多数据层光盘驱动系统的制作方法

文档序号:6748995阅读:194来源:国知局
专利名称:多数据层光盘驱动系统的制作方法
技术领域
本发明专利申请是申请日为1996年2月16日、申请号为96102508.5、发明名称为“带有固定象差校正和最佳层间间距的多数据层光盘驱动系统”的发明专利申请的分案申请。
本发明一般性地涉及光数据存储系统,并且更具体地涉及具有多数据层的光盘以及能运转这种光盘的光盘驱动器。
光数据存储系统提供一种存储大量数据的工具。数据访问是通过把激光束聚焦成光媒体数据层上的小点然后再检测反射光束进行的。带有可移光盘的光盘驱动系统是光存储的最常见形式。已经知道许多种类的这种系统。在ROM(只读存储器)系统,例如紧致盘系统(CD-ROM、CD-音盘、CD-视盘等)里在制造盘的时候把数据作为刻痕永久性地嵌入在盘上。当激光束经过数据刻痕时根据反射率的变化检测出数据。WORM(一次可写多次可读)系统允许用户通过在光盘的记录层上造成诸如凹点的刻痕写入数据。一旦把数据记录到盘上之后数据是不可擦的。WORM系统里的数据也是用反射率的变化来检测的。还存在着可擦除的光数据存储系统,例如相变系统和磁光(M-O)系统。相变系统也是通过检测反射率的变化读出数据的,而M-O系统通过测量由M-O媒体造成的入射偏振转动读出数据。
为了提高光盘的存储容量,已经提出了多数据层系统。通过改变透镜的焦点位置可以对具有两个或多个数据层的光盘的不同层进行访问。IBM公司的美国专利5,202,875说明一种多数据层光盘驱动系统,其中光盘由多个各具有一个由空气隙隔开的数据层的基片组成或者由整体结构中的多个数据层组成。转让给美国Philips公司的美国专利4,450,553采用带有多个数据层的整体结构,其中各个数据层是CD类型的数据层。在这种多数据层光盘驱动系统里,为了访问不同基片上的数据层来自激光的光线必须穿过一个或多个透光的盘基片。通过相对厚的透光基片聚焦光导致光束里的球面象差。如果不对它进行校正,它将阻止得到几乎限制衍射的光点尺寸。在常规的单盘光盘驱动的情况下,因为光线必须经过的基片材料量是保持固定的,可以通过用一个固定量轻微地改变聚焦透镜的表面形状进行校正。但是,在多数据层光盘驱动的情况下,由于取决于要被访问的那个数据需要穿过不同数量和不同厚度的基片对光聚焦,因此需要某种可调节的对球面象差的主动补偿形式。例如转让给Matsushita公司的美国专利5,097,464说明一种多数据层CD系统,该系统采用一个对离透镜最远的数据层进行象差校正的透镜并且还采用一个光路径长度校正器,当激光点聚焦在离该透镜较近的几个数据层上时把这个校正器插入到光路径上。另外,IBM公司的美国专利5,202,875说明一种带有主动象差补偿器的多数据层光盘驱动系统。
多数据层系统中的一个额外问题是需要能和常规的单数据层盘例如CD兼容。例如,常规的CD采用1.20mm厚的聚碳酸酯基片。多数据层CD光盘驱动器必须能够把几乎限制衍射的光点聚焦到较新的多数据层盘的多数据层上而且还能够聚焦到常规的单数据层盘的数据层上。
多数据层系统中所出现的另一个问题是串扰,串扰是由于来自相邻的数据层对所需数据层的信号进行干扰造成非要求的数据信号、聚焦误差信号及跟踪误差信号而产生的。这些非要求的信号被称为层间串扰。为了避免这个问题必须在各数据层之间保持相对大的间距。但是,通过整体隔离材料隔开的数据层之间的相对大的间距增加了盘的总厚度并且还增加了所需要的主动球面象差校正量,这两者都是不希望的。
