光学元件,光学头装置以及光信息处理装置的制作方法

文档序号:6751113阅读:252来源:国知局
专利名称:光学元件,光学头装置以及光信息处理装置的制作方法
技术领域
本发明涉及进行存储在光盘或者光卡等光媒体上信息的记录·再生或者清除的光学头装置,光信息处理装置以及光学元件。
背景技术
近年来伴随着光盘的发展,正在使用记录再生型光盘,读出专用(ROM)光盘等各种光盘。在这样的状况中,考察能够再生这些多种光盘的光学头装置。
以下,参照图21说明以往的技术。图21中,160是LD-PD(激光二极管光检测器)单元,配置成使得出射向x轴方向偏振的光。LD-PD单元160把作为光源的半导体激光器和检测包括信号的光的光检测器固定为特定的位置关系,在后面说明其详细情况。102是准直透镜。180是具有透过特定方向的偏振光,把与其正交方向的偏振光衍射的功能的偏振光各向异性全息元件,配置成使得透过向x轴方向的偏振光。115是1/4波长板,103是物镜。106是保持偏振光各向异性全息元件180,1/4波长板115以及物镜103的位置关系的保持装置。105是光盘,配置成使得切线方向成为y轴方向。112是保持装置106的驱动装置。
以下,说明其动作。从LD-PD单元160的发射光源出射的线偏振光的光束L0由于向x轴方向偏振,因此在偏振光各向异性全息元件180中不进行衍射,入射到1/4波长板115。该光进而透过1/4波长板115,通过1/4波长板115的作用成为圆偏振光,入射到物镜103,收敛到光盘105上(往路)。
由光盘105反射的光沿着原来的光路返回,再次透过1/4波长板115,成为与最初直角方向(y轴方向)的线偏振光,入射到偏振光各向异性全息元件180。从偏振光各向异性全息元件180产生的+1次衍射光L1和-1次衍射光L2出射到配置在LD-PD单元160中的光检测器,检测伺服误差信号或者所记录的信息信号。
以下,参照图22以及图23,说明信号检测的详细情况。图22是表示偏振光各向异性全息元件180的模式图,图23是表示LD-PD单元160的模式图。
偏振光各向异性全息元件180如在图22中所示那样,由平行于通过偏振光各向异性全息元件180的中心(与光轴相同)的x轴和y轴的直线,大致分割为A、B、C、D的大区域。进而,各个区域由多条直线分割为矩形的小区域。在同一个大区域内,在矩形小区域中每隔一个形成由同一个函数形成的全息图形。在以下的说明中,把形成了同一个全息图形的区域汇集起来,处理为一个小区域(区域Ab、Af、Bb、Bf、Cb、Cf、Db、Df)。
LD-PD单元160如图23那样,具有光检测器191以及光检测器192,把发光点(或者与发光点等价的点)P夹在中间配置这些光检测器。光检测器191沿着Y轴方向分割为2个区域,进而各个区域由与x轴平行的直线各分割为2个区域,形成区域FE1、FE2以及区域FE3、FE4。另外光检测器192由平行于x轴的直线以及平行于y轴的直线进行4分割(区域TEa、TEb、TEc、TEd)。
入射到偏振光各向异性全息元件180的复路的光通过偏振光各向异性全息元件180的衍射作用,变换为复路的+1次衍射光L1和-1次衍射光L2。
如上述那样,偏振光各向异性全息元件180分割为多个区域,各个区域形成为使得用不同的方向以及波面分别把光进行衍射。偏振光各向异性全息元件180的各个区域设计成使得在光盘105的记录面上形成最小光点的状态(聚焦点状态)下,起到以下的功能。
从入射到图22所示的偏振光各向异性全息元件180的各个区域的光生成的+1次衍射光L1如以下那样入射到图23所示的光检测器191的各位置。
入射到区域Ab的光入射成使得向用光检测器191的L1Ab所示的位置,以及向光检测器191的后方(z坐标小的位置)收敛。入射到区域Af的光入射成使得向用光检测器191的L1Af所示的位置,以及向光检测器191的前方(z坐标大的位置)收敛。
入射到区域Bb的光入射成使得向用光检测器191的L1Bb所示的位置,以及向光检测器191的后方(z坐标小的位置)收敛。入射到区域Bf的光入射成使得向用光检测器191的L1Bf所示的位置,以及向光检测器191的前方(z坐标大的位置)收敛。
入射到区域Cb的光入射成使得向用光检测器191的L1Cb所示的位置,以及向光检测器191的后方(z坐标小的位置)收敛。入射到区域Cf的光入射成使得向用光检测器191的L1Cf所示的位置,以及向光检测器191的前方(z坐标大的位置)收敛。
入射到区域Db的光入射成使得向用光检测器191的L1Db所示的位置,以及向光检测器191的后方(z坐标小的位置)收敛。入射到区域Df的光入射成使得向用光检测器191的L1Df所示的位置,以及向光检测器191的前方(z坐标大的位置)收敛。
其次,由偏振光各向异性全息元件180生成的-1次衍射光L2如以下那样入射到光检测器192。
入射到图22的区域Ab的光向用图23的L2Ab所示的位置入射。入射到区域Af的光向用L2Af所示的位置入射。
入射到区域Bb的光向用L2Bb所示的位置入射。入射到区域Bf的光向用L2Bf所示的位置入射。
入射到区域Cb的光向用L2Cb所示的位置入射。入射到区域Cf的光向用L2Cf所示的位置入射。
入射到区域Db的光向用L2Db所示的位置入射。入射到区域Df的光向用L2Df所示的位置入射。
这样结构的光学头装置能够像以下那样检测各种信号。跟踪误差信号由光检测器192检测。跟踪误差信号的检测方法根据光盘105的种类分别使用2种方法。即,在是连续槽形状的光盘(记录再生光盘等)的情况下使用推挽法,在是具有槽形状的记录槽信息的光盘(ROM盘等)中使用相位差法。
如果用其区域名表示来自光检测器192的各个区域的信号输出,则基于推挽法的跟踪误差信号TE能够用TE=(TEa+TEb)-(TEc+TEd)...(1)得到。基于相位差法的跟踪误差信号TE能够通过(TEa+TEc)与(TEb+TEd)的相位比较得到。
聚焦误差信号FE由光检测器191检测。如果用其区域名表示来自光检测器191的各个区域的信号输出,则聚焦误差信号FE能够用FE=(FE1+FE3)-(FE2+FE4)...(2)
得到。
数据信号S能够通过光检测器191与光检测器192全部相加S=TEa+TEb+TEc+TEd+FE1+FE2+FE3+FE4 ...(3)得到。
在上述以往结构的光学头装置中,用伺服误差信号(聚焦误差信号FE以及跟踪误差信号TE)的总和进行数据信号S的检测。用于伺服误差信号检测的光检测器由于需要检测散焦状态的入射光,因此需要加大光检测器的感光面积。感光面积的增加将使光检测器的静电电容增加。其结果存在着使检测信号的频率特性恶化,不能够进行数据信号的高速再生的课题。
进而,由于感光面积大,因此易于受到杂散光的影响。为此,在再生把信息记录在多层中的光盘的系统等杂散光多的系统中,存在着信噪比(S/N)恶化,不能够得到良好的再生信号的课题。
发明的公开本发明是为解决上述以往的问题而产生的,目的在于提供能够减小用于检测数据信号的感光元件的感光面积,其结果,将提高高速响应性,而且难以受到杂散光影响的光学头装置。另外,本发明的目的在于提供实现这样的光学头装置所适宜的光学元件。进而,本发明提供能够减少数据信号的检测所必需的光学头放大器的数量,其结果,能够得到降低了放大器噪声的数据信号的光信息处理装置。
