具有分离记录层的光信息介质的制作方法

文档序号:6782946阅读:138来源:国知局

专利名称::具有分离记录层的光信息介质的制作方法
技术领域
:本发明涉及一种能够用激光光束可重写地记录的光信息介质,所述介质包括一个衬底,在其一侧具有-第一记录堆栈,包括夹在两个绝缘层之间的一个相位改变类型的记录层,-第二记录堆栈,包括夹在两个绝缘层之间的一个相位改变类型的记录层,-透明的间隔层,位于第一和第二记录堆栈之间,并具有大于激光光束的聚焦深度的厚度,-接近第二记录堆栈的金属镜层其位于第二记录堆栈远离所述透明间隔层的一侧。美国专利US6,190,750公开了一种这样的光信息介质。此专利描述了一种用于单侧双层记录的光信息介质。基于相位改变原理的光数据存储是很有吸引力的,因为它将直接重写(DOW)和高存储密度的可能性与只读型光数据存储系统的易兼容性结合起来。相位改变类型的光记录包括在晶体膜上使用聚焦的相对高功率的激光光束形成亚微米大小的非晶形记录痕迹。在记录信息期间,介质关于聚焦的激光光束被移动,此激光光束是依据将被记录的信息而被调制的。由此,在相位改变型记录层中发生淬火并使非晶形信息痕迹形成在记录层的暴露区域并保持晶体在未暴露的区域中。非晶形痕迹的擦除是通过对相同的激光在中间功率级别的加热来实现的,而不需熔化记录层。非晶形痕迹表示数据比特,且可以通过衬底被低功率聚焦的激光光束来读取。非晶形痕迹关于记录层上的晶体未暴露区域的反射差异产生调制的激光光束,此激光光束随后被一个检测器依据记录的数字信息转化为调制的光电流。为了像可再写型DVD(DVD-Rewritable)和数字视频记录装置DVR(DigitalVideoRecorder)那样在单侧光盘上增加光记录媒体的存储容量。可通过减少激光波长λ,和/或增加记录透镜的数值孔径(NA)来实现,因为激光点的尺寸是与(λ/NA)2成比例的。较小激光点的尺寸会使记录的痕迹也变小。从而一个光盘的存储容量就增加了因为光盘的单元区域可容纳更多的痕迹。另一种观点是使用多重记录层。当光盘在相同的一侧使用两个记录层时,被称为倍层或双层记录。当光盘在相同的一侧使用多于两个的记录层时,被称为多层记录。这些新的光盘的完全擦除时间(CET)必须在60ns之内。CET被定义为在静态测量下,晶体环境中一个非晶形痕迹的完全结晶所需的擦除脉冲的最小持续时间。对可再写DVD,120mm直径的盘其记录密度可能为4.7GB,需要33Mbits/s比特率的用户数据,对DVR-红和DVR-蓝,其中红和蓝表示使用的激光波长,所述数据比特率分别为35Mbits/s和50Mbits/s。每个数据比特率可被转换成由数个参数决定的最大CET,即记录堆栈和使用的记录层物质的热力设计。对于双层记录,第一记录堆栈必须具有足够的透射性以确保第二记录堆栈的正确的读/写特性。由US6,190,750可知的介质具有|IP1IM1I+|S|IP2IM2的结构,用于可再写的相位改变记录,其具有两个金属层,其中第一层M1相对较薄并具有很高的光透射性,第二层M2是一个镜层具有很高的光反射性。I表示一个绝缘层,I+表示一个绝缘更好的层,光首先入射在P1上,P2表示相位改变记录层,S表示透明间隔层。金属层不仅可作为一个反射镜,还可作为一个散热器以确保快速冷却用于在写入期间淬火非晶形相位。以相同或非常相似的物质形成的两个记录层P1和P2的记录和擦除,根据它们在堆栈中的位置是不同的。P1层位于相对薄的金属层M1附近,M1具有限制的散热器容量,P2层位于相对厚的金属镜层M2附近,M2在记录期间对P2层进行冷却。