光学图像采集单元、光学图像采集系统和电子设备的制作方法

文档序号:17706732发布日期:2019-05-21 20:54阅读:132来源:国知局
光学图像采集单元、光学图像采集系统和电子设备的制作方法

技术领域

本申请实施例涉及信息技术领域,并且更具体地,涉及一种光学图像采集单元、光学图像采集系统和电子设备。



背景技术:

随着终端行业的高速发展,生物识别技术越来越受到人们重视,更加便捷的屏下生物特征识别技术,例如屏下指纹识别技术的实用化已成为大众所需。

屏下生物特征识别技术是将生物特征识别模组设置于显示屏下,通过光学图像采集,实现屏下生物特征识别。随着终端产品的发展,对屏下生物特征识别的要求越来越高,相应地,对光学图像采集产品的要求也越来越高。

因此,如何提升光学图像采集产品的性能,成为一个亟待解决的技术问题。



技术实现要素:

本申请实施例提供了一种光学图像采集单元、光学图像采集系统和电子设备,能够提升光学图像采集产品的性能。

第一方面,提供了一种光学图像采集单元,包括:微镜头;挡光层,设置于所述微镜头下方,其中,所述挡光层设置有窗口;光电传感器,设置于所述挡光层下方。所述微镜头用于将来自所述微镜头上方的光信号汇聚至所述窗口,所述光信号经由所述窗口传输至所述光电传感器。

本申请实施例的技术方案,通过微镜头将来自微镜头上方的光信号汇聚至窗口,并使光信号经由窗口传输至光电传感器以实现图像采集,既可以减小产品的厚度,又可以提高成像质量,从而能够提升光学图像采集产品的性能。

在一些可能的实现方式中,所述光电传感器检测的光信号用于形成采集图像的一个像素。

在一些可能的实现方式中,所述微镜头的聚焦点位于所述窗口内。

在一些可能的实现方式中,所述窗口为圆柱形。

在一些可能的实现方式中,所述窗口的直径大于100nm。

在一些可能的实现方式中,所述挡光层对可见光或者610nm以上波段的光的透过率小于20%。

在一些可能的实现方式中,所述光学图像采集单元还包括:介质层,用于传输所述光信号,设置于以下至少一处:所述微镜头与所述挡光层之间、所述窗口内或所述挡光层与所述光电传感器之间。

在一些可能的实现方式中,所述介质层包括:透明介质层,设置于所述窗口内以及所述挡光层上方;钝化层,设置于所述微镜头与所述透明介质层之间。

在一些可能的实现方式中,所述透明介质层包括第一透明介质层和第二透明介质层,其中,所述第二透明介质用于连接所述第一透明介质层和所述钝化层。

在一些可能的实现方式中,所述介质层还包括:介质和金属层,设置于所述挡光层与所述光电传感器之间,所述介质和金属层中包括所述光电传感器的连接电路。

在一些可能的实现方式中,所述光电传感器的下方设置有介质和金属层,所述介质和金属层中包括所述光电传感器的连接电路。

在一些可能的实现方式中,所述微镜头与所述钝化层为一体结构。

在一些可能的实现方式中,所述微镜头的材料为有机材料。

在一些可能的实现方式中,所述光学图像采集单元还包括:滤波层,设置于所述微镜头到所述光电传感器之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。

在一些可能的实现方式中,所述光电传感器对于蓝光、绿光、红光或红外光的光灵敏度大于第一预定阈值,量子效率大于第二预定阈值。

第二方面,提供了一种光学图像采集系统,包括:第一方面或第一方面的任意可能的实现方式中的光学图像采集单元的阵列。

在一些可能的实现方式中,所述阵列的每行或每列中的光学图像采集单元的数量不小于10。

在一些可能的实现方式中,所述光学图像采集系统还包括:滤波片,设置于所述阵列上方,用于滤掉非目标波段的光信号,透过目标波段的光信号。

在一些可能的实现方式中,所述光学图像采集系统还包括:光入射角度筛选单元,设置于所述阵列上方,用于透过特定入射角度范围的光,阻挡所述特定入射角度范围外的光。

在一些可能的实现方式中,所述光学图像采集系统还包括:支撑结构件,用于支撑所述光学图像采集系统。

在一些可能的实现方式中,所述光学图像采集系统为生物特征识别系统或摄像头系统。

第三方面,提供了一种电子设备,包括:显示屏以及第二方面或第二方面的任意可能的实现方式中的光学图像采集系统,其中,所述光学图像采集系统设置于所述显示屏下方。

在一些可能的实现方式中,所述显示屏为有机发光二极管显示屏,所述显示屏的发光层包括多个有机发光二极管光源,其中,在所述光学图像采集系统为生物特征识别系统时,所述生物特征识别系统采用至少部分有机发光二极管光源作为生物特征识别的激励光源。