本发明为了达到上述目的采用以下的结构。
本发明的第1基本结构的光学头装置具备发射光源;使来自上述发射光源的光束收敛到信息媒体上,形成微小光点的收敛光学系统;接受由上述信息媒体反射的光束并且输出光电流的被分割为多个区域的光检测器;用于使由上述信息媒体反射了的光束作为衍射光进行衍射并且导向上述光检测器的衍射光学系统。上述衍射光学系统从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第1检测区域的第1衍射光和不是上述第1衍射光的共轭复数波的第2衍射光。仅使用上述第1衍射光读取记录在上述信息媒体中的信息,使用上述第2衍射光得到伺服误差信号。
本发明的第2基本结构的光学头装置具备发射光源;使来自上述发射光源的光束收敛到信息媒体上,形成微小光点的收敛光学系统;接受由上述信息媒体反射的光束并且输出光电流的被分割为多个区域的光检测器;用于使由上述信息媒体反射了的光束作为衍射光进行衍射并且导向上述光检测器的衍射光学系统。上述衍射光学系统具有第1衍射区域以及第2衍射区域,上述第1衍射区域从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第1检测区域的第1衍射光和不是上述第1衍射光的共轭复数波的第2衍射光。另外,上述第2衍射区域从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第2检测区域的第3衍射光和不是上述第3衍射光的共轭复数波的第4衍射光。仅使用上述第1衍射光以及上述第3衍射光读取记录在上述信息媒体中的信息,使用上述第2衍射光以及上述第4衍射光得到伺服误差信号。
如果依据上述第1以及第2光学头装置,则使用与用于得到伺服误差信号的衍射光不同的衍射光进行记录在信息媒体中的信息的读取。从而,能够设置记录在信息媒体中的信息读取专用的光检测区域,能够减小该光检测区域的面积。其结果,能够实现具有良好的频率特性,而且能够进行数据信号的高速再生的光学头装置。另外,难以受到杂散光的影响,即使在杂散光多的系统(例如,再生把信息记录在多层中的光盘的系统)中也能够得到良好的再生信号。
在上述任一种基本结构的光学头装置中,最好使上述发射光源与上述光检测器相互接近地配置固定。
在该结构中,最好还具备与上述光检测器的表面大致垂直地反射来自上述发射光源的光的反射镜。
或者,进而还能够采用包括具有大致正交的第1面和第2面的刚体,在上述第1面上实质地固定上述发射光源,在上述第2面上实质地固定上述光检测器的结构。
或者,还能够采用在保持部件的表面固定上述发射光源,在上述保持部件中形成或者设置与上述保持部件的上述表面大致垂直地反射来自上述发射光源的光的反射镜,上述保持部件和上述光检测器实质地固定在同一个刚体的同一个面上的结构。
另外,上述发射光源是面发光激光器,并且能够采用上述发射光源和上述光检测器实质地固定在同一个刚体的同一个面上的结构。
在以上的任一种结构的光学头装置中,能够采用对于上述发射光源的发光位置,在上述信息媒体的切线方向的位置,与上述发光位置接近地配置用于读取记录在上述信息媒体中的信息的光检测区域的结构。
在以上任一种结构的光学头装置中,能够采用检测聚焦误差信号的光检测区域通过上述信息媒体的径向方向的直线分割为多个的结构。
在这样的情况下,能够采用对于上述发射光源的发光位置,在上述记录媒体的径向方向的位置,相互隔开配置检测上述聚焦误差信号的被分割为多个的光检测区域的结构。
在以上任一种结构的光学头装置中,能够采用用于读取记录在上述信息媒体中的信息的衍射光收敛到用于读取记录在上述信息媒体中的信息的光检测区域中的结构。
在上述任一种结构的光学头装置中,上述衍射光学系统能够采用同时发生用于检测伺服误差信号的+1次以及-1次的衍射光的结构。在该结构的光学头装置中,能够采用使用上述+1次衍射光检测聚焦误差信号,使用上述-1次衍射光检测跟踪误差信号的结构。
本发明基本结构的光学元件透过向第1方向偏振的光,衍射向与上述第1方向正交的第2方向偏振的光,特征在于以预定的效率使向上述第2方向偏振的入射光作为不伴随共轭复数波的第1衍射光进行衍射,而且,发生与上述第1衍射光的高次衍射光不同波面的衍射光。
通过使用这样的光学元件,能够容易地实现上述本发明的光学头装置。
最好采用上述任一种结构的光学头装置中的上述衍射光学系统包括该基本结构的光学元件的结构。
上述基本结构的光学元件最好采用以下的结构,即,具有透过向上述第1方向偏振的光,衍射全部向上述第2方向偏振的光的第1衍射元件;透过向上述第1方向偏振的光,以预定的效率衍射向上述第2方向偏振的光的第2衍射元件。而且,上述第1衍射元件由第1透光性材料和第2透光性材料构成,上述第1透光性材料的折射率与上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1透光性材料与上述第2透光性材料的边界面具有锯齿形的槽形状。另外,上述第2衍射元件由第3透光性材料和第4透光性材料构成,上述第3透光性材料的折射率与上述第4透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第3透光性材料与上述第4透光性材料的边界面具有周期性凹凸槽形状。上述第1衍射元件与上述第2衍射元件按照预定的相互位置关系固定。
另外,上述基本结构的光学元件最好采用以下的结构,即,具有透过向上述第1方向偏振的光,衍射全部向上述第2方向偏振的光的第1衍射元件;透过向上述第1方向偏振的光,以预定的效率衍射向上述第2方向偏振的光的第2衍射元件。而且,上述第1衍射元件由第1透光性材料和第2透光性材料构成,上述第1透光性材料的折射率与上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1透光性材料与上述第2透光性材料的边界面具有阶梯形的形状。另外,上述第2衍射元件由第3透光性材料和第4透光性材料构成,上述第3透光性材料的折射率与上述第4透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第3透光性材料与上述第4透光性材料的边界面具有周期性凹凸槽形状。上述第1衍射元件与上述第2衍射元件按照预定的相互位置关系固定。
进而,上述基本结构的光学元件最好采用具有以下特征的结构,即,由第1透光性材料,第2透光性材料和第3透光性材料构成,上述第1透光性材料和上述第2透光性材料经过第1边界面邻接,上述第2透光性材料和上述第3透光性材料经过第2边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第2透光性材料的折射率和上述第3透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同。上述第1边界面具有锯齿形的槽形状,上述第2边界面具有周期性凹凸槽形状。
进而,上述基本结构的光学元件最好采用具有以下特征的结构,即,由第1透光性材料,第2透光性材料和第3透光性材料构成,上述第1透光性材料和上述第2透光性材料经过第1边界面邻接,上述第2透光性材料和上述第3透光性材料经过第2边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第2透光性材料的折射率和上述第3透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同。上述第1边界面具有阶梯形的形状,上述第2边界面具有周期性凹凸槽形状。
