互质阵列中基于迭代稀疏重构的doa估计方法

文档序号:10655472阅读:658来源:国知局
互质阵列中基于迭代稀疏重构的doa估计方法
【专利摘要】本发明公开了互质阵列中一种基于迭代稀疏重构的DOA估计方法,接收天线阵列采用非线性互质阵列,通过对接收信号的二阶统计特性协?方差矩阵的向量化处理,可确定孔径长度更大的差分阵列,提高检测能力。对目标所在的角度域进行离散化处理,目标可视为稀疏分布于栅格点之上或附近,并构建出对数和形式的稀疏信号重建问题。利用对数和函数的凸紧上界,重建该原始稀疏问题,以迭代的方式动态调整更新角度域的离散点以逼近目标真实的到达角度。
【专利说明】
互质阵列中基于迭代稀疏重构的DOA估计方法
技术领域
[0001] 本发明设及通信信号处理技术领域,尤其设及一种使用互质阵列的基于迭代稀疏 重构的DOA估计方法。
【背景技术】
[0002] 基于天线阵列的信号处理方法被广泛应用于无线通信、电磁场、雷达、声响等诸多 领域。波达方向(DOA)估计是阵列信号处理领域中的一个重要问题。
[0003] 传统的估计方法通常研究阵元间隔为半波长的均匀线性阵列,且适用于检测目标 数少于阵元个数的场合,例如对N天线均匀线性阵列而言,传统估计方法(如基于子空间的 估计方法等)至多可检测N-I个目标,非线性互质阵列通过利用协方差矩阵的特性,将原始 阵列构建成具有更多虚拟天线和更大孔径长度的差分阵列,进而可显著提高其自由度,即 检测能力,传统估计方法通常需要目标个数的先验信息和大样本才能估计出目标的波达方 向,在小样本及目标个数未知条件下不适用,此外,传统估计方法也难W适用于信噪比低的 情况,即可能无法检测到发射功率较低(例如小于噪声功率)的弱目标。
[0004] 近年来,随着稀疏重构理论的发展,稀疏表示已逐渐开始应用于小波去噪、雷达成 像等领域,基于稀疏信号重构的DOA估计方法能够充分发掘互质阵列自由度高的优势,可检 测目标数目较传统方法显著提高,然而,常规的稀疏重构方法需要将角度域进行静态的栅 格化处理,建立Wlo范数(通常Wlp范数近似,P《l)最小化为目标的稀疏优化问题,运类方 法的问题在于估计精度严重依赖于初始的栅格化过程,若目标大部分位于或极其靠近栅格 点,则估计性能良好;反之,若大部分目标流离于栅格点之外,则估计性能难W保证,因此, 由于角度域的静态栅格化处理造成的栅格失配问题会严重影响重构的效果。

【发明内容】

[0005] 本发明针对上述现有技术存在的不足,提出了一种适用于互质阵列的基于迭代稀 疏重构的DOA估计方法,本发明的方法具有更高的自由度,可检测比实际阵元数更多的目 标,本发明的方法的估计性能不依赖于初始的栅格化处理,具有更强的灵活性,适用于小样 本、低信噪比及目标个数未知等复杂环境,其中所述DOA全称为Direction Of Arrival,即 信号的波达方向。
[0006] 为实现上述发明目的,本发明所采取的技术方案为: 一种互质阵列中基于迭代稀疏重构的DOA估计方法,它包括W下步骤: (1) 建立接收阵列模型 用非线性的互质阵列作为接收阵列采集信号,其中互质阵列可分解为两个均匀线性子 阵列,每个子阵列的阵元间隔均大于半波长; (2) 构建虚拟差分阵列 对互质阵列接收信号的协方差矩阵进行向量化处理,在不同阵元的差分位置形成虚拟 阵元,可将原始阵列等效成具有更多虚拟阵元及更大孔径尺度的差分阵列; (3) 栅格化处理,建立稀疏优化问题 将目标区域进行栅格化处理,分析差分阵列中的接收信号,建立W对数和函数为优化 目标的稀疏优化问题,兼顾估计结果的稀疏性和准确性; (4) D0A估计迭代实现 利用对数和函数的凸紧上界重构原始稀疏问题,W迭代方式逐步更新栅格点位置来使 目标函数最小化,逐渐逼近真实信号源的方向,直至满足终止条件,所述方法可动态调整栅 格点的位置,能有效克服角度域的静态离散化造成的栅格失配问题。