从而需要一种光盘驱动器,它既运行单数据层盘又运行多数据层盘并且使得球面象差和层间串扰的作用为最小。
本发明是一种多数据层光盘驱动系统,它具有固定的象差校正并且使用带有最大层间间距的光盘以减小层间串扰。在一种实施方式里多数据层盘具有一个基片,基片的厚度约减少了分隔第一层和最后一层的间隔层的厚度的一半。该盘设计成用具有球面象差校正的透镜运行,从而可补偿常规单数据层盘的厚度。这允许光盘驱动器除了可使用多数据层盘之外还可以反向兼容,从而可使用常规的单数据层盘。出于球面象差校正的原因,基片材料的厚度加上间隔层(其可能具有不同于基片材料的折射率)材料厚度的一半等于常规单数据层盘中所使用的基片材料的厚度。具有最小球面象差的聚焦光点从而定位于间隔层的中部而不是位于第一数据层上。选择间隔层的厚度使得当聚焦光点落在第一或最后一数据层上时存在一些故意设计的其总量可接受的球面象差。因此可以明显地增加间隔层的厚度以便减小层间串扰。在另一种实施方式里选择基片厚度以及间隔层厚度,然后校正透镜对应于基片厚度加上间隔层材料一半厚度下的球面象差。
为了更全面地了解本发明的性质和优点,请参阅下述详细说明及附图。


图1是本发明的以CD系统为形式的光盘驱动系统的示意图。
图2是光盘驱动系统的光头和二层盘的示意图。
图3是光盘驱动系统的控制器系统的框图。
图4是曲线图,说明两种情况下作为穿越光束位置的函数的聚焦点的光强曲线A具有最小的球面象差而曲线B具有明显的球面象差。
图5表示对于N.A.=0.45的透镜作为离其最小球面象差位置的距离的函数的两种折射率材料的Strehl比的曲线图。
图6是双层盘的剖面图,说明位于间隔层中部的具有最小球面象差点。
图7比较对于N.A.=0.55的透镜两个光盘驱动系统作为可达到的数据层隔离(间隔层厚度)函数的1-Shrehl比,其中一个系统中最小球面象差点位于第一数据层上,而另一个系统中最小球面象差点位于间隔层的中部。
图8是带有薄防尘外壳的经空气入射的双层盘的剖面图,说明最小球面象差点位于间隔层的中部。
图1是根据本发明的光盘数据存储系统的示意图,该系统用概括的参考数字10表示。系统10将按CD光盘驱动系统的术语来说明。系统10包括一个最好如现有技术中所知那样可拆卸地安装在箝位主轴14上的光数据存储盘12。主轴14和主轴马达16连接,主轴马达16反过来又连接在系统机箱20上。马达16转动主轴14和盘12。
光头22定位于盘12的下面。头22连接在臂24上,臂24和诸如音圈马达26等的致动器装置相连接。音圈马达26附着在机箱20上并且在盘12之下沿其径向方向移动臂24和头22。
图2表示图1的光头22和盘12的一种实施方式的示意图。光头22包括一个激光二极管200,其可能是一个产生约在780毫微米波长的初级光束202的镓铝砷二极管激光器。光束202首先由光栅201衍射以便在初级数据光束之外还产生二个用于跟踪的二级光束,然后再由透镜203准直。所产生的三分量光束204接着通过分光镜205。光束204的一部分由分光镜205反射到透镜206和光检测器207上。检测器207用于监视激光束204的功率。来自分光镜205的光束204接着到达镜208并且由镜208反射。然后光束204通过聚焦透镜210并且聚焦成一个限制衍射的点。透镜210安装在夹持器214上,通过聚焦致动器马达216可以调整相对于盘12夹持器214的位置,聚焦致动器马达216可能是一个音圈马达。由聚焦致动器产生的透镜210的运动使聚焦点在盘12的两个数据层52、62之间移动。