对记录层的冷却很大程度上决定了在记录期间所需的激光脉冲写法和所需的激光光束的记录速度。进一步的,相对薄的金属层M1必然阻塞激光的实质部分从而造成在P层减少的记录功率。已知介质的缺点在于,第一和第二记录层的记录和擦除实质上是不同的。对于每个记录层都需要不同的激光脉冲写入法和记录速度,从而造成记录装置更加复杂。本发明的目的在于提供一种如开头段落描述的光信息介质,其中最佳记录和擦除是这样实现的,即激光脉冲写入法对于记录层是相同的,记录速度对于记录层也是相同的。此目的的实现通过-第一记录堆栈包括一相位改变类型的记录层,此记录层是从生长支配结晶种类和成核支配结晶种类中选择的一种,-第二记录堆栈包括一相位改变类型的记录层,此记录层的种类不同于第一记录堆栈所选择的种类。本发明的光信息介质的原理可以通过以下的层结构被示意性的解释|IP1I|S|IP2I|M|其中IP1I是第一记录堆栈,IP2I是第二记录堆栈,其中I和S具有如上所述的含义,M是金属镜层,P1和P2是不同种类的相位改变型的记录层。在记录和读取期间,光记录装置的激光光束通过第一记录堆栈入射。所述层结构所位于的衬底可以位于金属层M的邻近,其中激光光束可通过第一记录堆栈进入而无须经过衬底;或者位于第一记录堆栈附近,其中激光光束再经过衬底之后可通过第一记录堆栈进入。在层结构远离衬底的一侧,可设有一覆盖层,用于将层结构与外部环境隔离起来。本发明基于这样的理解,即通过选择记录层的材料,必须使记录层的结晶动力学与相邻于记录层的层的热学和/或光学性质相匹配。已知两种机理的结晶生长支配和成核支配的结晶。金属镜M的出现使第二记录堆栈成为相对快速的冷却结构因为M相当于一个散热器,然而第一记录堆栈是一个相对曼的冷却结构因为缺少金属散热器。也就是说,在写入期间对于淬火非晶形相位很重要的冷却率,和记录灵敏性对于不同的记录堆栈是不同的。通过选择具有不同结晶特性的记录层可对此进行补偿。从而至少一个透明的、从而相对薄的、与第一记录堆栈相邻的金属层相加是可能的。这种增加的金属层的散热容量相对较低。从而这样的层可以用来微调光反射性和微调第一记录堆栈的散热容量。在DOW期间,非晶形相位记录痕迹的再结晶速度决定了数据率,此数据率与CET成反比。在一个新的痕迹被写入之前,当前痕迹必须被完全擦除。这样擦除或再结晶的发生速度就限制了记录介质的最大数据率。第一记录堆栈是相对较慢的冷却结构,其记录层必须很薄,这是为了使足够的激光透射到第二记录堆栈上。当第二记录堆栈的记录层的相位改变材料具有成核支配得结晶类型并具有较低的CET时,第一记录堆栈的记录层的相位改变材料是生长支配结晶类型的材料,并具有相对低的CET。选择成核支配结晶类型的相位改变材料将引起相对高的CET因为成核结晶在层很薄时不容易发生。当第二记录堆栈具有生长支配结晶类型的相位改变记录层材料和相对大的CET时,在第一记录堆栈中选择薄的成核支配结晶类型的记录层是有利的,这是为了与第二记录堆栈中的记录层的特性相匹配。绝缘层最好是ZnS和SiO2的混合物,例如(ZnS)80(SiO2)20。或者这些层可以是SiO2,Ta2O5,TiO2,ZnS,Si3N4,AlN,Al2O3,MgO,ZnO,SiC,包括它们的非化学式的合成物。特别的最好是Si3N4,AlN,Al2O3,MgO,ZnO,SiC,因为它们有很好的热传导性。对于金属镜层的金属,例如Al,Ti,Au,Ni,Cu,Ag,Rh,Pt,Pd,Ni,Co,Mn和Cr,以及它们的合金都可以被使用。例如AlTi,AlCr和AlTa都是合适的合金。此金属镜层的厚度并不很重要,但最好其透射性几乎为零,用于获得最大反射率。