进而,上述基本结构的光学元件最好采用具有以下特征的结构,即,由第1透光性材料和第2透光性材料构成,上述第1透光性材料和上述第2透光性材料经过边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同。用表示锯齿形的槽形状或者阶梯形的形状的函数d1与表示周期性凹凸槽形状的函数d2之和的形状函数表示上述边界面的形状。
进而,上述基本结构的光学元件最好采用具有以下特征的结构,即,由第1透光性材料和第2透光性材料构成,上述第1透光性材料和上述第2透光性材料经过边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光相差Δn。在把上述入射波的波长记为λ时,用以λ/Δn除表示锯齿形的槽形状或者阶梯形的形状的函数d1与表示周期性凹凸槽形状的函数d2之和的余数表示的形状函数表示上述边界面的形状。
在上述任一种结构的光学元件中,能够采用一体地具备了把向上述第1方向偏振的光变换为圆偏振光的波长板的结构。
在上述任一种结构的光学头装置中,上述衍射光学系统能够采用包括上述任一种结构的光学元件。
本发明的光信息处理装置具备上述任一种结构的光学头装置;处理由上述光学头装置检测出的信号,读出所希望的信号的电路。
如果依据这样的光信息处理装置,则能够实现具有良好的频率特性,能够进行数据信号的高速再生的光信息处理装置。另外,难以受到杂散光的影响,即使在杂散光多的系统(例如,再生把信息记录在多层中的光盘的系统)中也能够得到良好的再生信号。进而,由于能够减少记录在信息媒体中的信息的读取用的光学头放大器的数量,因此与以往相比较,能够使电路结构简单,减少放大器噪声的同时,能够构成廉价的系统。
在这样结构的光信息处理装置中,上述电路能够具备把来自检测记录在信息媒体中的信息信号的光检测器的输出进行电流电压变换后放大的并且仅在信息信号频带具有增益的电路。
在上述任一种结构的光信息处理装置中,上述电路能够具备把来自检测聚焦误差信号的光检测器的输出进行电流电压变换后放大的并且仅在伺服信号频带具有增益的电路。
在用于上述任一种结构的光信息处理装置中的跟踪控制的第1结构中,上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且仅在伺服信号频带具有增益的电路。在该结构的光信息处理装置中,能够做成为用推挽法检测跟踪误差信号的结构。
另外,在用于上述任一种结构的光信息处理装置中的跟踪控制的第2结构中,上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且仅在信息信号频带具有增益的电路。在该结构的光信息处理装置中,能够做成为用相位差法检测跟踪误差信号的结构。
进而,在用于上述任一种结构的光信息处理装置中的跟踪控制的第3结构中,上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且在信息信号频带以及伺服信号频带具有增益的电路。在该结构的光信息处理装置中,能够做成为在跟踪误差信号的检测中,切换或者并用相位差法和推挽法的结构。
附图的简单说明图1是示出实施形态1中的光学头装置的结构的剖面模式图。
图2是表示图1中的LD-PD单元的构造的透视图。
图3是示出图1中的衍射光学系统的结构的剖面模式图。
图4是表示图1中的偏振光各向异性全息元件的平面模式图。
图5是表示图2所示的LD-PD单元的感光元件形状和发光点的位置的平面模式图。
图6是表示实施形态2中的LD-PD单元的构造的透视图。
图7是表示实施形态3中的LD-PD单元的构造的透视图。
图8是表示实施形态4中的LD-PD单元的构造的透视图。
图9是示出实施形态5中的衍射光学系统的结构的剖面模式图。
图10是表示实施形态6中的偏振光各向异性全息元件的剖面模式图。
图11是表示实施形态7中的偏振光各向异性全息元件的剖面模式图。
图12A,图12B,图12C是说明实施形态8中的偏振光各向异性全息元件的构造的透视图。
图13是表示实施形态8中的偏振光各向异性全息元件的剖面模式图。
图14A,图14B,图14C是说明实施形态9中的偏振光各向异性全息元件的构造的透视图。
图15是表示实施形态9中的偏振光各向异性全息元件的剖面模式图。
图16是表示实施形态10中的感光元件形状与发光点的位置的平面模式图。
图17是表示实施形态10中的偏振光各向异性全息元件的平面模式图。
图18是表示实施形态10中的偏振光各向异性全息元件的平面模式图。
图19是实施形态11中的光信息处理装置的结构图。
图20是示出实施形态11中的光学头放大器和电路的一部分结构的电路图。
图21是示出以往的光学头装置的结构的剖面模式图。
图22是表示以往的偏振光各向异性全息元件的平面图模式图。
图23是表示以往的LD-PD单元的构造的平面模式图。
用于实施发明的最佳形态实施形态1以下,参照


本发明的实施形态1。图1是示出实施形态1的光学头装置的结构的剖面模式图。以下为了说明方便,如在图中左下方记述的那样设定xyz坐标轴,箭头方向作为各坐标轴的正方向。另外,y轴的指向纸面的方向表示正方向。以下,只要没有特别说明,则在其它的画面中也都共同采用图1所示的坐标轴。
图1中,161是配置成使得出射向x轴方向偏振的光L0的LD-PD单元。LD-PD单元161按照特定的位置关系固定作为光源的半导体激光器和检测包括信号的光的光检测器,在后面详细地进行说明。
102是准直透镜,把来自LD-PD单元161的出射光变为平行光。118是衍射光学系统,具有以下的功能。首先,透过x轴方向的偏振光。其次,y轴方向的偏振光向特定的方向弯曲行进方向,进而,弯曲了行进方向的光与透射光(0次衍射光)的同时发生衍射光。即,具有弯曲入射光的行进方向,并且衍射其中一部分的功能。其具体的构造在后面叙述。
115是1/4波长板、103是物镜。106是保持装置,保持衍射光学系统118,1/4波长板115以及物镜103的位置关系。105是光盘,112是保持装置106的驱动装置。
图1中,形成在光盘105上的光点位置中的光盘105的半径方向与x轴方向一致,该位中的光盘的记录槽的切线方向与y轴方向一致。
在说明本光学头装置的动作之前,说明在本光学头装置中使用的161以及衍射光学系统118。
图2是表示图1中的LD-PD单元161的构造的透视图。图2中,204是硅基板,101是固定在硅基板204上的半导体激光器,193、194以及195是形成在硅基板204表面的光检测器。另外,205是形成在硅基板204上的蚀刻反射镜,使来自半导体激光器101的出射光出射到硅基板204的上方(出射光L0)。在这样结构的LD-PD单元161中,在硅基板204上直接固定作为发光源的半导体激光器101。因此,各个光检测器193、194以及195与半导体激光器101的位置关系是稳定的,不随着温度变化或者振动等发生变化。进而,由于能够表面安装半导体激光器101,因此成为安装精度高,易于批量生产的构造。另外,代替蚀刻反射镜205,即使使用固定在硅基板204上的反射镜也能够得到同样的效果。