从数据层52、62上来的光束204的一部分反射为反射光束204。光束204通过透镜210返回并且由镜208反射。在分光镜205处,光束220被引导通过象散透镜232并且进入多元光检测器234。
图3是光盘驱动系统的控制器系统的方框图,控制器系统用概括的参考数字300表示。多元检测器234(图2)产生提供数据信号、聚焦误差信号(FES)和跟踪误差信号(TES)的几种输出信号。这些信号由信号放大器236放大并且直接发送到控制器314上。峰值检测器310也接收来自放大器236的FES,此外来自放大器236的TES还由峰值检测器312接收。控制器314还接收来自FES峰值检测器310、TES峰值检测器312和激光功率检测器207的输入信号。控制器314是一个以微处理机为基础的盘驱动控制器。控制器314还连接到激光器220、头马达26、主轴马达16和聚焦致动器马达216并且控制它们。
请再参阅图2,图2按剖面图表示盘12。盘12包括透光的通常为聚碳酸酯的基片40。基片40的第一表面41对着透镜210并且在光入射其上的一侧。在基片40相对的表面上形成第一数据层52。数据层52为在基片40的表面所形成的坑或凹点纹形并且用部分性透光材料的薄膜覆盖。数据层52是用常规的注射成型、凸印或光致聚合物复制等方法形成的。基片40及第一数据层52和常规CD中的基片及数据层相类似,不同之处在于覆盖基片表面上凹点纹形的薄膜是部分透光的而不是全反射的。该薄膜的材料可以用任何常规的半导体材料(如非晶体的Si、SiC、GaSb)、电介质材料(如ZrO、SiN)或金属材料(如Al、Au)构成。如技术上已知那样,可以通过溅镀或蒸发淀积这些材料,并且具有范围为30-3000埃的厚度。在数据层52之上形成一层透光间隔层44。间隔层可以通过旋转涂敷淀积光致聚合物来形成。备择地,间隔层44可以通过层压工艺制造,即把和数据层62一起凹凸的塑料薄片粘贴到基片40上的数据层52的覆盖薄膜上。在与数据层52相接触的表面相对的间隔层44另一个表面上构造第二数据层62。同样数据层62由在间隔层44的表面上形成的凹点纹形组成并且是如铝合金的光反射材料覆盖薄膜。如果数据层62是多数据层盘里的最后一个数据层,铝合金覆盖薄膜最好是全反射的,并且具有范围在100-1000埃的典型厚度。数据层62的凹凸纹型可以通过光致聚合工艺把压模和经紫外线辐射处理过的聚合物相接触来成形。如果间隔层是通过层压形成的,在把薄片粘贴到基片40之前可以事先把数据层62模压到塑料薄片上。数据层52、62上凹凸模式中凹点的深度典型地在1000至2000埃的范围内。最后通过旋转涂敷并随后加以处理在数据层62之上形成一个光聚合物的保护层70。图2中所示的二层CD是一个双数据层盘。基片40的厚度为t1并且是周折射率为n1的透光材料构成的。间隔层44的厚度为t2并且是周折射率为n2的透光材料构成的。在盘12中可能还采用更多的数据层。例如,可以在第一和第二数据层52、62之间形成另外的凹凸纹形和部分性透光薄膜。
借助参考图2和图3可能可理解光存储系统10(图1)的运行。控制器314控制马达16和马达26,马达16旋转盘12而马达26把光头22移动到盘12下方的适当位置上。激励激光器200以从盘12上读数据。光束204由透镜210聚焦以产生几乎限制衍射的光点并且把该聚焦的光点定位在数据层52、62中所需的一层上。反射光束220返回并且由象散透镜232引导到多元检测器234上。由检测器234输出FES、TES和数据信号并且再由放大器236放大它们(图3)。控制器314按常规的伺服控制技术使用FES以便控制聚焦致动器216。从而使得当盘12旋转时透镜210把光点保持在所需的数据层(例如数据层52)上。当需要从数据层62中读数据时,控制器314向聚焦致动器马达216发出信号来移动透镜进而把光点从数据层52移动到数据层62上。当光点位于数据层62上时,来自透镜210的光越过基片40的完整厚度t1和间隔层44厚度t2。