在实际中通常使用的是约100mm的层其光透射率为零且容易沉淀。在实施例中,第一记录堆栈包括相位改变类型的记录层,其种类从以下两种结晶种类中选择;生长支配的结晶种类,包括Q,In,Sb和Te的化合物,其中Q从Ag和Ge基中选择一种;成核支配的结晶种类,包括Ge,Sb和Te的化合物。作为生长支配结晶的记录层是Q,In,Sb和Te的化合物,其中Q从Ag和Ge基中选择一种,且此化合物的原子构成是由化学式QaInbSbcTed决定的,且0<a≤15,0<b≤6,55≤c≤80,16≤d≤35,a+b+c+d=100。特别的,作为生长支配结晶的记录层是在国际专利申请WO01/13370中所描述的化合物。在此申请中的化合物,其原子构成是由化学式QaInbSbcTed决定的,其中2≤a≤9,0<b≤6,55≤c≤80,16≤d≤30,a+b+c+d=100,且Q是Ag或Ge。这些化合物表现出相对较快的生长支配的结晶速度。作为相位改变类型的成核支配结晶的记录层是Ge,Sb和Te的化合物,其中此化合物的原子构成是由三种构成元素的框图Ge-Sb-Te中的区域决定的,所述区域是四边形的形状,并具有顶点Sb3Te7,Ge2Te3,Ge3Te2,和SbTe。特别的,作为相位改变类型的成核支配结晶的记录层是如美国专利US5,876,822中所描述的化合物。此专利中所描述的化合物其原子结构是由化学式Ge50XSb40-40XTe60-10X决定的,且0.166≤X≤0.444。这些化合物表现出相对较高的成核支配的结晶速度。第一记录堆栈的相位改变类型的记录层其厚度为5至15nm。第一记录堆栈更厚的记录层将导致激光的过低的透射性。第二记录堆栈的记录层可以较厚,例如在10和35nm之间。透明间隔层通常的厚度为至少10微米且位于第一和第二记录堆栈之间。此厚度大于激光光束的焦距深度。激光光束的焦距深度是由公式λ/(2(NA)2)决定的,其中λ是激光的波长,NA是读/写物镜的数值孔径。透明间隔层的厚度实质上大于这个聚焦深度,从而确保了第一和第二记录堆栈是光学耦合的,即聚焦在第一记录堆栈的记录层的激光光束并不从第二记录堆栈的记录层读/写信息,也不读/写信息到第二记录堆栈的记录层,反之亦然。这样存储容量就相对于单层信息介质加倍了。透明间隔层的材料是,例如经紫外固化的丙烯酸脂粘合剂或树脂,其中伺服轨道可由复制处理而得到。在第一记录堆栈中,激光光束首先入射的绝缘层,保护了记录层不受潮,保护相邻的层不受热损坏,并使光对比度最优化。从图像抖动的方面来看,此绝缘层的厚度最好为至少70nm。抖动是记录痕迹形状的失真测量,并且作为信息信号中增加的时移和下降的边缘而被测量。在光对比度的方面,这个层的厚度最好等于(70+λ/2n)nm,其中λ是激光光束的波长,n是绝缘层的折射率。基于同样的理由,在第二记录堆栈中,在透明间隔层和记录层之间的绝缘层的厚度在相同的范围内。然而,这些最佳数值的偏差也是有可能的。在第二记录堆栈中,在记录层和金属镜层之间的绝缘层的厚度在10和50nm之间,最好在20和40nm之间。当这个层薄于10nm时,在记录层和金属镜层之间的热绝缘就太低了。结果,第二记录层的冷却率就增加了,这将导致劣质结晶和劣质循环。当这个层厚于50nm时,在记录层和金属镜层之间的热绝缘就太高了。冷却率就减少了,从而在写入期间介质的记录层的淬火速度也减少,这将阻碍非晶形痕迹的形成。位于第一记录层和透明间隔层之间的第一记录堆栈的绝缘层,为了最大透射性而被优化,其厚度依赖于绝缘材料的折射率n。信息介质的衬底包括,例如,聚碳酸酯,聚甲基丙烯酸甲酯(PMMA),非晶形聚烯烃或玻璃。