图3是示出衍射光学系统118的构造的剖面图。衍射光学系统118由偏振光各向异性全息元件181和偏振光各向异性全息元件182构成,保持一定的位置关系固定这2个元件。
首先,说明偏振光各向异性全息元件181。410是各向同性基板,表面上形成着锯齿形的周期性槽。在该锯齿形的槽中充填复折射材料450。选定各向同性基板410和复折射材料450使得与图1的x轴方向的折射率一致,不衍射该方向的偏振光。
另外,以最大效率衍射图1的y轴方向的偏振光。因此,根据复折射材料450的复折射量决定槽的深度,使得通过了槽的最深部分的光和通过了最浅部分的光的相位差成为2π。根据该构造,向y轴方向偏振的入射光L0a通过偏振光各向异性全息元件181变换为向y轴方向偏振的光L0b。
其次,说明偏振光各向异性全息元件182。411是各向同性基板,在表面上形成着凹凸的周期性槽。在该凹凸的槽中充填着复折射材料451。
另外,根据复折射材料451的复折射量决定槽的深度,使得凹凸的槽深度以预定的衍射效率以及透射率衍射图1的y轴方向的偏振光。在槽的凹凸的比是1∶1的情况下,+1次衍射光(L1)与-1次衍射光(L2)的衍射效率相同,各次衍射效率η用下式表示。
η=(2/π)2·sin2((4π/λ)Δn·d)...(4)这里,d是槽深度,Δn是对于y轴方向的偏振光的各向同性基板411与复折射材料451的折射率差,λ是光源的波长。
另外,透射光(L3)的效率η0用下式表示。
η0=cos2((4π/λ)Δn·d)...(5)例如,在Δn=0.1,λ=0.65μm的情况下,为了得到透射效率η0=50%,可以取d=0.4μm。另外,这时+1次射光(L1)和-1次衍射光(L2)的衍射效率都成为20%。(以下的说明以该效率作为一个例子进行说明)。
如以上那样,能够实现具有弯曲入射光的行进方向,衍射其一部分的作用的衍射光学系统118。另外,为了方便,在图3中图示了形成在各向同性基板410上的槽与形成在各向同性基板411上的槽形成为相同的方向(指向纸面的方向),而实际上形成在不同的方向。即,对于图2的LD-PD单元161上的各个光检测器193,194以及195,进行调整使得+1次衍射光(L1)、-1次衍射光(L2)以及透射光(L3)成为适当地入射的关系。
各向同性基板不限于由单一的材料构成的基板,也可以是在对于使用波长透明的基板上形成或者粘接了不同的透明材料的基板。即使使用复折射基板充填各向同性材料也能够得到同样的效果。另外,代替复折射基板,也可以使用在各向同性基板的表面形成了复折射材料的基板。另外,还可以在偏振光各向异性全息元件181或者偏振光各向异性全息元件182的没有与另一方相对的面上一体地形成1/4波长板115,由此谋求光学系统的简化。
以下,使用图1说明实施形态1的光学头装置的动作。从LD-PD单元161出射的线偏振光的光束L0由准直透镜102变换为平行光,入射到偏振光各向异性全息元件181。该光由于向x方向偏振,因此不由偏振光各向异性全息元件181以及偏振光各向异性全息元件182进行衍射,入射到1/4波长板115。该光进而透过1/4波长板115,通过1/4波长板115的作用变换为圆偏振光。变换为圆偏振光的光入射到物镜103,在光盘105上收敛(往路)。
由光盘105反射的光沿着原来的光路返回,再次透过1/4波长板115,成为与最初直角方向(y轴方向)的线偏振光,入射到衍射光学系统118。衍射光学系统118把入射的光变换为弯曲了行进方向的光(L3)和衍射了其一部分的+1次衍射光(L1)以及-1次衍射光(L2)。
+1次衍射光(L1)以及-1次衍射光(L2)分别入射到配置在图2所示的LD-PD单元161上的被分割为多个区域的光检测器193和光检测器194,通过来自该区域的信号检测伺服误差信号。透过了偏振光各向异性全息元件182的光L3收敛到对于等价的发光点接近y轴方向配置的光检测器195,检测为数据信号。如果这样接近地配置,则能够抑制由波长变动等误差原因引起的光点移动,减小所需要的感光面积。另外,对于y轴方向的配置是为了选择最能够接近发光点的位置。另外,该配置与需要沿着x轴方向并列配置光检测器193和光检测器194相匹配。
进一步说明伺服误差信号的检测的详细情况。图4是表示偏振光各向异性全息元件182的模式图。图5是表示LD-PD单元161的光检测器的形状与发光点的位置的模式图。
如图5所示,把发光点(或者与发光点等价的点)P夹在中间配置包含在LD-PD单元161中的光检测器193和光检测器194。光检测器193的中心的y坐标与半导体激光器101的等价发光点的y坐标一致。通过该配置,对于波长变动等误差原因,难以受到其影响。
光检测器193沿着Y轴方向分割为2个区域,进而各个区域由与x轴平行的直线各分割为2个区域(区域FE1、FE2以及区域FE3、FE4)。另外光检测器194由平行于x轴的直线以及平行于y轴的直线进行4分割(区域TEa、TEb、TEc、TEd)。
偏振光各向异性全息元件182如在图4中所示那样,由平行于通过其中心(与光轴相同)的x轴和y轴的直线,大致分割为A、B、C、D的大区域。进而,各个区域由多条直线分割为矩形的小区域。
入射到偏振光各向异性全息元件182的复路的光通过偏振光各向异性全息元件180的衍射作用,变换为复路的+1次衍射光L1和-1次衍射光L2。
如上述那样,偏振光各向异性全息元件182分割为多个区域,各个区域形成为使得用不同的方向以及波面分别把光进行衍射。偏振光各向异性全息元件180的各个区域设计成使得在光盘105的记录面上形成最小光点的状态(聚焦点状态)下,起到以下的功能。
从入射到图4所示的偏振光各向异性全息元件182的各个区域的光生成的+1次衍射光L1如以下那样入射到图5所示的光检测器193的各位置。
入射到区域Ab的光入射成使得向用光检测器193的L1Ab所示的位置,以及向光检测器193的后方(z坐标小的位置)收敛。入射到区域Af的光入射成使得向用光检测器193的L1Af所示的位置,以及向光检测器193的前方(z坐标大的位置)收敛。
入射到区域Bb的光入射成使得向用光检测器193的L1Bb所示的位置,以及向光检测器193的后方(z坐标小的位置)收敛。入射到区域Bf的光入射成使得向用光检测器193的L1Bf所示的位置,以及向光检测器193的前方(z坐标大的位置)收敛。
入射到区域Cb的光入射成使得向用光检测器193的L1Cb所示的位置,以及向光检测器193的后方(z坐标小的位置)收敛。入射到区域Cf的光入射成使得向用光检测器193的L1Cf所示的位置,以及向光检测器193的前方(z坐标大的位置)收敛。
入射到区域Db的光入射成使得向用光检测器193的L1Db所示的位置,以及向光检测器193的后方(z坐标小的位置)收敛。入射到区域Df的光入射成使得向用光检测器193的L1Df所示的位置,以及向光检测器193的前方(z坐标大的位置)收敛。
其次,由偏振光各向异性全息元件182生成的-1次衍射光L2如以下那样入射到光检测器194。
入射到图4的区域Ab的光向用图5的L2Ab所示的位置入射。入射到区域Af的光向用L2Af所示的位置入射。
入射到区域Bb的光向用L2Bb所示的位置入射。入射到区域Bf的光向用L2Bf所示的位置入射。
入射到区域Cb的光向用L2Cb所示的位置入射。入射到区域Cf的光向用L2Cf所示的位置入射。
