磁头组件和盘驱动装置的制作方法

文档序号:6748720阅读:121来源:国知局
专利名称:磁头组件和盘驱动装置的制作方法
技术领域
本发明涉及一种包括具有多个垫片的磁头滑块的磁头组件,尤其涉及一种能够在磁盘驱动装置旋转开始期间避免磁头滑块对磁盘静摩擦的磁头组件。
近年来对用作计算机外部存储装置的磁盘驱动装置的尺寸减小和容量增大有所需求。增大磁盘驱动装置容量的方法是增加安装在主轴上的磁盘数量,与此相连地是为了减小磁盘驱动单元的总体高度,得减小磁盘驱动装置中磁盘之间的间隔。
在最近的磁盘驱动装置中,频繁地使用引用了接触式启动和停止(CSS)系统的浮动式磁头滑块。在带有此CSS系统的浮动式磁头滑块中,当磁盘驱动装置停止旋转时磁头滑块开始与磁盘接触,而在旋转期间,磁头滑块通过磁盘表面上产生的气流以与磁盘保持微小高度地浮动,在信息的记录和再现期间高速旋转。
在带有CSS系统的浮动式磁头滑块中,电磁转换器(即磁头元件)安装在滑块中,滑块接受磁盘表面产生的气流。为了保持滑块的位置,用一个悬架支撑。因此,当磁盘不旋转时滑块(包括电磁转换器)保持与磁盘表面接触,而当磁盘旋转时,与磁盘相对的滑块的空气承受面接受由磁盘的转动产生的气流,并且滑块在磁盘的表面上或下小距离地浮动。其结果是安置在滑块中的电磁转换器在磁盘表面移动,同时被悬架支撑,在给定的轨道上进行信息的记录和再现。
在利用传统的浮动式磁头滑块的磁盘中,通常沿与磁盘表面相对的磁头滑块表面相对侧部分设置一对轨道。两个轨道的每一个包括一个平面空气承受面。另外,在每个轨道的空气入口端部形成一个楔形面。每个轨道的空气承受面接受由高速旋转的磁盘产生的气流,气流使得滑块在磁盘上(或下)浮动,保持磁盘和电磁转换器之间的一个微小距离。
利用CSS系统可以在磁盘恒速旋转时得到相对稳定的微小的浮动高度(亚微米范围)。但是当磁盘不旋转时滑块的轨道表面(空气承受面)与磁盘接触。因此,当磁盘驱动器开始或停止旋转时,空气承受面在磁盘的表面上滑动。如果磁盘的表面粗糙度低(即如果盘表面比较平滑),则空气承受面和磁盘表面之间的接触面积在无旋转期间较大,并且还引起磁盘开始旋转期间磁头滑块和磁盘之间的静摩擦问题。
为了避免静摩擦,把磁盘表面的粗糙度常规地升高到一个适当的水平。然而这种升高表面粗糙度有一个导致浮动高度增加的缺点。因此,为了相应于高密度记录的需求相而减小磁头滑块的浮动高度,需要减小磁盘表面的粗糙度,这种粗糙度的减小会增加常规装置中的静摩擦。
一般地,为了提高磁盘的耐用性,在盘的记录层上形成一个由硬材料如碳制作的保护膜和一个减小保护膜的摩擦及损耗的润滑层。由于润滑层的出现,保护膜的摩擦和损耗可以减小。但是当磁盘停止旋转时,有可能在盘和滑块之间发生静摩擦,阻止磁盘驱动装置再启动。
与处理的信息量增大相关联,高密度、大容量和密集尺寸磁盘驱动器发展很显著,并且引起磁盘驱动器的误操作的静摩擦的发生也被大大减轻。这种误操作的原因是由于对减小了力矩(因为它的小尺寸)的主轴电机的使用。这种误操作的另一个原因是由于为了达到高密度的记录而使磁盘的表面平滑。
为了避免这种静摩擦的问题,提出了一种在滑块的浮动表面(即空气承受面)上设置多个垫片或凸起,从而减少滑块和盘表面之间的接触面积的方法(见日本待公开专利申请8-89674)。在通过把具有多个垫片的磁头滑块安装在不锈钢制成的悬架的前端部的磁头组件安装中,磁头滑块安装在悬架的前端部,使得它的加载点(悬架的弹性载荷施加到磁头滑块的点)与磁头滑块的重心重合。