附图说明

图1是本申请可以适用的电子设备的平面示意图。

图2是图1所示的电子设备沿A’-A’的部分剖面示意图。

图3是本申请一个实施例的光学图像采集单元的示意图。

图4是指纹原始值的示意图。

图5是指纹图像的示意图。

图6和图7是本申请实施例的微镜头作用的示意图。

图8是本申请另一个实施例的光学图像采集单元的示意图。

图9是本申请实施例的光学图像采集系统的示意图。

具体实施方式

下面将结合附图,对本申请实施例中的技术方案进行描述。

本申请实施例的技术方案可以应用于各种电子设备,例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。

本申请实施例的技术方案可以用于屏下光学图像采集,例如,屏下生物特征识别或者屏下隐藏式摄像头功能等,其中,生物特征识别除了指纹识别外,还可以为其他生物特征识别,例如,活体识别等,本申请实施例对此也不限定。为了便于理解本申请实施例的技术方案,下面首先对屏下生物特征识别技术进行介绍。

随着电子设备步入全面屏时代,电子设备正面生物特征采集区域受到全面屏的挤压,因此屏下(Under-display或者Under-screen)生物特征识别技术越来越受到关注。屏下生物特征识别技术是指将生物特征识别模组(比如指纹识别模组)安装在显示屏下方,从而实现在显示屏的显示区域内进行生物特征识别操作,不需要在电子设备正面除显示区域外的区域设置生物特征采集区域。

屏下生物特征识别技术使用从设备显示组件的顶面返回的光来进行指纹感应和其他感应操作。该返回的光携带与该顶面接触的物体(例如手指)的信息,通过采集和检测该返回的光实现位于显示屏下方的特定光学传感器模块。光学传感器模块的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像。

图1和图2示出了屏下生物特征识别技术可以适用的电子设备100的示意图,其中图1为电子设备100的正面示意图,图2为图1所示的电子设备100沿A’-A’的部分剖面结构示意图。

如图1和图2所示,电子设备100可以包括显示屏120和生物特征识别模组140,其中,所述显示屏120具有显示区域102,所述生物特征识别模组140设置在所述显示屏120的下方。

所述显示屏120可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏120可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他替代实施例中,所述显示屏120也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。

另一方面,所述显示屏120具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,所述电子设备100可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。

所述生物特征识别模组140可以具体为光学生物特征识别模组,比如光学指纹模组,其主要用于采集用户的生物特征信息(比如指纹图像信息)。在本申请实施例中,所述生物特征识别模组140可以至少设置在所述显示屏120下方的局部区域,从而使得所述生物特征识别模组140的生物特征采集区域(或感应区域)130至少部分位于所述显示屏120的显示区域102。

作为一种实施例,所述生物特征识别模组140可以包括光学图像采集系统,所述光学图像采集系统可以包括多个光学图像采集单元,更具体地,所述生物特征识别模组140的光学图像采集系统可以包括具有光学感应阵列的光学生物特征传感器,比如光学指纹传感器;所述光学感应阵列包括多个光学感应单元,所述光学感应单元分别对应于上述光学图像采集系统的其中一个光学图像采集单元,所述光学图像采集单元可以具体包括光探测器或者光电传感器,且所述光学感应阵列的所在区域对应所述生物特征识别模组140的生物特征采集区域130。如图1所示,所述生物特征采集区域130位于所述显示屏120的显示区域102之中,因此,用户在需要对所述电子设备100进行解锁或者其他生物特征验证的时候,只需要将手指按压在位于所述显示屏120的生物特征采集区域130,便可以实现生物特征输入操作。由于生物特征采集检测可以在所述显示屏120的显示区域102内部实现,采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),因而可以采用全面屏方案。因此,所述显示屏120的显示区域102可以基本扩展到所述电子设备100的整个正面。

本申请实施例以所述显示屏120采用OLED显示屏为例,所述显示屏120的发光层具有呈阵列式排布的OLED显示单元阵列,所述生物特征识别模组140可以利用所述OLED显示屏120位于所述生物特征采集区域130的OLED显示单元(即OLED光源)作为生物特征检测识别的激励光源。当然,应当理解,在其他替代实现方案中,该生物特征识别模组140也可以采用内置光源或者外置光源来提供用于进行生物特征检测识别的光信号。在这种情况下,光学图像采集单元不仅可以适用于如OLED显示屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。并且,所述生物特征识别模组140的光学感应阵列具体包括光探测器(Photo detector)阵列(或称为光电探测器阵列、光电传感器阵列),其包括多个呈阵列式分布的光探测器/光电传感器,所述光探测器/光电传感器可以作为如上所述的光学感应单元。