[0007] 本发明的有益效果为: 1、 本发明利用互质阵列构建出具有更多阵元数目和更大孔径尺寸的虚拟差分阵列,显 著提高了自由度,可实现多于阵元数目的目标检测; 2、 相对于传统角度域的静态栅格化,本发明W迭代方式动态调整栅格点来逐渐逼近目 标的真实位置,可避免估计性能对栅格初始位置的依赖,改善由于静态的栅格化造成的失 配问题,提高估计精度和分辨率; 3、 本发明无需目标个数的先验信息及对协方差矩阵的满秩性要求,可适用于目标个数 未知及小样本环境,具有很强的灵活性。在单样本条件下,该方法可实现目标的动态追踪; 4、 本发明鲁棒性好,对信噪比要求低,可实现低发射功率(小于噪声功率)目标的检测。
【附图说明】
[0008] 图1为本发明方法的流程图; 图2为本发明互质阵列及其子阵列示意图; 图3为本发明的仿真实验中归一化功率谱图; 图4为本发明的仿真实验中估计精度图a; 图5为本发明的仿真实验中估计精度图b。
【具体实施方式】
[0009] 下面结合附图对本发明作进一步的详细描述: 本发明方法的流程图如图1所示,具体实现过程如下: (1) 构建非线性互质阵列模型,获取接收信号; (2) 计算接收信号的协方差矩阵并进行向量化处理,建立虚拟差分阵列; (3) 对角度域进行栅格化处理,建立稀疏优化问题; (4) W迭代方式动态调整栅格点位置,直至满足终止条件。分析稀疏解,确定最终波达 方向。
[0010] 本发明的DOA估计方法过程如下: 1.互质阵列及其接收信号 本发明所设及的互质阵列如图2所示,该阵列可分解为两个均匀线性子阵列,其中子阵 列1包含Mi个天线,相邻天线间隔为M2V2,子阵列2包含2M2个天线,相邻天线间隔为MiV2, 运里化和M2为互质的正整数,A表示载波的波长,子阵列1和2的全体构成非线性互质阵列,由 于子阵列1和2共享第一个天线,因此互质阵列的天线数为M=化+2M2-1。
[0011] 有未知个数(假定为K)的不相关目标从不同方向0=[01,02,…,0K]到达互质阵 列,该阵列在时刻的接收信号为
(1) 其中,A=[a(00,a(02),…,a(0K)]表示由阵列位置确定的已知的阵列流形矩阵,s(t) = kl(t),S2(t),…,SK(t)]T表示K个目标的发射信号矢量,n(t)为独立同分布加性高斯白 噪声矢量,上标T表示转置。
[0011] 2.协方差矩阵及虚拟差分阵列 接收信号x(t)的协方差矩阵可表征为
(2) 其中,4和O2分别表示第k个信号的功率和噪声功率,E表示期望,上标H表示共辆转置, 1卽2姑2-1表示Mi+SMrl维单位阵,矩阵Rxx的第U'rO项为載[馬!(叫如的],可视为在Im- In处存在的虚拟天线的接收信号,在Rxx中,由第m个和第n个天线的差值产生的虚拟天线在 位置1。-1。(1《111,11《11+212-1)山和1。分别表示第111和第11个天线的实际位置。
[001 ^ 对3、进行向量化处理,则有 Z = Vec(Rxx)=巫(目1,目2,...,目K)P+02ln, (3) 其中

,vec表示向量化处理,敏表示Kronecker乘积,Z为虚拟差分阵列 的接收信号,O (01,02,…,0K)表示虚拟差分阵列的阵列流行矩阵。
[0013] 3.栅格化处理,建立稀疏优化问题 为利用稀疏方法进行D 0 A估计,需要将目标角度域进行栅格化,
,化& K,因此可建立稀疏优化问题为
C4:) 其中M ? I Io表示0-范数,该优化问题表示的含义为在给定静态栅格点,即在给定虚拟 阵列流行矩阵的前提下,用尽可能少的信号功率P去重构接收信号Z,该问题是NP-难问题, 计算量极大, 为此,利用对数和函数去近似(4)中的0-范数,并构建无约束优化问题为
C5) 其中。〇用来确定对数函数的存在性,11 ? I h表示最小二乘代价函数,n〉〇衡量稀疏性 和最小二乘代价之间的均衡,由于对数函数的非凸性,优化问题(5)容易陷入局部最优解, 进一步,利用对数和函I
的凸上界函数 C6) 、.