目前,通常把不使用霍尔元件的无霍尔效应的三相电机用作旋转主轴的电机。在CSS型磁盘驱动装置中,当磁盘驱动装置断开电源时磁头滑块与磁盘接触。磁盘驱动装置一开始启动,电流就流过三相线圈中的任意一个,把该线圈接近永久磁铁定位。此时,根据盘驱动装置停止时线圈和永久磁铁间的位置关系,电机不是朝前向运转就是朝反向运转,使得电机向前或反向转60°,把线圈接近永久磁铁定位。定位之后,把流过每一相的电流控制成开通,从而使电机在朝前的方向上连续旋转。在这种方式中,电机的旋转方向根据盘驱动装置停止时线圈和永久磁铁间的位置关系确定。因此,电机的初始反转发生的可能性为50%。
在磁铁滑块具有形成在空气承受面上的垫片的情况中,发现电机的反向旋转导致下列问题,这些问题参考

图1进行说明,图1是停置在磁盘4上的磁头滑块2的侧视图。在图1中,箭头R表示磁盘4的向前运转方向,箭头R表示磁盘4的反向运转方向。虽然在图1中只示出了一个垫片6,但在接近磁头滑块2空气入口端的滑块2的空气承受面上形成有两个垫片6。类似地,虽然在图1中只示出了一个垫片,但在滑块2的空气承受面上磁头滑块2的空气入口端和空气出口端之间的中间位置处形成有两个垫片8。特别是,形成于有磁头元件(转换器)形成其上的空气承受面上的垫片8实际上位于磁头滑块2的纵向中心位置。把垫片8放置在这个位置的原因是为了在磁头滑块2的浮动期间将磁头元件和磁盘4之间的间隔减到最小,从而减少浪费的空间并避免垫片8超出磁头滑块2的浮动高度而突伸。
标号10表示滑块2的重心,当主轴旋转时产生对其的动量。当主轴向前转动时,产生顺时针动量M1(如图1所示)。此顺时针动量M1导致垫片6被压向磁盘4。在这种情况中,伸向垫片6和滑块2空气入口端下缘之间的滑块2的悬申较小,使得滑块2空气入口端下缘与磁盘4记录表面相接触的可能性很小。换言之,如果滑块2在M1方向旋转,则它的较低的右侧角(如图1所示)与磁盘4接触的机会很小。
然而,当把线圈和磁铁在无霍尔效应的电机中定位期间产生逆时针的动量M2(如图1所示)。此逆时针动量M2致使垫片8和滑块2左手侧的表面被压向磁盘4。如图1所示,伸向垫片8和滑块2空气入口端下缘之间的滑块2的悬申较大,使得滑块2空气入口端下缘与磁盘4记录表面相接触的可能性很大,导致滑块2和磁盘4之间的摩擦力增大。在这种情况中,被认作滑块2的较低端的是指图1所示的左下角。滑块2的较低端与磁盘4的接触可能妨碍主轴平稳地旋转启动盘4的能力。
因此,本发明的目的是提供一种磁头组件,该磁头能够即使在主轴电机反向旋转、磁盘驱动装置开始启动期间,最小化或避免滑块边缘与磁盘表面的接触,防止增大磁头滑块和记录介质之间的摩擦力。
本发明的另一个目的在于提供一种磁盘驱动装置,该装置可以通过利用具有平滑记录表面的记录介质提高记录密度,同时继续减小磁头元件和记录介质之间的间隔。
简单地说,本发明提供了一种改进的磁头组件,在该组件中通过改变弹性载荷施加到滑块上的位置而在即使是反向旋转期间也可消除或至少最小化滑块边缘和盘介质之间的接触。如果弹性载荷从滑块的重心移到滑块的重心和滑块的空气入口端之间的位置,则产生一个动量,该动量减小逆时针动量M2(见图1)的作用,由此减小或消除了盘介质在反向旋转时可能产生的滑块的逆时针旋转。因此,利用本发明,滑块外缘和磁盘之间接触的可能性减小。