当手指触摸、按压或者接近(为便于描述,在本申请中统称为按压)在所述生物特征采集区域130时,所述生物特征采集区域130的显示单元发出的光线在手指发生反射并形成反射光,其中所述反射光可以携带有用户手指的生物特征信息。比如,所述光线被用户手指表面的指纹发生反射之后,由于手指指纹的纹脊和纹谷的反射光是不同的,因此反射光便携带有用户的指纹信息。所述反射光返回所述显示屏120并被其下方的生物特征识别模组140的光探测器阵列所接收并且转换为相应的电信号,即生物特征检测信号。所述电子设备100基于所述生物特征检测信号便可以获得用户的生物特征信息,并且可以进一步进行生物特征匹配验证,从而完成当前用户的身份验证以便于确认其是否有权限对所述电子设备100进行相应的操作。

在其他替代实施例中,所述生物特征识别模组140也可以设置在所述显示屏120下方的整个区域,从而将所述生物特征采集区域130扩展到整个所述显示屏120的整个显示区域102,实现全屏生物特征识别。

应当理解的是,在具体实现上,所述电子设备100还包括保护盖板110,所述盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备100的正面,且所述保护盖板110表面还可以设置有保护层。因此,本申请实施例中,所谓的手指按压所述显示屏120实际上可以是指手指按压在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。

另一方面,所述生物特征识别模组140的下方还可以设置有电路板150,比如软性电路板(Flexible Printed Circuit,FPC),所述生物特征识别模组140可以通过焊盘焊接到所述电路板150,并通过所述电路板150实现与其他外围电路或者所述电子设备100的其他元件的电性互连和信号传输。比如,所述生物特征识别模组140可以通过所述电路板150接收所述电子设备100的处理单元的控制信号,并且还可以通过所述电路板150将所述生物特征检测信号输出给所述电子设备100的处理单元或者控制单元等。

由于空间以及成像要求等因素,对生物特征识别模组140中的光学图像采集系统的设计要求越来越高。本申请实施例提供了一种改进的光学图像采集方案,可以用于生物特征识别以及其他需要光学图像采集的应用中。

图3示出了本申请一个实施例的光学图像采集单元300的示意图。

图3中的光学图像采集单元300可以构成光学图像采集系统的一个像素单元。

如图3所示,光学图像采集单元300可以包括:微镜头310、挡光层320和光电传感器330。

所述挡光层320设置于所述微镜头310下方;所述光电传感器330设置于所述挡光层320下方。

所述挡光层320设置有窗口321。光信号可以从所述窗口321通过,而不能通过所述挡光层320。

例如,所述挡光层320对特定波段(比如可见光或者610nm以上波段)的光的透过率小于20%,比避免相应的光通过。可选地,所述挡光层320可以为金属层。

所述微镜头310用于将来自所述微镜头310上方的光信号汇聚至所述窗口321,所述光信号经由所述窗口321传输至所述光电传感器330。

所述微镜头310可以是各种具有汇聚功能的镜头。可选地,所述微镜头310的聚焦点位于所述窗口321内。所述微镜头的材料可以为有机材料,例如树脂。

可选地,在所述微镜头310的上方,可以通过光入射角度筛选单元,筛选特定入射角度范围的光,例如,仅使小入射角的光传输至微镜头310。光入射角度筛选单元可以是单独设置的光入射角度筛选单元,可以是光学图像采集单元300设置于显示屏下时,由显示屏自身的结构形成的光入射角度筛选单元。

所述窗口321用于通过所述微镜头310汇聚的光。可选地,所述窗口321为圆柱形,即,所述窗口321可以为挡光层320中的小孔。可选地,所述窗口321的直径大于100nm,以便于透过所需的光以进行成像。所述窗口321的直径也要小于预定值,以确保所述挡光层320能够阻挡不需要的光。也就是说,所述窗口321的参数设置尽可能使得该光学图像采集单元300成像所需的光信号最大化地传输至所述光电传感器330,而不需要的光被最大化地阻挡。例如,所述窗口321的参数可以设置为使得该光学图像采集单元300上方对应区域大致垂直向下入射的光信号最大化的传输至所述光电传感器330,而最大化阻挡其他光信号。