在典型的例子中,衬底是圆盘形的且直径为120nm,厚度为0.6或1.2mm。若激光光束通过衬底的入射面进入介质,则第一记录堆栈位于衬底的邻近且衬底对于激光至少是透明的。或者激光通过邻着第一记录堆栈的覆盖层进入介质。则衬底位于金属镜层的邻近。例如,一覆盖层可用于新的60mm半径的数字视频记录(DVR)光盘。此光盘通过此覆盖层被写入和读出,而衬底并不需要对激光而透明。还可以通过至少一个附加透明间隔层设置至少一个与第一和第二记录堆栈分离的附加记录堆栈,此附加记录堆栈的记录层的相位改变类型和结晶动力学与第一和第二记录堆栈的记录层的激光脉冲写入法和记录速度是相匹配的。圆盘形状的衬底的表面在记录堆栈的一侧最好具有可被光扫描的伺服轨道。此伺服轨道通常是螺旋形状的凹槽,且通过在注射塑模或压模期间而铸模形成在衬底中的。这些凹槽也可在透明间隔层的合成树脂中在复制处理中形成,例如,紫外光可固化的丙烯酸脂。金属镜层和绝缘层由蒸汽淀积法或溅射方法获得。衬底所应用的相位改变型记录层由真空淀积法,电子束真空淀积法,化学蒸汽淀积法,离子渗镀法,或溅射法形成。本发明将通过举例性的实施例并参照附图被更详细的说明,其中图1表示出了依据本发明的光信息介质的示意性的截面图。其中的尺寸并不是按比例的。实施例图1示出了光信息介质的层结构,其能够可重写的通过激光光束14或15来记录。此介质包括一个衬底1。在衬底一侧的第一记录堆栈8,包括一相位改变类型的记录层10。此记录层10被夹在两个绝缘层9和11之间,所述绝缘层是由例如,(ZnS)80(SiO2)20构成的,其厚度分别为,例如100nm和90nm。第一记录堆栈2,包括一相位改变类型的记录层5,记录层5被夹在两个绝缘层4和6之间,所述绝缘层是由例如,(ZnS)80(SiO2)20构成的,其厚度分别为,例如25nm和95nm。透明间隔层7被夹在第一记录堆栈8和第二记录堆栈2之间,其厚度大于激光光束14或15的聚焦深度。透明间隔层7可以是,例如,厚度为50μm的紫外固化的丙烯酸脂。金属镜层3可以由厚度为100nm的铝构成,且相邻于第二记录堆栈2,位于第二记录堆栈与透明间隔层7相反的一侧。第一记录堆栈8包括相位改变类型的记录层10,此记录层是生长支配结晶获成核支配结晶中的一种。在此实施例中,第一记录堆栈8包括相位改变类型的成核支配结晶种类的记录层10,其包括Ge,Sb和Te的化合物。理想配比的化合物Ge2Sb2Te5,是适合的,其厚度为,例如7nm。第二记录堆栈2包括相位改变类型的记录层5,其结晶种类不同于第一记录堆栈8所选择的结晶种类。例如Ge,In,Sb和Te的化合物是合适的,其原子构成为Ge1.9In0.1Sb68Te30,其厚度为15nm,是生长支配的结晶种类。衬底1是聚碳酸酯的圆盘形状的衬底,直径为120nm,厚度为0.6nm。覆盖层12,是由,例如紫外固化的树脂DaicureSD645构成的,厚度为100μm,并相邻于绝缘层11。记录层5和10的初始结晶状态是通过在记录装置中用聚焦的激光光束加热被淀积的非晶形合金而得到的。用于记录,再生和擦除信息的激光光束14被聚焦在第一记录堆栈8的记录层10上,并通过覆盖层12进入堆栈8。激光光束15被聚焦在第二记录堆栈2的记录层5上。第一记录堆栈的透射率在非晶形状态约为67%,在结晶状态约为47%。第一记录堆栈的反射率在非晶形状态约为1.6%,在结晶状态约为8.2%。第二记录堆栈的有效反射率在非晶形状态约为0.9%,在结晶状态约为8.5%。词语“有效”表示通过第一记录堆栈“看起来”。堆栈具有很好的记录特性。