具体地说,本发明涉及一种磁头组件(或带有这种磁头组件的盘驱动装置),组件包括一个具有圆形弯曲部分的悬架,用于用位于悬架上的万向架产生一个弹性载荷,其中在悬架上有一个滑块安装部分。因此,有一个安装在万向架的滑块安装部分的磁头滑块,并且磁头滑块包括一个空气承受面,一个空气入口端和一个空气出口端。悬架的弹性载荷施加到磁头滑块的加载点,此加载点偏离磁头滑块的重心,使得偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
磁头滑块最好还包括几个从其空气承受面延伸的垫片,并且悬架的弹性载荷的偏移的加载点最好设置成基本上与多个垫片的重心重合。或者是把偏移的加载点设置成基本上与位于连接接近空气入口端的两垫片的直线上的位置重合。
实现本发明偏移的加载点至少有两种不同的结构。第一种结构包括一个连接到悬架的增强板,和一个形成在增强板上并与万向架的滑块安装部分保持压力接触的支点,支点把悬架的弹性载荷施加到磁头滑块。在第二种结构中,万向架在其颈部关于悬架弯曲一给定的角度,使得悬架的弹性载荷在偏移的加载点被施加到磁头滑块上。
以下参考附图对本发明的优选实施例进行说明,其中图1是磁头滑块的侧视图,用于图示现有技术中的问题;图2是本发明磁盘驱动装置移去盖的透视图;图3A是根据本发明第一实施例的磁头组件透视图;图3B是图3A所示磁头组件的纵向截面图;图4是图3A所示磁头组件的磁头滑块平面图;图5A是磁头滑块处于浮动状态的侧视图,表示其俯仰角。
图5B是磁头滑块处于浮动状态的后视图,表示其滚动角;图6是安装在磁头滑块上的MR磁头必备部分的截面图;图7A是根据本发明第一实施例的磁头组件顶视平面图,表示图3A和3B中看不见的细节;图7B是图7A所示组件的侧视图;图8是图7A所示磁头组件的底视平面图;图9A是根据本发明第二实施例的磁头组件顶视平面图;图9B是图9A中所示的磁头组件的侧视图;图10是根据本发明第二实施例的磁头组件侧视图,表示带有圆形弯曲的弹性部分。
参见图2,图2是本发明磁盘驱动装置移去盖的透视图。标号12表示一个基座。转轴14固定在基座12上。主轴轮毂(未示出)旋转安装在转轴14上,使得能够被无霍尔效应电机(未示出)驱动。
多个磁盘16和隔离物(未示出)以交替叠加的方式安装在主轴轮毂上。即多个磁盘16通过由多个螺丝20把盘夹紧装置18加固到主轴轮毂上而固定安装到主轴轮毂上,并且这些盘16可以由隔离物以给定的距离等间距地隔开。
标号22表示一个由致动器臂组件24和一个磁路26组成的旋转致动器。旋转致动器22安装成可绕固定到基板12的主轴28旋转。
致动器臂组件24包括一个经一对轴承而旋转安装在主轴28上的致动器块32。致动器臂组件24还包括多个从致动器块30在一个方向延伸的致动器臂32,和一个固定到每个致动器臂32的前端部的磁头组件34。
每个磁头组件34包括一个磁头滑块36,滑块具有从/向相应的磁盘16上读出/写入数据的磁头元件(如电磁转换器或一个光学元件),还包括一个悬架38具有支撑磁头滑块36的前端部和固定到对应的致动器臂32的底端部。致动器块30上延伸出致动器臂32的相反端支撑一个线圈(未示出)。磁路26和插在磁路26中间隙内的线圈构成一个音圈电机(VCM)40。
标号42表示一个柔性印刷电路板(FPC),用于向磁头元件供应写入信号并从磁头元件提取读出信号。柔性印刷电路板42固定在致动器块30的一个侧面的一端。
图3A是根据本发明第一实施例的磁头组件34透视图,图3B是图3A所示磁头组件34的纵向截面图。
标号38表示一个例如由不锈钢形成的悬架。悬架38包括一个弹性部分38a和一个刚性部分38b。增强板44被点焊到悬架38刚性部分38b的下表面。
