光扫描装置的制作方法

文档序号:6749374阅读:138来源:国知局
专利名称:光扫描装置的制作方法
技术领域
本发明涉及一种用于用具有第一数值孔径的射线束扫描第一种光记录载体以及用具有第二数值孔径的射线束扫描第二种不同类型的光记录载体的光学装置,该装置包括用于提供具有一个光轴射线束的射线源、用于将所述射线束会聚为被聚焦光束以便于在被扫描的记录载体上构成一个光点的光学系统。
可以被存储在光记录载体上的信息量尤其依赖于由扫描装置在记录载体的信息层上所形成的光点大小。可以通过增加光点的大小来增加信息密度以及所存储的信息量。可以通过增加构成所述光点射线束的数值孔径来减少光点大小。
从欧洲专利申请no.762398中可以了解上述类型的光学装置。处于上述装置光头中的物镜将来自射线源的射线束聚焦在记录载体的光点上。定位在射线源和物镜之间的可调光阑使射线束的数值孔径适应于被扫描记录载体类型。所述光阑是以一种可电子操作的液晶光闸形式所构成。当扫描第一种记录载体时,该光闸仅传送入射射线束的中心部分,当扫描第二种记录载体时,它传送整个射线束,并因此改变入射在记录载体上的射线束的数值孔径。这种光闸的缺点在于由于在其中央和环绕其周围的环形部分中不同的光学性能从而使其影响被传送射线束的波阵面质量。另一个缺点是光闸构成的光学元件增加了扫描装置的制造成本。
本发明的一个目的是提供一种没有上述缺点的扫描装置。
根据本发明,该目的是通过在开始段落中所描述的扫描装置而获得,其特征在于所述光学系统包括在光轴不同位置上的第一固定遮光板和第二固定遮光板,第一和第二遮光板分别确定第一和第二数值孔径。这些固定遮光板不影响由这些遮光板所传送的波阵面品质并且可以容易地与光路上的其它元件相结合,例如,具有被施加到透镜表面上的中心孔径的非透明涂层的形式。当在不同类型的记录载体之间变化时,光头中一个或多个元件的光性能或位置将被改变以便于在记录载体上获得一个合适的光点。这些改变可以包括在物镜轴位置上的改变从而允许光点在光轴位置上的改变、光头中各元件相互距离的改变或波长的改变。这些改变使经过光学元件的射线束的形状在第一和第二形状之间变化。如果将第一和第二遮光板设置在光路中合适的位置上,则当第一遮光板具有第一形状时,它将限制射线束的直径,反之,当第二遮光板具有第二形状时,它将限制所述射线束的直径。如果光头带有两个或多个射线源和光束合成元件以便于将所述射线源的射线束带到共同的光路上,则将第一和第二遮光板设置在公共光路上。
在扫描装置的一个最佳实施例中,第二遮光板被设置在聚焦光束的路径上,并且第二数值孔径小于第一数值孔径。与直觉相反,第二遮光板决定了较小的那个数值孔径但不影响较大的那个数值孔径。
在一个特定的实施例中,光学系统包括具有第一和第二光学元件的物镜系统,其中第一元件比第二元件更远离射线源。该物镜系统适合于聚焦高数值孔径的光束。第二遮光板最好是被设置在第一光学元件上的一个光阑。
通过对本发明的详细描述,本发明的目的、效果以及特性将显而易见,如同在附图中所描述的那样,其中

图1显示了根据本发明的扫描装置;图2显示了在最靠近记录载体的物镜表面上的射线束半径r,该半径作为有关两种情况中的记录载体上的表面高度h的函数,这两种情况对于数值孔径NA和记录载体透明层的厚度d而言都具有不同的值;图3A和3B显示了当扫描第一种和第二种记录载体时射线束的射线;以及图4A和4B显示了在平凸透镜上的遮光板的两个实施例。
图1显示了用于扫描至少两种不同类型光记录载体的装置。该图显示了第一种类型的光记录载体1。该记录载体包括一个透明层2,其中一边上有一个信息层3。通过保护层4使远离透明层的信息层一侧免受周围环境的影响。面向装置的透明层一侧被称为进入面5。通过为信息层提供机械支撑,透明层2可以作为记录载体的基片。另外,该透明层可以以具有单独的保护信息层的功能,而由位于信息层另一侧的层来提供所述机械支撑,例如由保护层4或另一个信息层和与该信息层3相连的透明层来提供。信息可以基本上平行排列在同心或螺旋轨道上的光可检测标记的形式存储在记录载体的信息层3上,这在图中未显示。这些标记可以具有任何光可读形式,例如,凹坑的形式、或不同于其周围环境的反射系数或磁化方向、或是这些形式的组合。