/. 来代替优化问题中的对数和函数,式中,P功P中的第i个元素,为Pi在第t次迭代 中的估计,替代中忽略掉与未知变量{p,eg,〇2}无关的项之后,优化问题巧)可转化为
(?) 其4
[0014] 4. DOA估计迭代实现 该迭代方法的具体实施步骤如下: 步骤1:初始化离散角度集合0g'W,对应的信号功率集合和噪声功率O2, W,并令t =1, 步骤2:根据当前角度集合和噪声功率优化问题(7)对P求导并置零,计 算占%
步骤3:根据当前角度集合和信号功率估计,计算噪声功率O2, W为
< 9) 步骤4:根据当前信号功率估计占构建对数和函数的凸上界函数0〔p|r),更新 C
、 步骤5:将估计值W和D?代入优化问题(7),优化问题变为
\ I U ^ 由于O (0g)是关于0g的非线性函数,直接获取最优0g难W实现,可采用迭代方式逐步靠 近最优的eg,为此寻找新的估计0g'W满足下式 f(0g.(t))^f(0g,(t-i)) 0g, W可根据梯度下降法估计为
其中y为较小的正数, 令 t = t+l, 步骤6:若满足终止条件,算法结束,否则跳至步骤2。
[0015] W下通过仿真对比本发明方法和其他传统方法(如空间平滑方法)说明本发明的 优越性能: 本发明仿真实验采用化=5和M2 = 3的互质阵列模型,其天线总个数为10,存在K=Il个 等功率信号源,其角度分别为[-49.3 ,-37.2,-26.8 ,-17.3,-8.3,0.45,9.2,18.3,27.8, 38.3,50.6]度,将角度域按照3度的间隔进行等间隔栅格化,信噪比定义为输入功率与噪声 功率之比。
[0016] 图3为本发明的仿真实验中归一化功率谱图,其中图2中的横坐标表示波达方向, 纵坐标表示归一化能量,虚线表示真实角度,上图实线表示空间平滑算法估计的角度,下图 实线表示本发明方法估计的角度,如图3所示,本发明方法能成功检测所有的目标,而空间 平滑方法漏掉了其中一个,因此本发明方法具有更强的检测能力。
[0017] 图4为本发明的仿真实验中估计精度图,定量分析了本发明的估计精度,图4中横 坐标表示信噪比,纵坐标表示估计均方误差,图5中横坐标表示样本数目,纵坐标表示估计 的均方误差,由图4可见,在不同信噪比条件下,本发明的估计均方误差均小于空间平滑算 法的估计误差,在低信噪比环境下更加明显,由图5可见,在不同样本数目条件下,本发明的 估计均方误差也均小于空间平滑算法的估计误差,在小样本条件下更加明显,显然,本发明 的DOA估计精度高于现有的空间平滑算法。
【主权项】
1. 互质阵列中一种基于迭代稀疏重构的DOA估计方法,其特征在于:所述方法按以下步 骤进行: (1) 建立接收阵列模型 用非线性的互质阵列作为接收阵列采集信号,其中互质阵列可分解为两个均匀线性子 阵列,每个子阵列的阵元间隔均大于半波长; (2) 构建虚拟差分阵列 对互质阵列接收信号的协方差矩阵进行向量化处理,在不同阵元的差分位置形成虚拟 阵元,可将原始阵列等效成具有更多虚拟阵元及更大孔径尺度的差分阵列; (3) 栅格化处理,建立稀疏优化问题 将目标区域进行栅格化处理,分析差分阵列中的接收信号,建立以对数和函数为优化 目标的稀疏优化问题,兼顾估计结果的稀疏性和准确性; (4) D0A估计迭代实现 利用对数和函数的凸紧上界重构原始稀疏问题,以迭代方式逐步更新栅格点位置来使 目标函数最小化,逐渐逼近真实信号源的方向,直至满足终止条件,所述方法可动态调整栅 格点的位置,能有效克服角度域的静态离散化造成的栅格失配问题。2. 根据权利要求1所述的互质阵列中基于迭代稀疏重构的D0A估计方法,其特征在于: 所述的非线性互质阵列可分解为两个包含MjP2M 2个天线的均匀子阵列,其对应的阵元间隔 分别为此和施个半波长,其中施和此为互质的正整数。3. 根据权利要求1所述的互质阵列中基于迭代稀疏重构的D0A估计方法,其特征在于: 所述差分阵列中的虚拟天线的位置由互质阵列中实际天线位置的差值确定,该差分阵列具 有更大的孔径尺寸,可以用来检测比天线数更多的目标。4. 根据权利要求1所述的互质阵列中基于迭代稀疏重构的D0A估计方法,其特征在于: 所述的由差分阵列构建的稀疏信号重建问题中,阵列流行矩阵中的每一个列向量对应于一 个离散化的角度,若相应的发射功率大于〇,则可判断此方向存在目标,否则不存在。5. 根据权利要求1所述的互质阵列中基于迭代稀疏重构的D0A估计方法,其特征在于: 所述的迭代稀疏重构的D0A估计方法中,利用对数和函数近似传统的0-范数来确保稀疏性, 原问题可转化为迭代最小化对数和函数的凸上界函数问题,由此逐步更新角度域的栅格点 的位置以逼近真实值。
【文档编号】G06F17/50GK106021637SQ201610237414
【公开日】2016年10月12日
【申请日】2016年4月15日
【发明人】孙丰刚, 兰鹏, 陈丽珍, 毕建杰
【申请人】山东农业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1