在本发明的实施例中,磁头组件34的总长度大约为16.0mm,在其固定隔离物52的底端部最大宽度大约为4.4mm。悬架38最好具有大约22μm的厚度和大约2.4mg的重量。注意前面给出的尺寸只为举例之目的,也可以使用不脱离本发明实质的其它尺寸。
悬架38最好包括一个位于其端部的一体化的万向架46。此万向架46由一个形成在悬架38前端部的U形切槽48构成,万向架46由此被限定在切槽48内。磁头滑块36通过粘结等方式被固定到万向架46的上表面。
隔离物52(用于把磁头组件34固定到相应的致动器臂34)最好通过点焊被固定到悬架的底端部。支点50形成在增强板44的一个前端部。支点50与万向架46的下表面接触从而支撑磁头滑块36。增强板44最好有全长大约为5.0mm的长度,大约为2.0mm的最大宽度,大约30μm的厚度和大约1.4mg的重量,当然本发明的范围内也可以使用其它的尺寸。
支点50最好有大约50μm的高度,磁头滑块36最好有大约1.2mm的长度,大约为1.0mm的宽度,大约0.3mm的高度和大约1.6mg的重量。当然其它的尺寸和重量也可以。
如图3B所示,万向架46通过支点稍稍升到悬架38的上表面之上。因此,当磁头滑块36处于未输入位置时(即当滑块没被载入磁盘时)向万向架46施加预输入F。在此状态下,万向架46实际上与悬架38维持平行。
在磁头组件34向磁盘驱动装置内安装的期间,悬架38的弹性部分38a弯曲形成一个如图10所示的基本上为圆形的弯曲。通过以这种圆形的方式弯曲弹性部分38a,当磁头组件34安装到磁盘驱动装置中时弹性部分38a的弹性载荷经支点50施加给磁头滑块36。即支点50的顶部落在弹性载荷的加载点。
如图3A所示,MR布线图案54和线圈布线图案60通过印刷到悬架38的上表面而形成。MR布线图案54由一对导引线56和58组成,线圈布线图案60由一对导引线62和64组成。每个导引线56、58、62和64最好主要由铜线作,并且最好通过蒸发把金经镍沉积到铜上。
导引线56和58具有分别通过经金球66的粘结而连接到磁头滑块36中磁阻元件(MR元件,下面将作描述)终端的第一端。另一方面,导引线62和64具有分别通过经金球68的粘结而连接到磁头滑块36中线圈(下面将作描述)终端的第一端。
在悬架38的一个侧缘上形成一个翼板70,四个终端72、74、76和78形成在翼板70上。终端72、74、76和78分别连接到导引线56、58、62和64的第二端。
现参见图4,图4是用在磁头组件34中磁头滑块36的平面图。在与磁盘表面相对的滑块36的表面上形成一对轨道80和82。轨道80和82分别具有平面的空气承受面80a和82a,用于在盘旋转的同时产生浮动力。在轨道80和82的空气入口端部分分别形成楔形面80b和82b。在轨道80和82之间限定一个凹槽86以扩展先前压缩的空气并由此产生一个负压。
在滑块36的空气入口端上邻近轨道80的横向位置处形成一个磁头元件88。在轨道80和82之间接近滑块36的空气入口端的部分形成一个中心轨道84。
轨道80和82的每一个制成在其接近空气入口端和出口端的相对端处有较大的宽度,在其纵向的中间部位宽度较小,由此抑制因偏转角的改变而导致的浮动高度的变化。另外,在接近滑块36的空气入口端形成的锥形表面80b和82b使得当尘埃出现在磁盘上时浮动高度的变化成为最小。
在轨道80的空气承受面80a上形成两个垫片90和92,在轨道82的空气承受面82a上形成两个垫片94和96。垫片90、92、94和96例如可以由类金刚石的碳(DLC)构成。