在光盘驱动系统里需要使得聚焦光点的直径尽可能的小并且具有最小的球面象差。因为光穿过基片聚焦,在设计物镜时必须包括基片的折射率和厚度。从而透镜设计成对于具有已知折射率的透光材料的固定厚度具有球面象差校正。图4是对于两个不同光点作为离开光点中心的横向位置函数的聚焦点光强的曲线图,一个光点具有最小的球面象差而另一个光点由于非最佳的基片厚度具有明显的球面象差。图4中的曲线A代表具有最小球面象差的一个光点,曲线A本质上是高斯分布的光强。限制衍射光点的直径定义成最大光强振幅一半处的总宽度,如图4中曲线A上所示。图4中的曲线B代表带有球面象差的一个光点并且表示较低峰值的光强并且存在着侧瓣。在光盘驱动器里,如果透镜不对适当地基片厚度校正,在数据层上的光点将具有球面象差。这是不希望的,因为数据信号、聚焦误差信号和跟踪误差信号全都依赖于具有最大的光分辨率。
带有象差的光点的峰值光强对不带有象差的几乎限制衍射的光点的峰值光强的比称为Strehl比。图5是对于透镜N.A.=0.45两种不同折射率材料,作为厚度偏离透镜设计基片厚度的偏差函数的Strehl比值。实线是折射率为1.57的材料(如聚碳酸酯)的Strehl比而虚线是折射率为1.10的材料的Strehl比。在厚度偏差为零处光线穿过透镜已对球面象差进行过校正的精确距离,所以从理论上Strehl比为1.0。但是,如果光线穿过更多的或更少的材料,光点将具有球面象差。在n=1.57的常规CD系统和数值孔径(N.A.)为0.45的透镜情况下,最小可接收Strehl比约为0.9。其对应的材料厚度偏差约为±0.125mm。对于象图2中所表示的和所说明的双数据层系统,这意味如果间隔层44也是折射率为1.57的材料,则间隔层不能比约0.125mm更厚,不然的话当光点聚焦在数据层62上时光点将具有不可接受的高球面象差。对于具有相同0.9Strehl比要求的N.A.=0.55的透镜,间隔层厚度约为不能大于0.05mm。从而多层光盘驱动系统里的球面象差问题最好是通过把间隔层制成尽可能地薄来解决的。但是,多层光盘驱动系统里存在的一个隔离问题是当光点位于所需的数据层上时来自相邻数据层的层间串扰。这个问题的解决办法是把间隔层制造成尽可能的厚。
在本发明中多数据层光盘驱动系统设计成不把具有最小球面象差的聚焦光点定位在任何数据层上。代之以把该光点最佳定位于离透镜的最近数据层和最远数据层之间的中点上。在象图2中所示的二层CD光盘驱动系统的情况下,光盘驱动器设计成把带有最小球面象差的光点定位在间隔层44的中部。
这样,如图6中所示,带有最小球面象差的聚焦点图示为大约定位在间隔层44的中部(即离数据层52和62都为t2/2的距离)。光线到达该点所穿越的材料总量约为折射率为n1的基片40的t1厚度和折射率为n2的间隔层44的一半厚度(t2/2)。在本最佳实施方式中,透镜210类似于常规单层光盘驱动系统中所采用的透镜,即对1.20mm的聚碳酸酯(n1=1.57)基片厚度校正。但是,在本最佳实施方式里基片40具有的厚度不等于常规的基片厚度,而是比常规厚度少间隔层44厚度的t2/2。在本发明的CD驱动实施方式里,对于N.A.