一种基于模糊判断的机电系统多层级可靠性预计方法

文档序号:10512830阅读:279来源:国知局
一种基于模糊判断的机电系统多层级可靠性预计方法
【专利摘要】本发明公开了一种基于模糊判断的机电系统多层级可靠性预计方法,属于机电系统可靠性工程技术领域。利用层次分析法对机电系统进行分层结构化处理,自顶向下划分层级,包括系统层、分系统层、功能模块层和基础功能层;然后,结合风险优先数法和模糊判断矩阵计算子单元相对于父单元的权重系数;最后,建立含权重系数的多层级可靠性模型,依次对机电系统进行可靠性预计。本发明可广泛用于机电装备可靠性工程领域,特别适合于复杂系统可靠性优化和精细化设计分析场合。
【专利说明】
一种基于模糊判断的机电系统多层级可靠性预计方法
技术领域
[0001] 本发明属于机电系统可靠性工程技术领域,涉及层次分析法与模糊理论应用技 术,尤其涉及一种基于模糊判断的机电系统多层级可靠性预计方法。
【背景技术】
[0002] 可靠性已经成为复杂机电系统的共性问题,其指标被视为重要的质量属性,与系 统性能、成本、效能等技术和经济指标一样,具有同等重要的地位。随着可靠性工程的发展, "产品的可靠性是设计出来的,生产出来的,管理出来的"这一思想越来越为设计人员、管理 人员所理解和接受。据统计产品80%的可靠性问题来源于产品设计阶段,研发水平直接影 响产品使用阶段的产品可靠性。因此,机电系统在服役期间能否安全、可靠、高效运行,关键 取决于在设计阶段能否合理地进行系统可靠性分析、评估、预计和优化。
[0003] 尽管可靠性作为产品的重要指标越来越受到人们重视,但如何在设计阶段对机电 系统进行合理地可靠性预计仍然是业内难题。多年来,国内外学者围绕该难题开展了大量 的卓有成效的研究工作,提出了包括可靠性框图、二元决策图、故障树、贝叶斯网络和Petri 网等一系列可靠性分析和预计方法。其中,因为可靠性框图简单直接有效,在工程中获得了 广泛应用。例如,斗计华博士采用可靠性框图建立了舰空导弹武器系统可靠性模型,实现了 单次射击时的使用可靠性评估。陈志诚博士针对传统可靠性仿真模型建模繁琐、编程困难 的问题,以可靠性框图为基础设计了基于ExtendSim的可靠性建模流程。吴嘉宁博士将可靠 性框图与故障树分析方法结合起来,研究了航天器太阳翼系统的可靠性问题。孙晓哲博士 将可靠性框图和广义随机Petri网相结合,提出了分层混合建模方法,对飞机主飞控系统进 行了可靠性分析。
[0004] 虽然可靠性框图能够有效构建系统可靠性模型,用于评估系统在给定任务剖面完 成规定功能的能力。但是忽略了这样一个事实:即机电系统是典型的机、电、液集成系统,由 零部件、电气设备、电子元件、液压元件等单元组成,每个单元作用和地位各不相同,对系统 可靠性的影响也应不一样。譬如,一个螺栓的失效和一个电机的失效,显然后者对系统可靠 性影响更大。而且,即使同一个零件,其不同的失效模式也对系统可靠性影响不一样。因此, 在构建系统可靠性模型时,更合理的处理方式是区别对待每个单元对系统可靠性影响。从 而方便工程师识别系统薄弱环节和进行可靠性优化设计。

【发明内容】

[0005] 本发明的目的在于克服现有机电系统可靠性预计方法的不足一一无法区别对待 每个系统单元的重要性,而提供一种基于模糊判断的机电系统多层级可靠性预计方法。利 用层次分析法对机电系统进行分层结构化处理,自顶向下划分层级,包括系统层、分系统 层、功能模块层和基础功能层。然后,建立含权重系数的多层级可靠性模型,并结合风险优 先数法和模糊判断矩阵计算子单元相对于父单元的权重系数。最后,按照分层结构依次对 机电系统进行可靠性预计。本发明可广泛用于机电装备可靠性工程领域,特别适合于复杂 系统可靠性优化和精细化设计分析场合。
[0006] 本发明是通过以下技术方案来实现上述技术目的:
[0007] -种基于模糊判断的机电系统多层级可靠性预计方法,首先对所述机电系统进行 分层结构化处理;自顶向下划分为系统层、分系统层、功能模块层、基础功能层;其中,每一 层级中的元素称之为单元,上一层级是下一层级的父单元层,下一层级是上一层级的子单 元层;然后自底层至顶层依次对机电系统进行多层级单元权重系数计算和可靠性预计;所 述权重系数计算和可靠性预计方法包括以下步骤:
[0008] 步骤1.子单元风险优先数计算和二元对比矩阵构建
[0009] 计算子单元的风险优先数,并构建二元对比矩阵;
[0010] 步骤2.子单元模糊判断矩阵构建和单元权重系数计算
[0011] 计算各子单元的风险优先数的重要性排序指数并构建模糊判断矩阵;并计算各子 单元的权重系数:
[0012] 步骤3.父单元可靠性模型构建
[0013] 依据步骤2中计算出各子单元的各项数据,按照可靠性框图方法构建所述子单元 对应的父单元可靠性模型;
[0014] 优选的,所述步骤1具体包括:
[0015] 1)采用风险优先数法并结合故障模式频数比概念,计算子单元风险优先数RPN,即
[0016] RPN={RPNi,RPN2, . . . ,RPNn}
[0017] = Y^y::()PR,ESR,
[0018]其中,RPNi为第i个子单元的风险优先数,i = l ,2, . . . ,n,n为单元数;OPRij为所述 第i个子单元的第j种故障模式发生概率等级;ESR^为所述第i个子单元的第j种故障模式对 其所对应的父单元的影响严酷度;为所述第i个子单元的第j种故障模式频数比;j = 1, 2,…肌,ΠΗ表示该单元的故障模式数。
[0019] 2)对风险优先数RPN中的目标RPNi与RPNk做二元对比(i,k=l,2,…,n,i辛k),构 建二元对比矩阵E;若RPNi>RPNk,令排序标度 eik= 1,eki = 0;若RPNi = RPNk,令eik = 0,eki = 0; 若RPNk>RPNi,令eik=0,eki = l;构建二元对比矩阵如下:
[0021 ]优选的,计算RPNi的重要性排序指数fi并构建模糊判断矩阵W:
[0022] fi=Xkeik
[0026]计算单元权重系数:
[0027] wi= EkWik(i^k)
[0028] 其中,Wi表示单元i相对于上层父单元的重要性,即权重系数。
[0029] 优选的,所述步骤3,按照可靠性框图方法构建子单元对应的父单元可靠性模型;
[0030] 对于串联可靠性框图,可靠性模型如下:
[0031] Rs(n = ΠΛ(〇
[0032] 对于并联可靠性框图,其可靠性模型如下:
[0033]
[0034] 其中,Rdt)为第i个子单元的可靠度,Rs(t)为所述第i个子单元所对应的父单元的 可靠度;t为时间。
[0035] 进一步的,当wi = 0时,表明单元i重要度低,对上层父单元可靠性没有影响;当Wi趋 近于0时,表明单元i非常重要,对上层父单元可靠性具有决定性影响。
[0036] 本发明与现有技术相比,具有以下有益效果:
[0037] 根据机电系统每个组成单元的作用和地位,利用层次分析法和模糊判断技术,分 层级区别对待其对系统可靠性的贡献,从而提供了一种基于模糊判断的机电系统多层级可 靠性预计方法。该方法与常规机电系统基本可靠性预计方法相比,计算更合理、精确,更接 近工程实际情况,可广泛用于机电装备可靠性工程领域,特别适合于复杂系统可靠性优化 和精细化设计分析场合。
【附图说明】
[0038] 图1为本发明一种基于模糊判断的机电系统多层级可靠性预计方法中实施例一的 系统分层结构图;
[0039] 图2为本发明一种基于模糊判断的机电系统多层级可靠性预计方法中实施例二中 的雷达机电控制系统分层结构;
[0040] 图3是图2中仿生腿模块父子单元关系图;
[0041] 图4是基于本发明一种基于模糊判断的机电系统多层级可靠性预计方法中实施例 二中的雷达机电控制系统可靠度预计结果;
[0042] 图5是基于常规方法的雷达机电系统可靠度预计结果。
【具体实施方式】
[0043] 为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的 实施例及附图配合详细的说明,说明如下:
[0044] 实施例一