垫片90和94最好形成在接近滑块36空气入口端的相对于滑块36纵轴的相同位置处。垫片90延伸过空气承受面80a和楔形面80b之间的界面。类似地,垫片94延伸过空气承受面82a和楔形面82b之间的界面。
另一方面,垫片92和96最好彼此形成在沿纵轴的不同位置处。垫片92和96最好位于滑块36空气入口端和空气出口端之间的不同位置处,在这些位置处滑块36浮动时垫片92和96不伸出超过最小的浮动高度(下面将作描述)。
具体地说,形成在轨道80上的垫片92与形成在轨道82上的垫片96相比最好向滑块36的空气入口端移动。垫片92和96的位置不处于沿纵轴的相同位置,因为邻近磁头元件88的轨道80的浮动高度被设置成低于轨道82的浮动高度。通过把轨道80的宽度设置的小于轨道82的宽度,可以使80的浮动高度小于轨道82的浮动高度,如图4所示。
参见图5A和5B,图示为磁头滑块36的浮动姿态。磁头滑块36设计成在其浮动状态下具有一个如图5A所示的俯仰角A和如图5B所示的滚动角,使得磁头元件88到达最接近虚线表示的最小的浮动高度98。另外,垫片90、92、94和96的位置和高度设置成在滑块36的浮动状态下这些垫片的凸伸不超过最小浮动高度98。
俯仰角A定义成滑块36的浮动状态下滑块36的纵轴和最小浮动高度线98之间的角度,如图5A所示,而滚动角B定义成滑块36的浮动状态下滑块36的横线和最小浮动高度线98之间的角度,如图5B所示。在优选实施例中,俯仰角A最好处于50-200毫弧度(处于90-150毫弧度更好),滚动角B最好处于10-80毫弧度(处于20-40毫弧度更好)。
再看图4,符合G1表示磁头滑块36的重心。在常规的磁头组件中,磁头滑块36安装在悬架上,使得悬架的弹性载荷的加载点与磁头滑块36的重心G1重合。
然而,常规磁头组件中的这种滑块安装结构有这样一个问题,即使在盘开始旋转期间无霍尔效应电机反向旋转,磁头滑块36的空气出口端经常与磁盘表面接触,如前所述。
为了解决这个问题,在本发明中当支点50固定到万向架46时相对于磁头滑块36定位,使得悬架38的弹性部分38a的加载点从滑块36的重心G1向滑块36的空气入口端移动。
如上所述,通过把支点50的位置设置得较接近空气入口端可以产生一个动量,该动量遮掩了由主轴的反向旋转产生的关于滑块36的重心G1的动量M2,如图1所示,从而解决了滑块36空气出口端的下缘与磁盘表面在磁盘驱动装置开始启动时接触的问题。
加载点最好设为与垫片90、92、94和96的重心G2重合(与点G1相对,为整个滑块36的重心)。因此,弹性载荷可均匀施加给垫片90至96,由此防止由于垫片90至96与磁盘表面的不均匀接触造成的垫片90至96的非正常磨损。因此,有可能降低由于CSS导致的每个垫片的磨损并得到稳定的浮动起始特征。
作为一个改型,加载点可以设置成与滑块36的纵向延伸中心线和连接垫片90和94的横线的交点重合,其中垫片90和94接近滑块36的空气入口端。通过把加载点移到接近滑块36的空气入口端,可以有效地解决滑块36的空气入口端下缘可能与磁盘表面接触的问题。在本优选实施例中,可以通过支点50相对于滑块36的位置确定加载点。
如图6所示,磁头滑块36有一个导体基底100和形成在导体基底100上的非磁性绝缘层102。非磁性绝缘层102例如可以由氧化铝(Al2O3)。
由镍-铁(Ni-Fe)形成的第一和第二磁性屏蔽物104和106嵌入非磁性绝缘层102。在磁头滑块36的前端面110(即介质相对面)上的第一和第二磁性屏蔽物104和106之间限定一个间隙108,以提高再现的分辨率。