=0.45的透镜,基片40的厚度t1约为1.075mm而间隔层44的厚度t2约为0.250mm。对于N.A.=0.55的透镜,基片40的厚度t1应约为1.15mm而间隔层44的厚度t2应约为0.10mm。间隔层44的材料最好是一种具有和聚碳酸酯的折射率足够类似折射率的聚合物,从而在球面象差校正中该材料仅具有第二量级的效应并且不必作为选择基片厚度t1中的因素。但是,如果间隔层的折射率不同于基片的折射率,要调整基片的厚度t1使得折射率为n1的基片材料的t1和折射率为n2的间隔层材料的t2/2合起来等效于使透镜得到球面象差校正的材料厚度。
间隔层44的厚度t2是根据最小可接收Strehl比选择的而Strehl比又取决于透镜的N.A.以及基片材料的折射率。选择厚度t2使得t2/2对应于球面象差仍是可接受的最大厚度偏差。对于N.A.=0.45的二数据层CD驱动器,t2/2=0.125mm(Strehl比=0.9)或t2=0.250mm。相对于把具有最小球面象差的聚焦点定位在第一数据层上的情况该结果加倍了间隔层厚度。层间串扰效应明显地得到减少而在两个数据层上球面象差量仍是可接受的。
本发明的该实施方式的优点在于,因为透镜保持着对单数据层光盘的常规基片厚度的球面象差校正,该光盘驱动器也可以用常规单数据层盘运行。这样在CD光盘驱动系统的情况下,驱动器是可以运行双数据层盘(基片厚度t1=1.075mm和间隔层厚度t2=0.250mm)的并且它还和现存的单层CD(基片厚度1.20mm)反向兼容。
在本发明的一种备择的实施方式中选择基片及间隔层的厚度以优化多数据层盘的性能并且对于选定的折射率为n1的基片厚度t1和选定的折射率为n2的间隔层厚度t2的透镜是球面象差校正的。在CD的情况下可以为双数据层系统采用常规的1.20mm基片并且可以把间隔层做成0.250mm厚。然后应该使透镜对1.325mm〔1.20+(t2/2=0.125)〕的材料校正(假定N.A.=0.45并且间隔层是用折射率相当接近1.57的材料做成从而其在球面象差校正上的效应可忽略)。
在平面平行基片系统里对目前已知的球面象差进行透镜校正的方法是众所周知的技术。光的波长以及光必须穿过的材料的厚度及折射率用来产生一个代表透镜形状的多项式方程。该方法例如在R.Kingslake所著的Lens Design Fundamentals中(pp.119-122及pp.205-208,Academic Press,1978)得到说明,该方法不是本发明中的一部分。
图7表示借助本发明N.A.=0.55的透镜可达到的增大的数据层间距。例如,在N.A=0.55并且可接受的Strehl比为0.9(在图7上为0.1的1-Strehl比)情况下,具有定位在第一数据层上的最小球面象差点的光盘驱动系统表明间隔层不可以比大约0.065mm更厚。但是,借助本发明,当光盘驱动系统设计成把最小球面象差点定位在间隔层的中部时,间隔层的厚度可以加倍到0.13mm。在该最佳实施方式里采用了0.9的Strehl比。但是,取决于光盘驱动系统的特定参数,例如透镜的N.A.以及基片与间隔层的折射率,可能需要较高的或较低的Strehl比。
图6中所示的多数据层盘示例为整体结构,其外层为基片40和保护层70。在CD系统的情况下,取决于实施方式基片40是厚度为1.20mm或1.20减去t2/2的聚碳酸酯。但是,多数据层盘也可能是通过把两个较薄的单数据盘粘结在一起制造的。在这种类型的结构中保护层70是和基片40相同的第二基片。例如,在CD系统的情况下,两个各带有一个数据层的厚度为0.60mm的基片用透光材料如常规的光聚合物粘结在一起,该透光材料还用作为间隔层。最靠近透镜210的基片上的数据层具有在其凹点纹形上的部分性透光覆盖薄膜,而最远离透镜210的基片上的数据层具有在其凹点纹形上的全光线反射覆盖薄膜。