入射到区域Db的光向用L2Db所示的位置入射。入射到区域Df的光向用L2Df所示的位置入射。
这样结构的光学头装置能够像以下那样检测各种信号。
跟踪误差信号由光检测器194检测。跟踪误差信号的检测方法根据光盘105的种类分别使用2种方法。即,在是连续槽形状的光盘(记录再生光盘等)的情况下使用推挽法,在是具有槽形状的记录槽信息的光盘(ROM盘等)中使用相位差法。
如果用其区域名表示来自光检测器194的各个区域的信号输出,则基于推挽法的跟踪误差信号TE能够用TE=(TEa+TEb)-(TEc+TEd)...(6)得到。基于相位差法的跟踪误差信号TE能够通过(TEa+TEc)与(TEb+TEd)的相位比较得到。
聚焦误差信号FE由光检测器193检测。如果用其区域名表示来自光检测器193的各个区域的信号输出,则聚焦误差信号FE能够用FE=(FE1+FE3)-(FE2+FE4)...(7)得到。另外,FE信号根据伴随着半导体激光器101的发光波长变化的光点移动,具有偏移。
在该结构的光学头装置中,仅用来自光检测器195的信号检测数据信号。用于检测数据信号的光(L3)是收敛到光检测器195的光,其光点尺寸比伺服误差检测信号用的光(L1、L2)小。从而,能够减小光检测器195的感光面积,减少其静电电容。其结果,能够得到良好的频率特性,能够进行数据信号的高速再生。
进而,由于感光面积小,因此难以受到杂散光的影响。从而,即使在杂散光多的系统(例如,再生把信息记录在多层中的光盘的系统)中也能够得到良好的再生信号。
实施形态2能够在图1所示的实施形态1的结构的光学头装置中,采用把LD-PD单元161置换为图6结构的LD-PD单元162结构。在硅基板204上,在表面形成着光检测器193、光检测器194、光检测器195,在保持装置301的上面固定成使得其表面的法线矢量成为z轴方向。在与保持装置301的该上面正交的一侧面上还固定着半导体激光器101,使得出射光L0的方向与z轴方向一致。
在该结构中,半导体激光器101的发光点与光检测器195的光轴(z轴方向)的位置差别极大。因此,直接使用在实施形态1说明过的衍射光学系统118,光L3不收敛在光检测器195上。
从而,在图1的衍射光学系统118中,除去使入射光的行进方向弯曲的作用以外,还使其具有透镜作用。作为该实现方法,如果是在图3中说明过的结构的衍射光学系统118,则可以使用在偏振光各向异性全息元件181中具有透镜作用的系统。通过以上那样构成,即使在LD-PD单元162这样发光点与光检测器的光轴的位置不同的LD-PD单元中,也能够实现具有与实施形态1相同效果的光学头装置。
另外,在本实施形态中,说明了半导体激光器101和硅基板204直接固定在保持装置301上的情况,而不限定于此,只要是实质地固定,则也可以经过硅基板这样的平行平板进行固定。
实施形态3还能够采用在图1所示的实施形态1的结构的光学头装置中,把LD-PD单元161置换为图7的结构的LD-PD单元163的结构。硅基板204与实施形态2相同,在表面形成光检测器193、光检测器194以及光检测器195,固定在保持装置302上。半导体激光器101固定在形成了蚀刻反射镜205的硅基板221上。进而,硅基板221固定在保持装置302上使得出射光L0的方向与z轴方向一致。即使是以上那样的LD-PD单元163,也能够实现具有与实施形态1相同效果的光学头装置。
实施形态4还能够采用在图1所示的实施形态1的结构的光学头装置中,把LD-PD单元161置换为图8的结构的LD-PD单元164的结构。硅基板204与实施形态2相同,在表面上形成光检测器193、光检测器194以及光检测器195,固定在保持装置303上。117是面发光激光器,固定成使得出射光L0的方向与z轴方向一致。在以上那样的LD-PD单元164中,也能够实现具有与实施形态1相同效果的光学头装置。
实施形态5图1中的衍射光学系统118还能够构成为使用与图3所示的实施形态1的偏振光各向异性全息元件181近似形状的铜焊全息元件。图9是实施形态5中的衍射光学系统的结构图。全息元件182与图3相同。
偏振光各向异性全息元件183把图3的偏振光各向异性全息元件181的槽结构从锯齿形变更为阶梯形。与偏振光各向异性全息元件181相同,选择各向同性基板412和复折射材料452使得对于图1的x轴方向的折射一致,不衍射该方向的偏振光。
在把阶梯的阶数记为N时,阶梯形槽的一阶的深度ds如果成为用ds=λ/(N·Δn)...(8)表示的值,则可以得到最大折射效率。N越大折射效率越高,N=4时能够得到80%的值。
偏振光各向异性全息元件183能够使用在半导体制造中广泛使用的制作工序(光刻等)制作,具有能够容易地进行大批量生产的特长。
衍射效率虽然比在实施形态1中使用的偏振光各向异性全息元件181差,但是如果根据需要加大N的值,则在实用上不存在问题。这时,如果把表面形状的阶数N取为2的幂(2m),则能够用m次腐蚀工序进行制作,能够以较少的工序实现衍射效率良好的全息元件。这种情况下,阶梯形槽的一阶的深度ds用下式表示。
ds=λ/(2m·Δn)...(9)另外,图9中,为了方便图示了形成在偏振光各向异性全息元件182上的槽与形成在偏振光各向异性全息元件183上的槽沿相同的方向(指向纸面的方向)形成的情况,而实际上形成在不同的方向。
另外,可以在偏振光各向异性全息元件183或者全息元件182的不相互相对的面上一体地形成1/4波长板115,谋求简化光学系统。
实施形态6图1中的衍射光学系统118还能够构成为使用图10所示的偏振光各向异性全息元件184。412以及413是具有相同折射率的各向同性基板,在各向同性基板412的表面形成锯齿形的槽,在各向同性基板413的表面形成凹凸的槽。使槽相对,配置各向同性基板412与各向同性基板413,在其中间充填着复折射材料453。
复折射材料453选定各向同性基板412以及各向同性基板413,使得对于图1的x轴方向的折射一致。由此,实现不衍射该方向的偏振光的效果。另外,各向同性基板412由于以最大效率衍射图1的y轴方向的偏振光,因此根据复折射材料453的复折射材料决定槽的深度,使得通过槽的最深部分的光与通过最浅部分的光的相位差成为2π。
进而,各向同性基板413的槽深度如在实施形态1中说明过的那样决定,使得能够得到预定的衍射效率。
这样,如果依据本实施形态,则能够实现在衍射光学系统118中可以适用的偏振光各向异性全息元件。
另外,在图10中,为了方便图示了形成在各向同性基板412上的槽与形成在各向同性基板413上的槽沿着相同的方向(指向纸面的方向)形成的情况,而实际上形成在不同的方向。另外,还可以在表面上一体地形成1/4波长的115,谋求简化光学系统。
实施形态7图1中的衍射光学系统118还能够构成为使用图11所示的偏振光各向异性全息元件185。偏振光各向异性全息元件185把图10所示的偏振光各向异性全息元件184的各向同性基板412替换为具有阶梯形表面形状的各向同性基板414。
与实施形态5相同,能够使用在半导体制造中广泛使用的制作工序(光刻等)制作,具有容易地进行大批量生产的特长。在本实施形态中,如果把表面形状的阶数N也取为2的幂(2m),则能够用m次腐蚀工序进行制作,能够以较少的工序实现衍射效率良好的全息元件。