所述扫描装置包括射线源6,例如,能发射会聚射线束7的半导体激光器。例如是一个半透明板的光束分离器8将射线反射在透镜系统的方向上。该透镜系统包括准直镜9、物镜10和平凸透镜11。准直镜9将会聚射线束7改为准直光束12。具有一个光轴13的物镜10将准直光束12转换为入射在透镜11上的会聚光束14。准直镜9和物镜10可以被组合成一个单独的透镜。平凸透镜11将入射光束14变换为聚焦在信息层3上的一个光点16上的会聚光束15。平凸透镜11有一个凸面和一个平面。该平面面对透明层2,并在透镜和透明层2之间形成一个间隙。这个平面可以是稍微凸起的、几乎不会影响光学性能,而且当透镜10和/或11插入到悬挂在进入面5气垫上的滑动器中时,该平面可以为光头提供较好的空气动力性能。尽管在图中所显示的物镜10是作为一个单独的透镜元件,但它还可以包括更多的元件,而且还可以包括在传输或反射过程中的全息操作,或用于连接从加载射线束的波导中输出的射线的光栅。由信息层3反射的会聚光束的发射形成了一条反射光束17,该反射束返回到发射会聚光束14的光路中。物镜10和准直镜9将反射光束17变换为会聚的反射光束18,光束分离器8通过传送朝向检测系统19的反射光束18的至少一部分,从而分离向前的光束和反射光束。检测系统得到射线并将其转换为一个或多个电信号。其中一个信号是信息信号20,其值表示从信息层3上读出的信息。另一个信号是聚焦误差信号21,其值表示光点16和信息层3之间的高度的轴向差。该聚焦误差信号被用做聚焦伺服控制器22的输入信号,聚焦伺服控制器22控制物镜10和/或平凸透镜11的轴向位置,并因而以这种方式控制光点16的轴向位置,即,使其基本与信息层3的平面相符。用于产生聚焦误差信号并包括一个或多个射线感应检测元件并能对这些检测元件的输出信号进行电路处理的检测系统的一部分被称为聚焦误差检测系统。用于定位透镜系统的聚焦伺服系统包括聚焦误差检测系统、聚焦伺服控制器以及用于移动透镜系统的激励器。
透镜11的平面与记录载体1的进入面5之间的距离,即,它们之间的间隙基本上保持为额定值。这个可以通过使用正压气垫结构的加载透镜11来获得,并可以将此设计为将该间隙维持在其额定值。还有可能使用表示该间隙偏离其额定值的实际偏差值的光导出误差信号;通过使用该误差信号来作为激励器伺服环路的输入信号,特定的激励器可以将平凸透镜保持在与透明层距离的预定距离上。由聚焦误差信号21来控制透镜10的激励器以便于将光点16保持在信息层3上。
在另一个实施例中,适合记录载体具有其厚度相对于记录载体而言是一个相对常数的透明层,并且透镜10和11之间的距离是固定的,并且由聚焦误差信号来控制两个透镜组合的轴向位置。
在又一个实施例中,由聚焦误差信号和表示存在于来自记录载体的光束的球面像差的信号来控制这两个物镜10和11的轴向位置。通过适当的设计,可以使由于经过诸如具有指定厚度的层2这样的透明层而导致的球面像差能在物镜10和/或平凸透镜11中得到补偿。最好通过在透镜10和11之间的距离上进行相应的改变而使由于其厚度偏离其额定值而带来的偏差所导致的球面像差得到补偿。可以由表示该球面像差的信号来控制所述距离并由安排在来自记录载体的射线束中的检测器来确定所述距离。
图1还显示了第二种类型的记录载体。该记录载体包括具有比第一种类型的记录载体1的透明层2更厚的透明层26。记录载体25的信息层27可以具有比第一种类型的记录载体的信息层3较低的信息密度。由保护层28来保护位于远离透明层的信息层一侧免受周围环境的影响。当扫描从信息层3改到信息层27时,物镜10的位置被调整为更靠近该信息层,以便于将光点16定位在信息层27上。透明层26的不同厚度导致射线束中的球面像差。当物镜10和平凸透镜11之间的距离与设计距离相比有所改变时,由于改变了放大倍数,平凸透镜会在射线束中引入一定量的球面像差。适当减少所述距离可以补偿由于透明层27的厚度差而导致的球面像差。
还可以通过改变物镜10和平凸透镜11之间的距离来补偿由于透明层27的厚度的较小改变而引入的球面像差。由检测系统19进行的球面像差的测量可以提供表示从记录载体中发出的射线束中的球面像差的电信号。该信号还可以用于作为控制这两个物镜之间距离的伺服系统的输入信号。在物镜的聚焦过程中,应该以上述方式将所述间隙基本上保持在其额定值上。应该注意到,可以在任何用于光记录载体的扫描装置中使用根据透明层的厚度来控制球面像差的方法,并且可以根据改变不同记录载体之间的数值孔径的方法来控制球面像差。