图8说明本发明的一种备择型的多数据层盘90。盘90包括铝制盘坯91、在盘坯91上形成的离透镜210最远的数据层92、在数据层92上的间隔层93以及在间隔层93上形成的离透镜210最近的数据层94。塑料环95和铝制盘坯91相连接并且绕盘坯91的外圆周延伸。环95支承透明的塑料防尘外壳96。防尘外壳96的厚度典型地为100微米,防尘外壳96扩展超出环95并和环95粘结。在防尘外壳96和数据层94之间形成了一个0.2-2.0mm的空气隙。数据层92、94都是可记录的相变WORM数据层,典型地是由In-Sb-Sn成形。离透镜210最近的第一数据层94为60-120埃厚并且由它的材料是部分性透光的。离透镜210最远的第二数据层92为400-2000埃厚并且从而比数据层94具有增大的反射率。间隔层93是旋转涂敷的并且处理过的光聚合物薄膜,其典型厚度为0.05-0.15mm。如图8中所示带有最小球面象差的聚焦点定位在间隔层93的中部。在本发明的这个实施方式中光线所穿过的以达到数据层92、94的基片是防尘外壳96。从而对透镜210的球面象差校正是因为光线通过防尘外壳96(其折射率为n1)的厚度和通过间隔层93(其折射率为n2)的一半厚度所需要的校正。光线通过空气不产生任何球面象差,从而防尘外壳96和第一数据层94之间的空气隙不必包括到对透镜210的球面象差校正之中。
本发明是利用双层盘说明的。但是,本发明也可以应用到在第一数据层(离透镜最近的一层)和第二或最后一个数据层(离透镜最远的一层)之间装配着附加数据层的情况。例如,在一个八数据层盘中,把间隔层定义为离透镜最近和最远的数据层之间的厚度,驱动器应设计成仍按t1加t2/2(其中t2是最近和最远数据层之间的整体透光材料的厚度)对透镜校正球面象差,并且几乎限制衍射点应定位于离透镜的第四和第五数据层之间。
本发明是相对于CD系统说明的。但是,本发明是全部可应用于任何多数据层光盘的,例如磁光盘、相变盘或烧蚀的一次写多次读(WORM)盘。
尽管已经详细地说明了本发明的最佳实施方式,这一点应是明确的,即在不违背下述权利要求书中所说明的精神和范围的前提下可对本发明进行修改和改进。
权利要求
1.一种光数据存储系统,包括一个激光光源;一个光数据媒体,由部分性透光的第一数据层、光反射的第二数据层和一个透光的间隔层组成,间隔层位于第一和第二数据层之间并且用所述间隔层的厚度隔离第一和第二数据层;一个透镜,位于该激光光源和该媒体的第一数据层之间以把激光光线聚焦成一个光点,该透镜带有球面象差校正从而当聚焦的光点定位在第一和第二数据层之间时该光点具有近似于最小的球面象差。
2.一种光盘驱动系统,包括一个激光光源;一个光盘,包括(a)具有第一表面的透光的基片,该第一表面形成激光光线从其上入射的盘的外表面,(b)在和所述第一表面相对的基片表面上的部分性透光的第一数据层,(c)反射光的第二数据层,以及(d)一个透光的间隔层,其位于第一和第二数据层之间并以所述间隔层的厚度隔离第一和第二数据层;和该盘连接的一个马达,用于转动该盘;位于激光光源和该基片的所述第一表面之间的一个透镜,透镜用于把激光光线聚焦成一个光点,该透镜具有对由基片的总厚度加上间隔层厚度的约二分之一而产生的球面象差的校正;以及和该透镜相连接用于相对于该盘移动该透镜的装置,因而聚焦光点可以从一个数据移动到另一个数据层上;从而当光点定位在第一数据层上时,因为穿越的基片材料及间隔层材料的总厚度比球面象差校正厚度大约少间隔层厚度的一半,光点具有球面象差;并且当光点定位在第二数据层上时,由于穿越的基片材料及间隔层材料的总厚度比球面象差校正厚度大约大间隔层厚度的一半,光点具有球面象差。