另外,在图11中,为了方便图示了形成在各向同性基板413上的槽与形成在各向同性基板414上的槽沿相同的方向(指向纸面的方向)形成的情况,而实际上形成在不同的方向。另外,也可以在表面上一体地形成1/4波长板115,谋求简化光学系统。
这样,如果依据本实施形态,则能够实现在衍射光学系统118中可以适用的偏振光各向异性全息元件。
实施形态8使用图12A,图12B,图1C,图13说明实施形态8。图12A是在实施形态6中使用的各向同性基板412的透视图,图12B是在实施形态6中使用的各向同性基板413的透视图。另外图12C是在实施形态8中使用的各向同性基板415的透视图。
各向同性基板412的形状函数d1(x,y)以及各向同性基板413的形状函数d2(x,y)如在实施形态6中说明过的那样决定,各向同性基板415的形状函数d0(x,y)决定为d1(x,y)与d2(x,y)的合成。即如d0(x,y)=d1(x,y)+d2(x,y)...(10)所表示的那样决定。
图13示出基于本实施形态的偏振光各向异性全息元件186的构造。通过在图12C的各向同性基板415中,充填在实施形态6中使用的复折射材料453,构成衍射光学系统118。
即,偏振光各向异性全息元件186对于入射光L0a发生衍射光3,同时,能够发生衍射光L1以及作为衍射光L1的共轭复数波的衍射光L2。另外,衍射光L1以及衍射光L2不是随衍射光L3发生的高次衍射光,而是与衍射光L3独立的衍射光。
如果依据本实施形态,则与实施形态6以及实施形态7相比较,能够构成构造简单而且更廉价的光学系统。
另外,在这里说明了以实施形态6的形状为依据的情况,但并不限定于此。例如,在把各向同性基板412置换为在实施形态7中使用的各向同性基板414的情况下也能够得到同样的效果。另外,还可以在表面上一体地形成1/4波长板115,谋求简化光学系统。
实施形态9以下,使用图14A,图14B,图14C,图15说明实施形态9。图14A是在图11中所示的实施形态7中使用了的各向同性基板414的透视图,图14B是在实施形态7中使用了的各向同性基板413的透视图。另外图14C是在实施形态9中使用的各向同性基板416的透视图。
各向同性基板414的形状函数d1(x,y)以及各向同性基板413的形状函数d2(x,y)按照在实施形态7说明过的那样决定。各向同性基板416的形状函数d0(x,y)决定为d1(x,y)与d2(x,y)的合成。即,决定为d0(x,y)=mod(d1(x,y)+d2(x,y)),λ/Δn)...(11)这里,函数mod(A,B)定义为表示用B除A的余数的函数。另外,Δn是各向同性基板416与复折射材料453对于y轴方向的偏振光的折射率差,λ是光源的波长。
图15表示基于本实施形态的偏振光各向异性全息元件187的构造。通过在图14C所示的各向同性基板416中充填复折射材料453构成。
如果依据本实施形态,则与实施形态8相比较,能够用槽的深度较浅的基板构成偏振光各向异性全息元件,具有使制作容易的特长。
另外,这里说明了基于实施形态7的形状的情况,但是并不限定于此。例如,在把各向同性基板414置换为实施形态6中使用的各向同性基板412的情况下也能够实现。
进而,在用形状函数d1表示的表面形状是阶梯形的情况下,通过适当地选择形状函数d1以及d2,能够用更简单的工序制作偏振光各向异性全息元件。即,如果把基于形状函数d2的槽深度取为基于形状函数d1的阶梯的一阶的深度,则基于形状函数d0的表面形状具有与基于形状函数d1的表面形状相同的阶数N,能够通过与各向同性基板414相同的工序制作各向同性基板416。
进而,如果把基于形状函数d1的阶梯的阶数N取为2的幂(2m),则能够用m次工序进行制作。例如,如果考虑N=4的情况,则可以把基于形状函数d2的槽深度取为与基于形状函数d1的阶梯的一阶的深度相等,这时的效率与在实施形态5中说明过的光学系统相同。
这样,如果依据本实施形态,则能够实现在衍射光学系统118中可以适用的制作工序简单的偏振光各向异性全息元件。另外,还可以在表面上一体地形成1/4波长板115,谋求简化光学系统。
实施形态10实施形态10的光学头装置代替实施形态1中的光学头装置的图2所示的LD-PD单元161上的光检测器195,构成为使用图16所示的光检测器196。光检测器196具有2个区域(RF1,RF2)。另外,与图3的各偏振光各向异性全息元件181、182相当的图17以及图18所示的偏振光各向异性全息元件188、189的槽形状根据以下所述的方法决定。
偏振光各向异性全息元件188包括具有分别不同的槽形状的2个区域(区域L,区域R)。2个区域的每一个都与偏振光各向异性全息元件181相同,设计成使得以最大效率衍射y轴方向的偏振光。区域的槽形状决定为使得把向y轴方向偏振的入射光变换为入射到光检测器196的RF1的衍射光。另外,区域R的槽形状决定为把向y轴方向偏振的入射光变换为入射到光检测器196的RF2的衍射光。
与图4所示的实施形态1中的偏振光各向异性全息元件182一样地分割图18所示偏振光各向异性全息元件189。偏振光各向异性全息元件189的各区域设计成使得在光盘105的记录面上形成最小的光点的状态(聚焦点状态)下,起到以下的功能。
由偏振光各向异性全息元件188(图17)的各区域L、R衍射的光入射到偏振光各向异性全息元件189(图18)的各区域,生成+1次衍射光L1和-1次衍射光L2。+1次衍射光L1如以下那样入射到图16所示的光检测器193以及194的各位置。
由区域R(图17)衍射,入射到区域Ab(图18)的光入射成使得向用光检测器193的L1Ab(图16)所示的位置收敛,还向光检测器193的后方(z坐标小的位置)收敛。由区域R衍射,入射到区域Af的光入射成使得向用光检测器193的L1Af所示的位置收敛,还向光检测器193的前方(z坐标大的位置)收敛。
由区域R衍射,入射到区域Bb的光入射成使得向用光检测器193的L1Bb所示的位置收敛,还向光检测器193的后方(z坐标小的位置)收敛。由区域R衍射,入射到区域Bf的光入射成使得向用光检测器193的L1Bf所示的位置收敛,还向光检测器193的前方(z坐标大的位置)收敛。
由区域L衍射,入射到区域Cb的光入射成使得向用光检测器193的L1Cb所示的位置收敛,还向光检测器193的后方(z坐标小的位置)收敛。由区域L衍射,入射到区域Cf的光入射成使得向用光检测器193的L1Cf所示的位置收敛,还向光检测器193的前方(z坐标大的位置)收敛。
由区域L衍射,入射到区域Db的光入射成使得向用光检测器193的L1Db所示的位置收敛,还向光检测器193的后方(z坐标小的位置)收敛。由区域L衍射,入射到区域Df的光入射成使得向用光检测器193的L1Df所示的位置收敛,还向光检测器193的前方(z坐标大的位置)收敛。
其次,由偏振光各向异性全息元件189生成的-1次衍射光L2向光检测器194的以下位置入射。
入射到区域Ab的光向用L2Ab所示的位置入射。入射到区域Af的光向用L2Af所示的位置入射。
入射到区域Bb的光向用L2Bb所示的位置入射。入射到区域Bf的光向用L2Bf所示的位置入射。
入射到区域Cb的光向用L2Cb所示的位置入射。入射到区域Cf的光向用L2Cf所示的位置入射。
入射到区域Db的光向用L2Db所示的位置入射。入射到区域Df的光向用L2Df所示的位置入射。