图2显示了作为上述记录载体进入面上平凸透镜11的平面高度h函数的处于面向两种记录载体中的一个记录载体的平凸透镜11的透镜面上的射线束的半径。图中所示的虚线表示具有其厚度为0.1mm的透明层的第一种类型的记录载体,该透明层被具有0.85数值孔径NA的光束所示扫描。图中所示的实线表示具有其厚度为0.6mm的透明层的第一种类型的记录载体,该透明层被具有0.60数值孔径NA的光束所示扫描。对于扫描装置的一个特定实施例,0.1mm厚的透明层其高度是0.1mm左右,而在透明层具有0.6mm厚度的情况中,高度是0.051mm。对于0.85的数值孔径而言,位于平面上的射线束的半径可以从图2的数值减少为0.22mm,而对于0.85的数值孔径,它可以减少为0.29mm。这里,对于NA=0.85的情况中平面上的光束直径小于NA=0.60的情况。
图3A显示了在对应于图2中虚线的第一种类型记录载体的情况中穿过物镜10和平凸透镜11的射线束15的射线30。在NA=0.85的这种情况中,由位于或靠近物镜10的遮光板33来限制数值孔径。通过构成物镜10的支撑器一部分的不透明的环形物33来确定所述遮光板。另外,可以通过具有施加到物镜10的两个面之一的透明开口的不透明涂层来限制该遮光板。
图3B显示了在对应于图2中实线的第二种类型记录载体的情况中射线束15的射线。位于或靠近平面31并带有等于在NA=0.85情况中遮光板平面中的光束直径的遮光板将限制所述射线束的数值孔径。在图中,该遮光板由粗线32来表示。与图3A中的情况相比,为了在信息层27上获得光点,已经调整了透镜10和11的位置,该光点被修正了由于透明层26的较大厚度而导致的球面像差的改变。
图3A和3B显示了当透明层厚度改变时位于平面31上的射线束直径的变化。遮光板32将不会影响NA=0.85时射线束的数值孔径,这是因为在平面上NA=0.85光束的直径小于NA=0.60光束的直径。图3A和3B显示了,当扫描第一种类型的记录载体1时通过第一遮光板33来限制射线束15的数值孔径,而当扫描第二种类型的记录载体25时通过第二遮光板32来限制射线束15的数值孔径。
图4显示了平凸透镜11的两个实施例。在图4A中,透镜被固定在具有圆形孔径36的透镜支撑物35上,圆形孔径36的作用相当于一个靠近平面31的遮光板。图4B中的透镜被固定在具有靠近平面31的相对大孔径的透镜支撑物37上。位于平面31上的具有透明开口39的不透明涂层38作用相当于一个遮光板。开口36和39可以是圆形或可以具有任何其它形状,比如椭圆形以便于得到一个非圆形对称的光点16。
可以清楚的是,可以从作为根据被扫描记录载体的类型来调整的光学元件的位置函数的光束半径图中发现用于特定光头的遮光板的正确位置,所述光束半径图类似于图2中所示的。可以在沿着光轴的一系列位置上做出这些图以便于发现其中用于第一种类型记录载体的光束半径大于用于第二种类型记录载体的光束半径的位置,以及其中用于第二种类型记录载体的光束半径大于用于第一种类型记录载体的光束半径的位置。
权利要求
1.一种光学装置,用于扫描带有具有第一数值孔径的射线束的第一种类型光记录载体和带有具有第二数值孔径的射线束第二种不同类型的记录载体,该装置包括用于提供具有一个光轴射线束的射线源、用于将所述射线束会聚为聚焦光束以便于在被扫描的光记录载体上形成一个光点的光学系统,其特征在于,所述光学系统包括位于光轴不同位置上的第一固定遮光板和第二固定遮光板,第一和第二遮光板分别确定第一和第二数值孔径。
2.如权利要求1所述的光扫描装置,其中将第二遮光板安排在聚焦光束的光路径中,并且第二数值孔径小于第一数值孔径。
3.如权利要求1所述的光扫描装置,其中所述光学系统包括具有第一和第二光元件的物镜系统,所述第一元件与第二元件相比更远离射线源。
4.如权利要求3所述的光扫描装置,其中第二遮光板是形成在第一光元件上的光闸。
全文摘要
一种光扫描装置可以扫描两种不同类型的光记录载体(1;25),它需要具有不同数值孔径的一个扫描束(15)。该装置在沿着由用于这两种类型光盘的射线束所遵循路径的光轴的不同位置上有两个遮光板(33;32)。当扫描第一种记录载体(1)时,第一遮光板(33)限制了射线束的数值孔径。当扫描第二种记录载体(25)时,第二遮光板(33)限制了射线束的数值孔径。
文档编号G11B7/135GK1291328SQ99802970
公开日2001年4月11日 申请日期1999年12月6日 优先权日1998年12月21日
发明者B·H·W·亨德里克斯 申请人:皇家菲利浦电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1