一种终端区智能化流控策略生成方法与流程

文档序号:16635310发布日期:2019-01-16 06:57阅读:451来源:国知局
一种终端区智能化流控策略生成方法与流程

本发明涉及终端区智能化流控策略生成方法,尤其涉及一种基于终端区空域结构、气象预报与实时探测数据的终端区智能化流控策略生成方法。



背景技术:

雷雨多伴有强风、强降水、雷电、颠簸等恶劣天气现象,可造成航班机体受损、机载设备失灵,对航班飞行安全构成严重威胁。机场终端区内,雷暴天气对起飞和降落阶段的航班飞行影响尤为严重。

针对雷雨,空管部门通常根据其影响的空间范围和强度,采取飞行流量管理措施,如:引导空中飞机备降、返航、绕飞雷雨或穿越雷雨间隙,安排地面飞机延误起飞等。当前,民航普遍采用“头脑风暴”法制定流量管理策略,即:面对相关空域含雷暴信息的天气预报或天气态势,流量管理人员根据以往的经验,分析雷雨对航班飞行可能造成的影响范围和严重程度,并提出相应的航班运行调整建议(包括等待、备降、改航、返航、绕飞,等)。该方法制定流控策略存在下列不足:

(1)雷暴等恶劣天气的影响分析定性而非定量,准确度低;

(2)决策过程中,流量管理人员工作负荷大、时间长;

(3)决策结果(流控措施)受制于决策人员的专业素养和主观意识,难以保证好的实施效果。



技术实现要素:

本发明的目的在于提供一种基于机场终端区空域结构和气象信息,自动化地针对雷雨天气制定流量管理策略的方法,本方法实现的软件模块可嵌入到飞行流量管理系统中。

技术方案:本发明的基于空域结构和气象数据的智能化终端区流控策略生成方法包括如下步骤:(1)建立以机场为原点的终端区三维空域结构;(2)建立终端区运行模式;(3)依据终端区气象预报或雷达回波图计算指定时段雷雨区与终端区结构之间的覆盖关系;(4)基于建立的三维空域结构和运行模式以及计算的覆盖关系生成指定时段雷雨影响下的终端区运行流控策略;(5)重复执行步骤(3)和(4),以随着雷雨数据的更新而更新流控策略,直到雷雨消散或移出终端区域。

有益效果:与现有的流控策略制定方法相比,本发明显著了提高了雷雨天气条件下机场终端区的运行效率,主要表现在:(1)本方法自动化地生成流控策略,在减轻流量管理人员工作量、避免人为因素造成决策差异的同时,可大大提高流控策略制定的效率;(2)自动计算雷雨区对终端区运行的影响程度,以此为基础形成的决策信息,精确性高、针对性强、实施效果明显;(3)随着雷雨区位置的移动或强度的变化,流控策略可自动动态调整。

附图说明

图1为终端区空域结构图;其中,粗虚线表示终端区边界;细短虚线表示离场航线;细长虚线表示进场航线;图中央的填充多边形表示安全控制区;

图2为机场终端区雷雨预报;

图3为根据雷雨预报生成的指定时段雷雨覆盖图;其中,粗虚线表示终端区边界;细短虚线表示离场航线;细长虚线表示进场航线;图中央的填充多边形表示安全控制区;

图4为实时气象雷达回波;其中,粗虚线表示终端区边界;细虚线表示离场航线;图中央的网格区表示安全控制区;其他阴影部分为雷雨区;

图5为本发明雷雨影响下的流控策略自动生成逻辑图;

图6为根据本发明的方法生成的雷雨影响下的流控策略。

具体实施方式

以下结合附图对本发明的终端区智能化流控策略生成方法作进一步解释说明。

本发明的终端区智能化流控策略生成方法包括以下步骤:

步骤1、建立以机场为原点的终端区三维空域结构。

步骤1-1、构建终端区内定位点数据库,定位点要素包含:定位点代号、定位点位置、定位点类型。其中定位点类型可分为:机场、航路点、进港点、出港点、起始进近点、等待点、安全控制空域结构点。

步骤1-2、构建终端区结构,包括机场、进离场航线、安全控制区等的构成及相互之间的三维空间关系。具体而言,步骤1-1包括以下流程:

(1)将机场抽象为系统原点;

(2)将进场航线抽象为一系列带有飞行高度和速度的定位点构成的折线。其中,第i条进场航线star[i]={(pin_ij,lin_ij,vin_ij)}(进场航线共num_star条,i=1,…,num_star),star[i]由m[i]个定位点构成,pin_ij为构成进场航线star[i]的第j个定位点(j=1,…m[i]),lin_ij和vin_ij分别为飞机在点pin_ij处的飞行高度和速度;

(3)将离场航线抽象为一系列带有飞行高度和速度的定位点构成的折线。其中,第i条离场航线sid[i]={(pout_ij,lout_ij,vout_ij)}(离场航线共num_sid条,i=1,…,num_sid),sid[i]由n[i]个定位点构成,pij为构成离场航线sid[i]的第j个定位点(j=1,…n[i]),lout_ij和vout_ij分别为飞机在点pout_ij处的飞行高度和速度;