由镍-铁(Ni-Fe)形成的磁阻元件(MR元件)112嵌入间隙108中,暴露到磁头滑块36的前端面110。虽然没有示出,但有一个检测电流源连接到磁阻元件112的一对终端,向磁阻元件112提供恒定检测电流。
标号116表示一个磁极,磁极的一端对着磁体滑块36的前端面110,另一端连到第二磁性屏蔽物106。导体线圈114基本上被缠绕到磁极116和第二磁性屏蔽物106之间的连接部分上。
通过使被记录信息调制的电流流经线圈114,感应出一个磁场,磁场强度相应于调制电流的安培数,由此在磁盘16的记录轨道上磁性地记录信息。
在读出记录到磁盘16上的信息时示于磁阻元件112。即从磁盘16的记录轨道而来的一个信号磁通量被接收到磁头滑块36中进入磁阻元件112并由此磁化磁阻元件112。通过磁阻元件112的磁通量被第一和第二磁性屏蔽物104和106吸收。
磁阻元件112的阻抗随信号磁通量的大小变化。因为由检测电流源提供给磁阻元件112一个恒定的检测电流,所以磁阻元件112的一对终端之间的电压随阻抗的变化而变化。因此记录在磁盘16上的信息可以以一个电压信号再现。
图7A是图3A所示磁头组件34顶视平面图,图7B是磁头组件34的侧视图。图8是磁头组件34的底视平面图。
在图7A中,没有示出MR布线图案54和线圈布线图案60。这些布线图案由绝缘膜118覆盖。
如图7A所示,在增强板44的前端部形成一对穿孔120。穿孔120可以通过切口48视觉识辨,使得穿孔120可以用作把磁头滑块36定位于万向架46上的参考孔。在磁头组件34的安装中,穿孔120被视觉识辨并且磁头滑块36通过组装自动操纵机被自动安装到万向架46上的一个指定位置处。
如图7B和图8所示,在增强板44的下表面粘接一个阻尼元件122。阻尼元件122可以是一块双面粘胶带,并用于改进磁头组件34的平衡。
图9A是根据本发明第二实施例的磁头组件34’顶视平面图。图9B是磁头组件34’侧视图。磁头组件34’有一个最好由不锈钢制成的悬架38’。悬架38’通过蚀刻整体地形成在万向架126的前端部。
如同上述的第一优选实施例,MR布线图案和线圈布线图案(均未示出)形成在悬架38’上。这些布线图案被绝缘膜118’覆盖。
隔离物52’固定到悬架38’的底端部,例如通过点焊。悬架38’在其相对侧部形成一对肋条124用于赋予悬架38’稳定性。诸如双面粘胶带的阻尼元件122粘到悬架38’的下表面。
图10是在悬架38’的弹性部分38a被弯成圆形的状态下磁头组件34’的侧视图。在把磁头组件34’安装到磁盘驱动装置时,悬架38’的弹性部分38a通过一个角度θ1被弯成圆形,如图10所示。之后,磁头组件34’被安装到磁盘驱动装置中。
在磁头滑块36不受盘限制的自由状态下把弯折角设成大约10°。当磁头组件34’被安装到磁盘驱动装置中时,因弹性部分36的弯曲磁头滑块36开始与相应的磁盘压力接触,使得弹性部分38a的弹性载荷施加到磁头滑块36上。
万向架126在其颈部128被弯曲角度θ2,连接到悬架38’的前端部。弹性载荷的加载点由弯曲角度θ2确定。在传统的磁头组件中,预先调节弯曲角θ2,使得加载点与磁头滑块36的重心重合。
在根据本优选实施例的磁头组件34’中,弯曲角θ2大于传统的磁头组件中的弯曲角,从而把加载点从磁头滑块36的重心移向磁头滑块36的空气入口端。