[0045] 如图1所示,一种基于模糊判断的机电系统多层级可靠性预计方法,首先对机电系 统进行分层结构化处理;自顶向下划分层级,包括系统层、分系统层、功能模块层、基础功能 层;其中,每一层级的元素称之为单元,上一层级是下一层级的父单元层,下一层级是上一 层级的子单元层;然后依次对机电系统进行自底层至顶层的多层级单元权重系数计算和可 靠性预计。对于复杂度不同的机电系统,可以在上述4个层级基础上进行增减,直至满足分 析的需要。权重系数计算和可靠性预计方法包括以下步骤:
[0046] 步骤1.子单元风险优先数计算和二元对比矩阵构建
[0047] 计算子单元的风险优先数,并构建二元对比矩阵;
[0048] 步骤2.子单元模糊判断矩阵构建和单元权重系数计算
[0049] 计算各子单元的风险优先数的重要性排序指数并构建模糊判断矩阵;并计算各子 单元的权重系数:
[0050] 步骤3.父单元可靠性模型构建
[0051] 依据步骤2中计算出各子单元的各项数据,按照可靠性框图方法构建子单元对应 的父单元可靠性模型;
[0052]步骤1具体包括:
[0053] 1)采用风险优先数法并结合故障模式频数比概念,计算子单元风险优先数RPN,即
[0054] RPN={RPNi,RPN2, · · ·,RPNn} (1)
[0055] RPNi= Σ jay · OPRij · ESRij (2)
[0056]其中,RPNi为第i个子单元的风险优先数,i = l,2,. . .,n,n为单元数;OPRij为第i个 子单元的第j种故障模式发生概率等级;ESR^为第i个子单元的第j种故障模式对其所对应 的父单元的影响严酷度;aij为第i个子单元的第j种故障模式频数比;j = 1,2,,nu表示 该单元的故障模式数。
[0057] 2)对风险优先数RPN中的目标RPNi与RPNk做二元对比(i,k= 1,2, . . .,n, i乒k),构 建二元对比矩阵E。根据式⑵计算的计算结果,若RPNi>RPNk,令排序标度eik=l,eki = 0;若 RPNi = RPNk,令eik=0,eki = 0;若RPNk>RPNi,令eik=0,eki = l;构建二元对比矩阵如下:
[0059]在步骤2的基础上,计算RPNi的重要性排序指数fi并构建模糊判断矩阵W:
[0060] fi = Ekeik (4)
[0064] 计算单元权重系数:
[0065] wi= EkWik(i^k) (7)
[0066] 其中,Wi表示单元i相对于上层父单元的重要性,即权重系数。当wi = 0时,表明单元 i重要度低,对上层父单元可靠性没有影响;当^趋近于m时,表明单元i非常重要,对上层 父单元可靠性具有决定性影响。
[0067] 步骤3中,按照可靠性框图方法构建子单元对应的父单元可靠性模型;
[0068] 对于串联可靠性框图,可靠性模型如下:
[0069] /?,.(0 = ΠΛ.⑴ (8)
[0070] 对于并联可靠性框图,其可靠性模型如下:
[0071] 尽(〇 = 1-Π (!-<(〇) (9)
[0072] 其中,Rjt)为第i个子单元的可靠度,Rs(t)为第i个子单元所对应的父单元的可靠 度;t为时间。
[0073]具体工作中,根据上述方法,先将基础功能层作为子单元层,功能模块层作为其父 单元层。重复步骤1、步骤2和步骤3,依次计算基础功能层单元权重系数,构建其对应的父单 元可靠性模型,并计算可靠度,实现所有功能模块的可靠性预计。然后将功能模块层作为子 单元层,分系统层作为其对应的父单元层。重复步骤1、步骤2和步骤3,依次计算功能模块层 单元权重系数,构建其对应的父单元可靠性模型,并计算可靠度,实现所有分系统可靠性预 计。最后将分系统层作为子单元层,系统层作为其对应的父单元层。重复步骤1、步骤2和步 骤3,依次计算分系统层单元权重系数,构建系统可靠性模型,并计算其可靠度,实现系统可 靠性预计。
[0074] 实施例二
[0075]以某地面高机动雷达机电系统为案例,对上述方法进行详细描述。本案例具体处 理方法如下:
[0076]步骤1.机电系统分层结构化处理
[0077] 对机电系统进行分层结构化处理,自顶向下划分层级,包括系统层、分系统层、功 能模块层和基础功能层。如图2所示,系统层为雷达机电控制系统,分系统层包括调平、架设 和控制分系统,功能模块层包括仿生腿、撑腿、俯仰等功能模块,基础功能层包括销轴、支腿 结构、减速机等基础单元。
[0078] 步骤2.底层单元风险优先数计算和二元对比矩阵构建
[0079] 假设底层每个单元可靠性都服从指数分布,故障率参数为λ(为简化计算,本案例 不考虑每个单元的故障模式数)。故障模式发生概率等级评分准则和故障模式严酷度等级 评分准则如表1和表2所示。表3给出了底层单元的故障率参数λ、故障模式发生概率等级0PR 和故障模式严酷度ESR
[0080] 表1故障模式发生概率等级评分准则
[0082]表2故障模式严酷度等级评分准则
[0083]
[0084] 表3零部件故障率参数、故障模式发生概率等级和故障模式严酷度
[0085]
[0086]
[0087] 按照式(3)依次求得仿生腿、撑腿、其他模块、俯仰功能、举升功能、旋转功能、架设 控制和调平控制的二元对比矩阵,如表4所示。
[0088] 表4各功能模块对应的底层单元二元对比矩阵
[0089]
[0090]
[0091] 步骤3.底层单元模糊判断矩阵构建和单元权重系数计算
[0092] 根据式(4)、(5)、(6)和表4,计算各功能模块对应的底层子单元模糊判断矩阵W,如 表5所示。则按照式(7),即可求得各个底层单元的权重系数。
[0093] 表5各功能模块对应的子单元模糊判断矩阵
[0094]
[0095]步骤4.父单元可靠性模型构建
[0096]根据步骤1的分层结构,按照式(8)串联关系建立底层单元对应的父单元可靠性模 型,图3给出了仿生腿模块父子关系。
[0097]步骤5.功能模块可靠性预计
[0098] 按照步骤3确定的权重系数,当系统连续工作1000小时,求得底层单元对应父单元 的可靠度:仿生腿模块〇. 127,撑腿模块0.332,其他模块0.987,俯仰功能模块0.564,举升功 能模块0.564,旋转功能模块0.644,架设控制模块0.885,调平控制模块0.855。
[0099]步骤6.分系统可靠性预计
[0100]在步骤5基础上,求得各功能模块故障率参数λ见表6。
[0101 ]表6各功能模块故障率参数、故障模式发生概率等级和严酷度
[0103] 将功能模块层作为底层,分系统层作为其对应的父单元层。重复步骤2、步骤3和步 骤4,表7给出了各分系统对应的子单元模糊判断矩阵,则按照式(7),即可求得功能模块层 单元权重系数。
[0104] 表7各分系统对应的子单元模糊判断矩阵
[0105]
[0106]按照式(8)串联关系,构建分系统可靠性模型。当系统连续工作1000小时,求得各 分系统可靠度:调平分系统0.0118,架设分系统0.2266,控制分系统0.8553。
[0107] 步骤7.系统可靠性预计
[0108] 在步骤6基础上,求得各分系统故障率参数λ见表8。
[0109] 表8各分系统故障率参数、故障模式发生概率等级和严酷度

[0111]根据步骤1的分层结构,将分系统层作为底层,系统作为其对应的父单元。重复步 骤2、步骤3和步骤4,计算分系统层单元权重系数,下式给出了分系统层单元模糊判断矩阵:
[0113] 按照式(8)串联关系,构建系统可靠性模型。当系统连续工作1000小时,求得系统 可靠度为〇. 000845,故障率参数为0.007076,平均故障间隔时间为(MTBF) 141小时。系统可 靠度随时间变化趋势如图4所示。
[0114] 按照常规的基本可靠性预计方法,该系统总故障率参数为0.00213305,MTBF为469 小时,系统可靠度随时间变化趋势如图5所示。据统计,该雷达在2011年~2014年间,累计工 作时长10230小时,共发生故障52起,平均故障间隔时间约为197小时。显然,按照本发明提 供的方法,系统可靠度计算结果与实际情况更为接近。