抖动在13%以下直到4000次重写循环。本发明提供了一种可重写的相位改变的光信息介质,例如可重写DVD或DVR,具有至少两个记录层,位于衬底的一侧,这些记录层需要相同的记录速度和相同的激光脉冲写入法。权利要求1.一种能够用激光光束(14,15)可重写地记录的光信息介质,所述介质包括一个衬底(1),在其一侧具有-第一记录堆栈(8),包括夹在两个绝缘层(9,11)之间的一个相位改变类型的记录层(10),-第二记录堆栈(2),包括夹在两个绝缘层(4,6)之间的一个相位改变类型的记录层(5),-透明的间隔层(7),位于第一(8)和第二(2)记录堆栈之间,并具有大于激光光束(14,15)的聚焦深度的厚度,和-邻近第二记录堆栈(2)的金属镜层(3)其位于第二记录堆栈(2)远离所述透明间隔层(7)的一侧,其特征在于-第一记录堆栈(8)包括一相位改变类型的记录层(10),此记录层是从生长支配结晶种类和成核支配结晶种类中选择的一种,-第二记录堆栈(2)包括一相位改变类型的记录层(5),此记录层的种类不同于第一记录堆栈(8)所选择的种类。2.如权利要求1中的光信息介质,其特征在于第一记录堆栈(8)包括一相位改变类型的记录层(10),其种类从以下两种结晶种类中选择生长支配的结晶种类,包括Q,In,Sb和Te的化合物,其中Q从Ag和Ge基中选择一种;和成核支配的结晶种类,包括Ge,Sb和Te的化合物。3.如权利要求2中的光信息介质,其特征在于所述Q,In,Sb和Te的化合物的原子构成是由化学式QaInbSbcTed决定的,且0<a≤15,0<b≤6,55≤c≤80,16≤d≤35,a+b+c+d=100。4.如权利要求2中的光信息介质,其特征在于所述Ge,Sb和Te的化合物的原子构成是由三种构成元素的框图Ge-Sb-Te中的区域决定的,所述区域是四边形的形状,并具有顶点Sb3Te7,Ge2Te3,Ge3Te2,和SbTe。5.如权利要求4中的光信息介质,其特征在于所述Ge,Sb和Te的化合物的原子构成是由化学式Ge50XSb40-40XTe60-10X决定的,且0.166≤X≤0.444。6.如权利要求1,2,3,4或5中的光信息介质,其特征在于第一记录堆栈(8)的相位改变类型的记录层(10)的厚度在5至15nm之间,且第二记录堆栈(2)的相位改变类型的记录层(5)的厚度在10至35nm之间。7.如权利要求1的光信息介质,其特征在于所述透明间隔层(7)的厚度为至少10微米。全文摘要一种能够用激光光束(14,15)可重写地记录的光信息介质,具有第一记录堆栈(8),其包括夹在两个绝缘层(9,11)之间的一个相位改变类型的记录层(10),第二记录堆栈,其包括夹在两个绝缘层(4,6)之间的一个相位改变类型的记录层(5)。透明的间隔层(7),位于第一记录堆栈(8)和第二记录堆栈(2)之间。金属镜层(3)位于相邻于第二记录堆栈(2)远离透明间隔层(7)的一侧。第一记录堆栈(8)具有一相位改变类型的记录层(10),此记录层是生长支配和成核支配结晶种类中的一种,第二记录堆栈(2)具有一相位改变类型的记录层(5),此记录层的种类不同于第一记录堆栈(8)所选择的种类。光学记录和擦除操作是通过记录层(5,10)的几乎相同的激光脉冲写入法和记录速度而实现的。文档编号G11B7/254GK1388962SQ01802697公开日2003年1月1日申请日期2001年6月29日优先权日2000年7月12日发明者E·R·梅恩德斯,H·J·博格申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1