对象的边界;

区域确定单元1702,用于基于所述至少一个目标对象的边界确定所述目标空间区域。

图18是根据一示例性实施例示出的一种通行确定装置的框图,参见图18,在图17所示通行确定装置的基础上,所述区域确定单元1702包括:

关键点确定子单元1801,用于针对所述至少一个目标对象,确定该目标对象边界上的预设关键位置点;

垂线段生成子单元1802,用于基于预设关键位置点生成与地面垂直的垂线段;

截面生成子单元1802,用于将所述行驶方向上位于道路两侧的且处于同一深度的垂线段,位于地面的一端相连,以及位于非地面的一端相连,生成所述行驶方向的所述同一深度处的截面;

区域生成子单元1804,用于将多个深度处的截面连通,生成所述目标空间区域。

图19是根据一示例性实施例示出的一种通行确定装置的框图,参见图19,在图15所示通行确定装置1500的基础上,所述目标区域确定模块1501包括:

宽度确定单元1901,用于确定所述交通工具能够通行的宽度;

宽度延伸单元1902,用于将所述宽度向所述行驶方向延伸,形成目标路面区域;

区域形成单元1903,用于基于所述目标路面区域左右边界分别作垂直于路面的垂面,形成目标空间区域;

障碍物确定单元1904,用于基于现实场景内行驶方向的道路实况图像,确定所述目标空间区域是否存在障碍物;

区域确定单元1905,用于在所述目标空间区域不存在障碍物时,将形成的目标空间区域确定为交通工具在所述行驶方向对应的目标空间区域。

图20是根据一示例性实施例示出的一种通行确定装置的框图,参见图20,在图15所示通行确定装置1500的基础上,还包括:

消息生成模块2001,用于基于所述交通工具是否能够从所述目标空间区域通行的判断结果,生成提醒消息;

影像显示模块2002,用于在现实场景内显示虚拟出的提醒消息的影像。

图21是根据一示例性实施例示出的一种通行确定装置的框图,参见图21,在图20所示通行确定装置1500的基础上,还包括:

路线规划模块2101,用于在所述交通工具能够通过所述目标空间区域时,规划驶往所述目标空间区域的行驶路线;

路线显示模块2102,用于在所述现实场景内显示所述行驶路线。

至此,本实施例中通过向用户显示行驶路线,可以方便用户参照行驶路线行驶,可以减少用户的驾驶时间。另外,本实施例中通过向用户显示提醒消息,可以使用户及时了解到交通工具能否通过目标空间区域,避免出现估计偏差而引起的交通事故,提升用户的驾驶安全和体验。

图22是根据一示例性实施例示出的一种通行确定装置的框图,参见图22,在图15所示通行确定装置1500的基础上,还包括:

指令发送模块2201,用于在所述交通工具不能通过所述目标空间区域时,向所述交通工具发送控制指令,使所述交通工具根据所述控制指令调整行驶速度。

至此,本实施例中处理器在交通工具不能通过目标空间区域后,与交通工具交互,以控制交通工具的行驶速度,从而保证行驶安全。并且,本实施例中,通过向用户显示行驶路线,可以方便用户参照行驶路线行驶,可以减少用户的驾驶时间。另外,本实施例中通过向用户显示提醒消息,可以使用户及时了解到交通工具能否通过目标空间区域,避免出现估计偏差而引起的交通事故,提升用户的驾驶安全和体验。

图23是根据一示例性实施例示出的一种电子设备的框图。例如,电子设备2300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理或者服务器等。

参照图23,电子设备2300可以包括以下一个或多个组件:处理组件2302,存储器2304,电源组件2306,多媒体组件2308,音频组件2310,输入/输出(i/o)的接口2312,传感器组件2314,以及通信组件2316。

处理组件2302通常控制电子设备2300的整体操作,诸如与显示,电话呼叫,数据通信和记录操作相关联的操作。处理组件2302可以包括一个或多个处理器2320来执行指令。此外,处理组件2302可以包括一个或多个模块,便于处理组件2302和其他组件之间的交互。例如,处理组件2302可以包括多媒体模块,以方便多媒体组件2308和处理组件2302之间的交互。

存储器2304被配置为存储各种类型的数据以支持在设备2300的操作。这些数据的示例包括用于在电子设备2300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(sram),电可擦除可编程只读存储器(eeprom),可擦除可编程只读存储器(eprom),可编程只读存储器(prom),只读存储器(rom),磁存储器,快闪存储器,磁盘或光盘。

电源组件2306为电子设备2300的各种组件提供电力。电源组件2306可以包括电源管理系统,一个或多个电源,及其他与为电子设备2300生成、管理和分配电力相关联的组件。

多媒体组件2308包括在所述电子设备2300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示屏(lcd)和触摸面板(tp)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。

音频组件2310被配置为输出和/或输入音频信号。例如,音频组件2310包括一个麦克风(mic),当电子设备2300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2304或经由通信组件2316发送。在一些实施例中,音频组件2310还包括一个扬声器,用于输出音频信号。

i/o接口2312为处理组件2302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。

传感器组件2314包括一个或多个传感器,用于为电子设备2300提供各个方面的状态评估。例如,传感器组件2314可以检测到电子设备2300的打开/关闭状态,组件的相对定位,例如所述组件为电子设备2300的显示屏和小键盘,传感器组件2314还可以检测电子设备2300或电子设备2300一个组件的位置改变,用户与电子设备2300接触的存在或不存在,电子设备2300方位或加速/减速和电子设备2300的温度变化。传感器组件2314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2314还可以包括光传感器,如cmos或ccd图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器,按键控制芯片、指纹传感器。

通信组件2316被配置为便于电子设备2300和其他设备之间有线或无线方式的通信。电子设备2300可以接入基于通信标准的无线网络,如wifi,2g或3g,或它们的组合。在一个示例性实施例中,通信组件2316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2316还包括近场通信(nfc)模块,以促进短程通信。例如,在nfc模块可基于射频识别(rfid)技术,红外数据协会(irda)技术,超宽带(uwb)技术,蓝牙(bt)技术和其他技术来实现。

在示例性实施例中,电子设备2300可以被一个或多个应用专用集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑器件(pld)、现场可编程门阵列(fpga)、控制器、微控制器、微处理器或其他电子元件实现。

在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2304,上述指令可由电子设备2300的处理器2320执行。例如,所述非临时性计算机可读存储介质可以是rom、随机存取存储器(ram)、cd-rom、磁带、软盘和光数据存储设备等。

本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现图2~图14所述通行确定方法的步骤。

本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。

应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1