[0115] 以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术 人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明 的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和 改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其 等同物界定。
【主权项】
1. 一种基于模糊判断的机电系统多层级可靠性预计方法,其特征在于:首先对所述机 电系统进行分层结构化处理;自顶向下划分为系统层、分系统层、功能模块层、基础功能层; 其中,每一层级中的元素称之为单元,上一层级是下一层级的父单元层,下一层级是上一层 级的子单元层;然后自底层至顶层依次对机电系统进行多层级单元权重系数计算和可靠性 预计;所述权重系数计算和可靠性预计方法包括以下步骤: 步骤1.子单元风险优先数计算和二元对比矩阵构建 计算子单元的风险优先数,并构建二元对比矩阵; 步骤2.子单元模糊判断矩阵构建和单元权重系数计算 计算各子单元的风险优先数的重要性排序指数并构建模糊判断矩阵;并计算各子单元 的权重系数: 步骤3.父单元可靠性模型构建 依据步骤2中计算出各子单元的各项数据,按照可靠性框图方法构建所述子单元对应 的父单元可靠性模型。2. 根据权利要求1所述的一种基于模糊判断的机电系统多层级可靠性预计方法,其特 征在于:所述步骤1具体包括: 1) 采用风险优先数法并结合故障模式频数比概念,计算子单元风险优先数RPN,即 RPN={RPNi,RPN2, . . . ,RPNn} RPNi=Ejaij · OPRij · ESRij 其中,RPNi为第i个子单元的风险优先数,i = l ,2, . . . ,n,n为单元数;OPRij为所述第i个 子单元的第j种故障模式发生概率等级;ESR^为所述第i个子单元的第j种故障模式对其所 对应的父单元的影响严酷度;为所述第i个子单元的第j种故障模式频数比;j = 1,2,… ΠΗ,ΠΗ表示该单元的故障模式数。 2) 对风险优先数RPN中的目标RPNi与RPNk做二元对比(i,k=l,2, . . .,n,i乒k),构建二 元对比矩阵E;若RPNi>RPNk,令排序标度eik = 1,eki = 0 ;若RPNi = RPNk,令eik = 0,eki = 0;若 RPNk>RPNi,令eik=0,eki = l;构建二元对比矩阵如下:3. 根据权利要求2所述的一种基于模糊判断的机电系统多层级可靠性预计方法,其特 征在于:计算RPK的重要性排序指数h并构建模糊判断矩阵W: fi = Xkeik计算单元权重系数: Wi = Σ kWik (i^k) 其中,^表示单元i相对于上层父单元的重要性,即权重系数。4. 根据权利要求3所述的一种基于模糊判断的机电系统多层级可靠性预计方法,其特 征在于:所述步骤3,按照可靠性框图方法构建子单元对应的父单元可靠性模型; 对于串联可靠性框图,可靠性模型如下: 对于并联可靠性框图,其可靠性模型如下: 其中,RKt)为第i个子单元的可靠度,Rs(t)为所述第i个子单元所对应的父单元的可靠 度;t为时间。5. 根据权利要求3所述的一种基于模糊判断的机电系统多层级可靠性预计方法,其特 征在于:当wi = 0时,表明单元i重要度低,对上层父单元可靠性没有影响;当wi趋近于°°时, 表明单元i非常重要,对上层父单元可靠性具有决定性影响。
【文档编号】G06Q10/04GK105868863SQ201610220714
【公开日】2016年8月17日
【申请日】2016年4月8日
【发明人】胡祥涛, 张祥祥, 魏雄, 魏一雄, 程五四, 李广, 田富君, 周红桥, 陈帝江, 陈兴玉, 张红旗
【申请人】中国电子科技集团公司第三十八研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1