(4)将安全控制区抽象为由定位点构成的多边形柱体。第i个安全控制区rest[i]={ps_ij},(安全控制区共num_rest个,i=1,…,num_rest),安全控制区rest[i]由q[i]个定位点构成,ps_ij为rest[i]的第j个点(j=1,…,q[i])。

通过以上方式构建出的终端区结构如图1所示。

步骤2、建立终端区运行模式,包括:

(1)建立进场/离场航线之间的替代运行关系,用于标识雷雨影响下某一条进/离场航线关闭时,相关航班可从其它哪几条航线进场/离场;

(2)建立进场航线star[i]与起飞机场adji的对应关系adji:star[i](i=1,…,num_star;j=1,…,ji),用于标识当雷雨影响下的进场航线运行等级变更或关闭时,从哪些方向来本场降落的航班飞行受影响,adji表示使用star[i]进近降落的航班的起飞机场,ji表示使用star[i]进近降落的航班的起飞机场总个数;建立离场航线sid[i]与落地机场aaji的对应关系aaji:sid[i](i=1,…,num_sid;j=1,…,li),用于标识当雷雨影响下的离场航线运行等级变更或关闭时,从本场去哪些方向的航班飞行受影响,aaji表示使用离场航线sid[i]出发航班的目的机场,li表示使用sid[i]出发航班的目的机场总个数。

步骤3、依据终端区气象预报或雷达回波图计算指定时段雷雨区与终端区结构之间的覆盖关系。计算方式如下:

(1)通过气象预报计算:提取气象预报(如图2)中的雷暴当前位置信息(本场西南侧80公里)、移动方向(西南向东北)、速度(15-20公里/小时)。计算得到:3小时后云雨区与进离场航线的覆盖关系,如图3。假定该云雨区的云高在进离场航线之上,它将影响一条进场航线和一条离场航线的运行;

(2)通过实时气象雷达回波数据计算:设定影响飞行的雷雨反射率阈值为v_storm;通过气象雷达回波图中各像素相对雷达的位置、雷达相对系统原点的位置和雷达的探测范围,计算回波图中各像素点相对系统原点的位置,并通过各像素点的颜色提取雷达反射率;滤除反射率小于v_storm、以及云高低于飞行高度的部分,得到雷雨区与进离场航线的覆盖关系,如图4所示。从图4可知,走廊口“cdy”、“yv”以及“sosdi”遭受严重雷暴天气,因此相关航班改由其它走廊口离场。

步骤4、基于建立的三维空域结构和运行模式以及计算的覆盖关系生成指定时段雷雨影响下的终端区运行流控策略。如图5,生成指定时段雷雨影响下的终端区运行流控策略包括如下流程:

(1)依次选择终端区内的飞行空域,包含机场、num_sid条离场航线和num_star条进场航线;

(2)飞行空域是机场时,根据步骤3中得到的终端区与雷雨区的覆盖关系判断所选择的机场是否有雷雨覆盖,如机场有雷雨覆盖,则机场关闭,并生成流控策略:“进港飞机备降或返航、离港飞机地面等待”;否则不需要进行流控;

(3)飞行空域是进场航线star[i](i=1,…,num_star)时,根据步骤3中得到的终端区与雷雨区的覆盖关系判断star[i]是否有雷雨覆盖。若有雷雨覆盖,则自动规划可用的进场绕飞路线。如能规划出绕飞进场路径fr_in,则生成流控策略:“从adji(j=1,…,ji)机场起飞的到港航班拉大间隔绕飞进港”;如不能规划出绕飞路径则生成流控策略:“从adji(j=1,…,ji)机场起飞的航班备降或返航”。

图5中标记③、④处的起飞机场adji(j=1,…,ji)依据步骤2中建立的终端区运行模式确定。

若star[i]未受雷雨覆盖,但被用于替代其它进场航线,则相应机场起飞的航班进场时也应拉大间隔,以便留出时隙给其它航班。图5中标记⑤处的起飞机场adji(j=1,…,ji)依据步骤2中建立的终端区运行模式确定。

(4)飞行空域是离场航线sid[i](i=1,…,num_sid)时,根据步骤3中得到的终端区与雷雨区的覆盖关系判断sid[i]是否有雷雨覆盖。若有雷雨覆盖,则自动规划可用的离场绕飞路线。如能规划出绕飞离场路径fr_out,则生成流控策略:“本场飞往aaji(j=1,…,li)机场的航班拉大间隔绕飞离港”;如不能规划出绕飞路径则生成流控策略:“本场飞往aaji(j=1,…,li)机场的航班地面等待”。

图5中标记⑥、⑦处的落地机场aaji(j=1,…,li)依据步骤2中建立的终端区运行模式确定。

若sid[i]未受雷雨覆盖的离场航线,但被用于替代其它离场航线,则相应机场落地的航班离场时也应拉大间隔,以便留出时隙给其它航班。图5中标记⑧处的落地机场aaji(j=1,…,li)依据步骤2中建立的终端区运行模式确定。

图5中①和②处规划可用的进离场绕飞航线时,依据下列原则:

a)避开安全控制区;

b)偏离原航线距离50公里以内;

c)在雷雨回波边缘25公里以外通过。

步骤5、重复执行步骤3和4,以随着雷雨数据的更新而更新流控策略,直到雷雨消散或移出终端区域。生成的流控策略示例如图6所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1