通过微镜头310、挡光层320、窗口321和光电传感器330的设置,来自微镜头310上方的光信号被汇聚至窗口321,并通过窗口321传输至光电传感器330。这样,光电传感器330可以检测到来自微镜头310上方对应区域的光信号,进而可以根据光信号的光强获取像素值。

光电传感器330检测的光信号可以用于形成采集图像的一个像素,该像素表示该光学图像采集单元300上方对应区域的特征值。也就是说,一个光学图像采集单元300采集的信号形成图像的一个像素,这样,通过多个光学图像采集单元300采集的信号可以得到一副图像。

例如,以指纹感测为例,每个光学图像采集单元300会感受到其上方汇聚的光强,再通过光电传感器330转化成电信号形成指纹原始值,如图4所示。然后,行列拼成整个识别区的指纹图像,如图5所示,最终获得指纹图像。

如上所述,采用本申请实施例的光学图像采集单元300,通过对应区域的光信号的光强形成图像,相对于采用透镜的成像系统,不需要考虑物距等设置,因而可以直接设置于显示屏下,不需要留出成像所需的距离,从而可以减小产品的厚度。

在本申请实施例的技术方案中,采用微镜头310对一定区域内的光信号进行汇聚。如图6所示,相比于不采用微镜头的方案,微镜头可以增加中心视场的入射角,增加光线的汇入,从而可以提升光电传感器330检测到的信号量,进而提高成像质量。同时,如图7所示,相比于不采用微镜头的方案,微镜头可以最大限度减小相邻区域大角度入射光的干扰,从而减弱了相邻单元之间的串扰问题,进而提高成像质量。

因此,本申请实施例的技术方案,通过微镜头将来自微镜头上方的光信号汇聚至窗口,并使光信号经由窗口传输至光电传感器以实现图像采集,既可以减小产品的厚度,又可以提高成像质量,从而能够提升光学图像采集产品的性能。

所述光电传感器330用于将光信号转换为电信号。可选地,所述光电传感器330可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)器件,由一个PN结组成的半导体器件,具有单方向导电特性。可选地,所述光电传感器330对于蓝光、绿光、红光或红外光的光灵敏度大于第一预定阈值,量子效率大于第二预定阈值。例如,该第一预定阈值可以为0.5v/lux-sec,该第二预定阈值可以为40%。也就是说,所述光电传感器330对于蓝光(波长为460±30nm)、绿光(波长为540±30nm)、红光或红外光(波长≥610nm)具有较高的光灵敏度和较高的量子效率,以便于检测相应的光。

应理解,所述光电传感器330的上述参数可以对应于光学图像采集所需的光,例如,若光学图像采集所需的光仅为一种波段的光,则所述光电传感器330的上述参数仅需要满足该波段的光的要求即可。

可选地,在本申请一个实施例中,所述光学图像采集单元300还可以包括:

介质层,用于传输所述光信号,设置于以下至少一处:

所述微镜头310与所述挡光层320之间、所述窗口321内或所述挡光层320与所述光电传感器330之间。

所述介质层可连接所述微镜头310、所述挡光层320和所述光电传感器330。所述介质层用于传输所述光信号,即可透过所述光信号。

可选地,在本申请一个实施例中,如图8所示,介质层可以包括:

透明介质层350,设置于所述窗口321内以及所述挡光层320上方;

钝化层360,设置于所述微镜头310与所述透明介质层350之间。

可选地,所述透明介质层350包括第一透明介质层351和第二透明介质层352,其中,所述第二透明介质层352用于连接所述第一透明介质层351和所述钝化层360。

所述第一透明介质层351覆盖所述挡光层320,可以实现对所述挡光层320的保护。在所述第一透明介质层351与所述钝化层360的结合不够好的情况下,可以采用与所述钝化层360结合更好的所述第二透明介质层352连接所述第一透明介质层351和所述钝化层360。

例如,所述钝化层360可以采用与所述微镜头相同的有机材料,所述第一透明介质层351可以为氧化硅,所述第二透明介质层352可以为氮化硅,以实现它们之间的连接。

可选地,所述微镜头310与所述钝化层360可以为一体结构。也就是说,所述微镜头310与所述钝化层360可以由一体的有机材料加工而成。

可选地,所述微镜头310与所述钝化层360也可以不为一体结构,而且还可以采用不同材料。在所述微镜头310与所述钝化层360的结合不够好的情况下,在它们之间还可以采用其他连接层进行连接。

可选地,如图8所示,介质层还可以包括:

介质和金属层340,设置于所述挡光层320与所述光电传感器330之间,所述介质和金属层340中包括所述光电传感器330的连接电路。

在本实施例中,介质和金属层设置于所述光电传感器330的上方,这种方式为前照式(Front Side illumination,FSI)。

可选地,介质和金属层也可以设置于所述光电传感器330的下方,也就是说,所述光电传感器330的上方不设置介质和金属层,而在所述光电传感器330的下方设置介质和金属层,该介质和金属层中包括所述光电传感器330的连接电路,这种方式为背照式(Back Side illumination,BSI)。

可选地,在本申请一个实施例中,所述光学图像采集单元300还可以包括:

滤波层,设置于所述微镜头310到所述光电传感器330之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号(即光学图像采集所需波段的光信号)。

例如,可以在光路中间的任意介质层镀膜,形成滤波层。可选地,滤波层对目标波段的光的透过率≥80%,对非目标波段的光的截止率≥80%。

下面举例说明图8所示光学图像采集单元的制备过程。应理解,这仅仅是一种示例,不应理解为对本申请实施例的限定。

首先制备光电传感器330以及介质和金属层340;然后在介质和金属层340上方制备挡光层320,例如,挡光层320可以为金属层。然后,再在挡光层320中制作窗口321;再在挡光层320上方以及窗口321内制备第一透明介质层351,以对挡光层320进行保护。然后,再在第一透明介质层351上方制备第二透明介质层352,第二透明介质层352采用与有机材料结合较好的材料。然后,在第二透明介质层352上方覆盖有机材料,并对有机材料进行高温处理,以溶得微镜头310,微镜头310下方的有机材料形成钝化层360。

采用上述光学图像采集单元300的阵列,可以形成光学图像采集系统。

应理解,上述光学图像采集单元的制备过程实际上可以为光学图像采集单元的阵列的制备过程。也就是说,实际制备过程中,直接得到光学图像采集单元的阵列。

图9示出了本申请一个实施例的光学图像采集系统的示意图。如图9所示,光学图像采集系统包括上述本申请实施例的光学图像采集单元300的阵列。

在光学图像采集系统中,每个光学图像采集单元300对应采集图像的一个像素,光学图像采集系统通过多个光学图像采集单元300的阵列得到所采集的图像。

所述光学图像采集系统可以设置于显示屏下。所述光学图像采集系统可以为生物特征识别系统或摄像头系统等,例如,屏下光学指纹识别系统或者屏下隐藏式摄像头系统等。

可选地,所述阵列的每行或每列中的光学图像采集单元300的数量不小于10。

应理解,光学图像采集单元300的数量可以根据图像采集区域的大小、图像分辨率的要求等因素而设定,本申请实施例对具体的数量并不限定。

可选地,如图9所示,所述光学图像采集系统还可以包括:

滤波片920,设置于所述阵列上方,用于滤掉非目标波段的光信号,透过目标波段的光信号。

在光学图像采集系统设置于显示屏下方时,显示屏自身的结构可以对入射的光进行角度筛选。

例如,如图9所示,显示屏910具有一定的深宽比结构,对入射光形成一道角度筛选,如让入射角小于60度。

可选地,所述光学图像采集系统还可以包括:

光入射角度筛选单元930,设置于所述阵列上方,用于透过特定入射角度范围的光,阻挡所述特定入射角度范围外的光。

也就是说,除了显示屏的角度筛选外,光学图像采集系统还可以包括另外的光入射角度筛选单元930,以进一步进行角度筛选。例如,光入射角度筛选单元930要求的入射角可以非常小,以选择大致垂直向下入射的光信号。

应理解,所述光学图像采集系统还可以包括用于支撑所述光学图像采集系统的支撑结构件,以及相应的处理芯片等,本申请实施例对此并不限定。

本申请实施例还提供了一种电子设备,该电子设备可以包括显示屏以及上述本申请实施例的光学图像采集系统,其中,所述光学图像采集系统设置于所述显示屏下方。

该电子设备可以为任何具有显示屏的电子设备。

显示屏可以采用以上描述中的显示屏,例如OLED显示屏或其他显示屏,显示屏的相关说明可以参考以上描述中关于显示屏的描述,为了简洁,在此不再赘述。

可选地,所述显示屏为有机发光二极管显示屏,所述显示屏的发光层包括多个有机发光二极管光源,其中,在所述光学图像采集系统为生物特征识别系统时,所述生物特征识别系统采用至少部分有机发光二极管光源作为生物特征识别的激励光源。

应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。

应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1