例如,通过把弯曲角θ2设置成3.45°,可以把加载点设置成与磁头滑块36的多个垫片(未示出)的重心重合。如同第一实施例,加载点可以被设置成大致与滑块36的纵向延伸中心线和形成在滑块36的空气入口端附近的垫片的横向连线的交点重合。
按照本发明,可以消除滑块的空气出口端的下缘可能与盘表面在盘驱动装置开始旋转期间无霍耳效应主轴电机反向旋转的情况下的接触问题。因此,可以可靠地消除主轴电机可能会因为载荷的增加而不能开始旋转的问题。
因此通过利用具有光滑记录表面的磁盘,可以减小磁头和磁盘之间的间隔,由此有利于磁盘驱动装置的记录密度的增加。
在展示并表述本发明各种实施例的同时应理解其它的改型、替代和更换对于本领域的普通技术人员是显而易见的。可以在不背离本发明实质和范围的情况下作出这些改型、替代和更换,这从附带的权利要求中可以确定。
本发明的各种特征在附带的权利要求中提出。
权利要求
1.一种磁头组件,包括一个悬架具有圆形弯曲部分,用于产生一个弹性载荷;一个位于悬架上的万向架,并且在万向架上有一个滑块安装部分;一个安装在万向架的滑块安装部分的磁头滑块;磁头滑块具有一个空气承受面,一个空气入口端和一个空气出口端;和其特征在于所述悬架的弹性载荷在一加载点施加到磁头滑块,此加载点偏离磁头滑块的重心,其特征还在于偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
2. 根据权利要求1所述的磁头组件,还包括一个连接到悬架的增强板;和一个形成在增强板上并与万向架的滑块安装部分保持压力接触的支点,支点把悬架的弹性载荷施加到磁头滑块。
3.根据权利要求1所述的磁头组件,其特征在于万向架在其颈部关于悬架弯曲一给定的角度,使得悬架的弹性载荷在偏移的加载点被施加到磁头滑块上。
4.根据权利要求3所述的磁头组件,其特征在于上述给定的角度大约为3.45°。
5.根据权利要求1所述的磁头组件,还包括多个形成在滑块的空气承受面上的垫片;和其中偏移的加载点大致与多个垫片的重心重合。
6.根据权利要求1所述的磁头组件,还包括多个形成在滑块的空气承受面上的垫片;和其特征在于多个垫片中的两个靠近磁头滑块的空气入口端而形成,并且加载点被设置为大致与连接上述两垫片的直线上的一个位置重合。
7.一种磁头组件,包括一个悬架具有圆形弯曲部分,用于产生一个弹性载荷;一个连接到悬架的增强板;一个位于悬架上的万向架,并且在万向架上有一个滑块安装部分;一个安装在万向架的滑块安装部分的磁头滑块;一个形成在增强板上并与万向架的滑块安装部分保持压力接触的支点,把悬架的弹性载荷施加到磁头滑块;磁头滑块具有一个空气承受面,一个空气入口端和一个空气出口端;多个形成在滑块的空气承受面上的垫片;和上述支点把悬架的弹性载荷在偏移磁头滑块重心的加载点施加到磁头滑块,其特征在于偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
8.根据权利要求7所述的磁头组件,其特征在于上述加载点设置成大致与多个垫片的重心重合。
9.根据权利要求7所述的磁头组件,其特征在于多个垫片中的两个靠近磁头滑块的空气入口端而形成,并且加载点设置为大致与连接上述两垫片的直线上的一个位置重合。
10.根据权利要求7所述的磁头组件,其特征在于万向架与悬架制成一体。
11.一种磁头组件,包括一个悬架具有圆形弯曲部分,用于产生一个弹性载荷;一个位于悬架上的万向架,并且在万向架上有一个滑块安装部分;一个安装在万向架的滑块安装部分的磁头滑块;磁头滑块具有一个空气承受面,一个空气入口端和一个空气出口端;多个形成在滑块的空气承受面上的垫片;万向架在其颈部关于悬架弯曲一给定的角度,使得悬架的弹性载荷被施加到磁头滑块上的加载点偏移磁头滑块的重心,其特征在于偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