分别入射到偏振光各向异性全息元件188的区域L、R,并且不由偏振光各向异性全息元件189衍射而通过的光L3L、L3R分别聚焦到光检测器196的感光区域RF1、RF2。
本实施形态的光学头装置即使在由槽的左右位置记录着地址等信息信号的系统中也能够检测信号。
另外,在本实施形态中,说明了变更在实施形态1中使用的LD-PD单元161的检测区域的情况,而只要是感光元件与发光元件接近配置,能够检测2个数据信号用的光则就不限于上述情况。例如,也可以是变更了实施形态2~4中的LD-PD单元的感光元件的结构。
实施形态11图19示出本发明实施形态11中的光信息处理装置。在本实施形态中,说明使用了实施形态1的光学头装置的光信息处理装置,而也能够同样地构成使用了其它实施形态的光学头装置的光信息处理装置。
图19中,光盘105由光盘旋转机构501旋转。光学头驱动装置500由光轴驱动装置502驱动到光磁105上存在所希望信息的槽的位置。来自光学头装置500的各感光区域的检测信号由光学头放大器503进行电流电压变换、放大后,输入到电路504。
电路504运算输入信号,得到伺服误差信号,向光学头装置500传送用于使物镜微动的信号。根据该信号,光学头装置500对于光盘105进行聚焦伺服和跟踪伺服,对于光盘105进行数据信号的读出、写入或者清除。
图20中示出光学头放大器503和电路504的部分电路结构。为了检测数据信号,来自光检测器195的数据信号由电路IVRF进行电流电压变换。由于该信号在检测伺服误差信号方面不是必要的,因此也能够使用具有频带限制的电路结构,易于构成结构简单而且低噪声的电路。另外,由于以往通过全部加入来自6个信道的放大器的信号,得到数据信号,因此也同时加入了放大器噪声。与此相比较,在本发明中,由于仅混入1个频道的放大器噪声,因此能够把噪声减少到以往的1/60.5的大小。另外,在使用实施形态10所示的光学头装置情况下,可以仅添加1个与电路IVRF相同的电路。
来自光检测器193的各区域(FE1,FE2,FE3,FE4)的信号为了进行聚焦误差(FE)信号检测,把FE1与FE3,FE2与FE4进行连接,分别由电路IV1以及电路IV2进行电流电压变换,根据其输出的差得到聚焦误差信号。在该电路系统中使用的放大器由于不检测数据信号,因此可以在比较低的频率的伺服频带进行动作,能够以简单的结构实现低电流的放大器。
来自光检测器194的各区域(TEa,TEb,TEc,TEd)的信号为了进行跟踪误差(TE)信号检测,分别由电路IVa,IVb,IVc,IVd进行电流电压变换。
为了用推挽法得到跟踪伺服信号,可以把电路IVa与电路IVb的输出相加,把电路IVc与电路IVd的输出相加,取各自的差。为了用相位差法得到跟踪伺服信号,可以把电路IVa与电路IVc的输出相加,把电路IVb与电路IVd的输出相加,进行各个输出信号的相位比较。
放大器的使用频带根据伺服误差信号的检测方法而不同。在仅检测推挽信号的情况下可以仅是伺服频带。另外在仅检测相位差信号的情况下可以仅是信号频带。在切换2种方式使用的情况下需要使用全部频带。由于每一种情况下都不像数据信号再生那样产生噪声的影响,因此作为电路可以是简单的结构。
如果依据上述结果,则可以实现能够进行数据信号的高速再生,即使在杂散光多的系统中也能够得到良好的再生信号的光信息处理装置。
另外,本实施形态的说明对于与光学头装置独立地设置光放大器503以及电路504的一部分的情况进行了说明,但是并不限定于此,也能够在光学头装置500内部安装其全部或者一部分,能够在感光元件基板上制作。
以上说明的实施形态中,意图终究是为了明确本发明的技术内容,本发明并不是限定于这样的具体例子进行解释,在本发明的精神和权利要求内所记述的范围内能够进行多种变更实施本发明,应该广义地解释本发明。
权利要求
1.一种光学头装置,该光学头装置具备发射光源;使来自上述发射光源的光束收敛到信息媒体上,形成微小光点的收敛光学系统;接受由上述信息媒体反射的光束并且输出光电流的被分割为多个区域的光检测器;用于使由上述信息媒体反射了的光束作为衍射光进行衍射并且导向上述光检测器的衍射光学系统,特征在于上述衍射光学系统从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第1检测区域的第1衍射光和不是上述第1衍射光的共轭复数波的第2衍射光,仅使用上述第1衍射光读取记录在上述信息媒体中的信息,使用上述第2衍射光得到伺服误差信号。
2.一种光学头装置,该光学头装置具备发射光源;使来自上述发射光源的光束收敛到信息媒体上,形成微小光点的收敛光学系统;接受由上述信息媒体反射的光束并且输出光电流的被分割为多个区域的光检测器;用于使由上述信息媒体反射了的光束作为衍射光进行衍射并且导向上述光检测器的衍射光学系统,特征在于上述衍射光学系统具有第1衍射区域以及第2衍射区域,上述第1衍射区域从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第1检测区域的第1衍射光和不是上述第1衍射光的共轭复数波的第2衍射光,上述第2衍射区域从入射光按照预定的能量分配比,发生入射到包含在上述光检测器中的第2检测区域的第3衍射光和不是上述第3衍射光的共轭复数波的第4衍射光,仅使用上述第1衍射光以及上述第3衍射光读取记录在上述信息媒体中的信息,使用上述第2衍射光以及上述第4衍射光得到伺服误差信号。
3.根据权利要求1或者2所述的光学头装置,特征在于上述发射光源与上述光检测器相互接近地配置固定。
4.根据权利要求1或者2所述的光学头装置,特征在于还具备与上述光检测器的表面大致垂直地反射来自上述发射光源的光的反射镜。
5.根据权利要求1或者2所述的光学头装置,特征在于进而,还包括具有大致正交的第1面和第2面的刚体,在上述第1面上实质地固定上述发射光源,在上述第2面上实质地固定上述光检测器。
6.根据权利要求1或者2所述的光学头装置,特征在于在保持部件的表面固定上述发射光源,在上述保持部件中形成或者设置与上述保持部件的上述表面大致垂直地反射来自上述发射光源的光的反射镜,上述保持部件和上述光检测器实质地固定在同一个刚体的同一个面上。
7.根据权利要求1或者2所述的光学头装置,特征在于上述发射光源是面发光激光器,上述发射光源和上述光检测器实质地固定在同一个刚体的同一个面上。
8.根据权利要求1或者2所述的光学头装置,特征在于对于上述发射光源的发光位置,在上述信息媒体的切线方向的位置,与上述发光位置接近地配置用于读取记录在上述信息媒体中的信息的光检测区域。
9.根据权利要求1或者2所述的光学头装置,特征在于检测聚焦误差信号的光检测区域由上述信息媒体的径向方向的直线分割为多个。
10.根据权利要求9所述的光学头装置,特征在于对于上述发射光源的发光位置,在上述记录媒体的径向方向的位置,相互隔开配置检测上述聚焦误差信号的被分割为多个的光检测区域。
11.根据权利要求1或者2所述的光学头装置,特征在于用于读取记录在上述信息媒体中的信息的衍射光收敛到用于读取记录在上述信息媒体中的信息的光检测区域。
12.根据权利要求1或者2所述的光学头装置,特征在于上述衍射光学系统同时发生用于检测伺服误差信号的+1次以及-1次的衍射光。
13.根据权利要求12所述的光学头装置,特征在于用上述+1次衍射光检测聚焦误差信号,用上述-1次衍射光检测跟踪误差信号。