3.根据权利要求2的盘驱动系统,其特征在于,该透镜具有对由厚度为t1折射率为n1的基片引起的球面象差的校正,并且该盘基片是用折射率为n1厚度约为t1-t2/2的材料成形的,其中t2是间隔层的厚度。
4.根据权利要求2的盘驱动系统,其特征在于,该盘基片是用折射率为n1厚度约为t1的材料构成的而该间隔层是用折射率为n2厚度约为t2的材料构成的,并且该透镜具有对因t1厚度的基片材料以及t2/2厚度的间隔层材料造成的球面象差的校正。
5.根据权利要求2的盘驱动系统,其特征在于,该透镜具有对因约为1.20mm的聚碳酸酯造成的球面象差的校正,并且该盘基片是由聚碳酸酯构成形,而且基片厚度约为1.20mm减去该间隔层厚度的二分之一。
6.根据权利要求2的盘驱动系统,其特征在于,该透镜具有对因约为0.60mm的聚碳酸酯而造成的球面象差的校正,并且该盘基片是由聚碳酸酯成形的,并且基片厚度约为0.60mm减去该间隔层厚度的二分之一。
7.根据权利要求2的盘驱动系统,其特征在于,该盘基片是用厚度约为1.20mm的聚碳酸酯成形的,并且该透镜具有对因1.20mm的聚碳酸酯加上大约二分之一的该间隔层的厚度而造成的球面象差的校正。
8.根据权利要求2的盘驱动系统,其特征在于,该盘基片是用厚度约为0.60mm的聚碳酸酯成形的,并且该透镜具有对因0.60mm的聚碳酸酯加上大约二分之一的该间隔层的厚度而造成的球面象差的校正。
9.一种可用激光光线可读型的光数据存储盘,该激光光线通过一个透镜发送,该透镜对于对应于具有已知折射率的透光材料的固定厚度的球面象差具有校正,该盘包括透光的基片、部分性透光的第一数据层、光反射的第二数据层以及位于第一和第二数据层之间并且隔离第一和第二数据层的透光的间隔层,透光的基片的厚度加上间隔层厚度的二分之一基本上和具有所述已知折射率透光材料的所述固定厚度相等,该透镜对该固定厚度的球面象差是校正的。
10.根据权利要求9的盘,其特征在于,该盘包括一个盘坯和一个附着在该盘坯上并且绕该盘坯的外圆周延伸的环,并且基片是由该环支承的塑料防尘外壳,该基片由折射率为n1和厚度约为t1的材料形成而该间隔层由折射率为n2和厚度约为t2的材料形成,而且该透镜对由t1厚度的基片材料和t2/2厚度的间隔层材料所造成的球面象差具有校正。
全文摘要
一种多数据光盘驱动系统,在一种实施方式里多数据层盘具有一个基片,基片的厚度约减小了分隔第一层和最后一层数据层的间隔层的厚度的一半。该盘设计成用具有球面象差校正的透镜运行,从而可补偿常规单数据层盘的厚度。这允许光盘驱动器除了可使用多数据层盘之外还可以反向兼容,因此可使用常规的单数据层盘。具有最小球面象差的聚焦光点定位在间隔层的中部而不是定位在第一数据层上。
文档编号G11B7/1378GK1274914SQ9912487
公开日2000年11月29日 申请日期1999年11月22日 优先权日1995年3月13日
发明者米尔顿·拉塞尔·拉塔, 哈尔·杰维斯·罗森, 库尔特·阿伦·鲁宾, 韦德·谭伟春 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1