12.根据权利要求11所述的磁头组件,其特征在于预先调节给定的角度,使得加载点大致与多个垫片的重心重合。
13.根据权利要求12所述的磁头组件,其特征在于上述给定的角度大约为3.45°。
14.根据权利要求11所述的磁头组件,其特征在于多个垫片中的两个靠近磁头滑块的空气入口端而形成,并且加载点设置为大致与连接上述两垫片的直线上的一个位置重合。
15.根据权利要求11所述的磁头组件,其特征在于万向架与悬架制成一体。
16.一种磁盘驱动装置,包括一个腔体;一个旋转安装于上述腔体的主轴;至少一个固定到主轴的磁盘;一个具有磁头元件的磁头滑块,用于从/向上述磁盘读出/写入;和把磁头滑块移动穿过磁盘轨道的致动器;致动器包括一个旋转安装在腔体中的致动器臂和安装在致动器臂前端部的磁头组件;磁头组件包括底端部固定到致动器臂前端部并具有圆形弯曲部分以产生弹性载荷的一个悬架;一个连接到上述悬架的增强板;一个位于悬架上的万向架,并且在万向架上有一个滑块安装部分;一个安装在万向架的滑块安装部分的磁头滑块;一个形成在增强板上并与万向架的滑块安装部分保持压力接触的支点,支点把悬架的弹性载荷施加到磁头滑块;磁头滑块具有一个空气承受面,一个空气入口端和一个空气出口端;多个形成在滑块的空气承受面上的垫片;上述支点把悬架的弹性载荷在偏移磁头滑块重心的加载点施加到磁头滑块,其特征在于偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
17.一种磁盘驱动装置,包括一个腔体;一个旋转安装于上述腔体的主轴;至少一个固定到主轴的磁盘;一个旋转上述主轴的电机;一个具有磁头元件的磁头滑块,用于从/向上述磁盘读出/写入;和把磁头滑块移动穿过磁盘轨道的致动器;致动器包括一个旋转安装在腔体中的致动器臂和安装在致动器臂前端部的磁头组件;磁头组件包括底端部固定到致动器臂前端部并具有圆形弯曲部分以产生弹性载荷的一个悬架;一个位于悬架上的万向架,并且在万向架上有一个滑块安装部分;一个安装在万向架的滑块安装部分的磁头滑块;磁头滑块具有一个空气承受面,一个空气入口端和一个空气出口端;多个形成在滑块的空气承受面上的垫片;万向架在其颈部关于悬架弯曲一给定的角度,使得悬架的弹性载荷被施加到磁头滑块上的加载点偏移磁头滑块的重心,其特征在于偏移的加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。
全文摘要
一种磁头组件,包括一悬架具有圆形弯曲部分,用于产生一弹性载荷,和一位于悬架上的万向架。磁头滑块安装在万向架上。磁头滑块具有一空气承受面,一空气入口端和一空气出口端。弹性载荷在加载点施加到磁头滑块,此加载点偏离磁头滑块的重心。加载点位于磁头滑块的重心和磁头滑块的空气入口端之间。磁头滑块最好还包括几个从其空气承受面延伸的垫片,加载点可以位于多个垫片的重心(与磁头滑块的重心相对)。
文档编号G11B21/21GK1258074SQ99117528
公开日2000年6月28日 申请日期1999年8月10日 优先权日1998年12月24日
发明者杉本雅治, 龟山正毅, 大江健 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1