14.一种光学元件,该光学元件透过向第1方向偏振的光,衍射向与上述第1方向正交的第2方向偏振的光,特征在于以预定的效率使向上述第2方向偏振的入射光作为不伴随共轭复数波的第1衍射光进行衍射,而且,发生与上述第1衍射光的高次衍射光不同波面的衍射光。
15.根据权利要求1或者2所述的光学头装置,特征在于上述衍射光学系统具有透过向第1方向偏振的光,衍射向与上述第1方向正交的第2方向偏振的光的光学元件,上述光学元件从向上述第2方向偏振的入射光,以预定的效率,发生不伴随共轭复数波的第1衍射光和与上述衍射光的高次衍射光不同波面的衍射光。
16.根据权利要求14所述的光学元件,特征在于具有透过向上述第1方向偏振的光,衍射全部向上述第2方向偏振的光的第1衍射元件;透过向上述第1方向偏振的光,以预定的效率衍射向上述第2方向偏振的光的第2衍射元件,上述第1衍射元件由第1透光性材料和第2透光性材料构成,上述第1透光性材料的折射率与上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1透光性材料与上述第2透光性材料的边界面具有锯齿形的槽形状,上述第2衍射元件由第3透光性材料和第4透光性材料构成,上述第3透光性材料的折射率与上述第4透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第3透光性材料与上述第4透光性材料的边界面具有周期性凹凸槽形状,上述第1衍射元件与上述第2衍射元件按照预定的相互位置关系固定。
17.根据权利要求14所述的光学元件,特征在于具有透过向上述第1方向偏振的光,衍射全部向上述第2方向偏振的光的第1衍射元件;透过向上述第1方向偏振的光,以预定的效率衍射向上述第2方向偏振的光的第2衍射元件,上述第1衍射元件由第1透光性材料和第2透光性材料构成,上述第1透光性材料的折射率与上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1透光性材料与上述第2透光性材料的边界面具有阶梯形的形状,上述第2衍射元件由第3透光性材料和第4透光性材料构成,上述第3透光性材料的折射率与上述第4透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第3透光性材料与上述第4透光性材料的边界面具有周期性凹凸槽形状,上述第1衍射元件与上述第2衍射元件按照预定的相互位置关系固定。
18.根据权利要求14所述的光学元件,特征在于由第1透光性材料、第2透光性材料和第3透光性材料构成,上述第1透光性材料和上述第2透光性材料经过第1边界面邻接,上述第2透光性材料和上述第3透光性材料经过第2边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第2透光性材料的折射率和上述第3透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1边界面具有锯齿形的槽形状,上述第2边界面具有周期性凹凸槽形状。
19.根据权利要求14所述的光学元件,特征在于由第1透光性材料、第2透光性材料和第3透光性材料构成,上述第1透光性材料和上述第2透光性材料经过第1边界面邻接,上述第2透光性材料和上述第3透光性材料经过第2边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第2透光性材料的折射率和上述第3透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,上述第1边界面具有阶梯形的形状,上述第2边界面具有周期性凹凸槽形状。
20.根据权利要求14所述的光学元件,特征在于由第1透光性材料和第2透光性材料构成,上述第1透光性材料和上述第2透光性材料经过边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光不同,用表示锯齿形的槽形状或者阶梯形的形状的函数d1与表示周期性凹凸槽形状的函数d2之和的形状函数表示上述边界面的形状。
21.根据权利要求14所述的光学元件,特征在于由第1透光性材料和第2透光性材料构成,上述第1透光性材料和上述第2透光性材料经过边界面邻接,上述第1透光性材料的折射率和上述第2透光性材料的折射率对于上述第1方向的偏振光相同,对于上述第2方向的偏振光相差Δn,在把上述入射波的波长记为λ时,用以λ/Δn除表示锯齿形的槽形状或者阶梯形的形状的函数d1与表示周期性凹凸槽形状的函数d2之和的余数表示的形状函数表示上述边界面的形状。
22.根据权利要求14所述的光学元件,特征在于一体地具备把向上述第1方向偏振的光变换为圆偏振光的波长板。
23.一种光信息处理装置,特征在于具备权利要求1或者2所述的光学头装置;处理由上述光学头装置检测出的信号,读出所希望的信号的电路。
24.根据权利要求23所述的光信息处理装置,其特征在于上述电路具备把来自检测记录在信息媒体中的信息信号的光检测器的输出进行电流电压变换后放大的并且仅在信息信号频带具有增益的电路。
25.根据权利要求23所述的光信息处理装置,特征在于上述电路具备把来自检测聚焦误差信号的光检测器的输出进行电流电压变换后放大的并且仅在伺服信号频带具有增益的电路。
26.根据权利要求23所述的光信息处理装置,特征在于上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且仅在伺服信号频带具有增益的电路。
27.根据权利要求26所述的光信息处理装置,特征在于用推挽法检测上述跟踪误差信号。
28.根据权利要求23所述的光信息处理装置,特征在于上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且仅在信息信号频带具有增益的电路。
29.根据权利要求28所述的光信息处理装置,特征在于用相位差法检测上述跟踪误差信号。
30.根据权利要求23所述的光信息处理装置,特征在于上述电路具备把来自检测跟踪误差信号的光检测器的输出进行电流电压变换后放大的并且在信息信号频带以及伺服信号频带具有增益的电路。
31.根据权利要求30所述的光信息处理装置,特征在于在上述跟踪误差信号的检测中,切换或者并用相位差法和推挽法。
全文摘要
由信息媒体反射了的光束根据衍射光学系统,按照预定的能量分配比,分割为第1衍射光和不是第1衍射光的共轭复数波的第2衍射光,第1衍射光入射到光检测器的第1光检测器(195),用作为读取记录在信息媒体中的数据信息,第2衍射光入射到第2、第3光检测器(194、195),用作为得到伺服误差信号,如果依据该光学头装置,则由于能够减小第1光检测器的面积,因此能够进行数据信号的高速再生,另外,第1光检测器难以受到杂散光的影响,另外,还减少数据信号检测所必需的光学头放大器的数量,提高S/N比。
文档编号G11B7/13GK1449562SQ01814711
公开日2003年10月15日 申请日期2001年6月25日 优先权日2000年6月29日
发明者山本博昭, 金马庆明, 门胁慎一, 水野定夫 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1