窄带光谱响应的量子阱红外探测器的制作方法

文档序号:6934363阅读:597来源:国知局
专利名称:窄带光谱响应的量子阱红外探测器的制作方法
技术领域
本发明涉及红外探测器,具体是指一种窄带光谱响应的量子阱红外探测器。
本发明的窄带光谱响应的量子阱红外探测器的结构见

图1,包括窄带滤光片和量子阱薄层。窄带滤光片由衬底和在衬底二面交替蒸镀多层低折射率膜层和高折射率膜层组成。膜层厚度为随机涨落的层厚,由计算机产生,产生方法见中国专利01139082.4。衬底材料为常规的红外窗口材料,如硅、锗、硫化锌、硒化锌等。在窄带滤光片的一表面贴附着量子阱薄层,在量子阱薄层上面还制备了一无序型光栅。窄带滤光片的中心波长必需与量子阱红外探测器所要探测的波长一致。量子阱薄层的结构为任意一种利用子带间跃迁导致红外光探测响应的结构,如GaAs/AlGaAs量子阱结构或InGaAs/GaAs结构。
为了对本发明的器件工作过程讨论方便起见,我们以探测器所要探测的波长为15微米,线宽在0.01微米为例进行讨论,见图2。当红外入射光从窄带滤光片处入射,由于滤光片的作用,将波长在15微米,线宽在0.01微米的光注入到量子阱薄层,而其余波段的光全部被反射。入射光进入量子阱薄层后,经无序型光栅散射后又反射回量子阱薄层内,由于无序型光栅的作用,传播方向将偏离量子阱薄层中量子阱生长方向,从而引起红外吸收,产生光电流。而未被吸收的光传播到量子阱薄层与滤光片的界面处,此时入射到滤光片表面的光的入射方向是偏离正入射方向的,滤光片的中心透射波长将发生偏移,如图3所示。对应中心透射波长15微米的入射光,随入射角度的增大透过率迅速下降。由图4可见,当角度增至3度时透过率已下降到1/3以下。入射光在其角度偏离正入射大于3度时,便几乎不再能透过滤光片,而是在量子阱薄层与滤光片界面处形成全反射,返回量子阱薄层被再次吸收,当返回的光再次达到量子阱薄层表面处的无序型光栅时,它将继续被散射到一个偏离正入射角度的传播方向,这一点是不同于周期性光栅的。因为在周期性光栅中,被第一次散射后的光再次返回到光栅处再度散射后,将重新回到正入射方向。而被无序型光栅不断散射的光将不断地折返于量子阱薄层上表面无序型光栅和滤光片与量子阱薄层界面这二个面之间,从而构成入射红外光在量子阱薄层中的完全吸收,大大地提高了量子阱红外探测器的量子效率。
本发明的器件结构优点在于1.能有效地提高量子阱红外探测器的量子效率,特别是长波和甚长波的量子阱红外探测器的量子效率,因为对于长波与甚长波器件,响应波长愈长,则在相同量子阱内掺杂浓度条件下,暗电流愈大,从而工作温度必须愈低,为了降低暗电流和提高工作温度,一个有效的方法是降低量子阱中的掺杂浓度,但这一方法同时大大降低了器件的吸收系数,从而使量子效率大大下降。而采用本专利提出的器件结构,由于红外光被多次吸收,从而器件的量子效率相对量子阱中掺杂浓度的敏感性被有效地抑制,达到了量子效率下降不多条件下实现暗电流大幅度下降的目的,从而达到提高探测率和工作温度的目的。
2.由于器件结构中量子阱探测器是与窄带滤光片集成在一起的,所以该器件将是一种窄带响应的红外探测器,在长波特别是甚长波器件应用中,会大大地降低背景光电流,从而在向焦平面器件发展中有利于与读出电路的耦合,
降低对读出电路的积分电容值过大的要求。
3.由于被散射成较小角度的红外光,也将被限制在量子阱薄层内,所以对器件的光栅制备要求将大大地降低,大部分被散射的光将都会被量子阱层吸收,不同于传统的结构中当被散射角度偏小时光将会离开量子阱薄层从而损失掉。
1.窄带滤光片1的制备根据探测器的探测要求,窄带滤光片以硅为衬底,中心波长为15微米,线宽在0.01微米,其衬底二面的膜系结构采用中国专利01139082.4的方法设计,具体参数见表1。膜系的蒸发采用常规的热蒸发镀膜手段实现。
2.GaAs/AlGaAs量子阱薄层2的制备见图5,采用分子束外延或金属有机汽相外延方法在GaAs衬底4上依次生长铝组份大于0.5的AlxGa1-xAs层201,具厚度大于600纳米,作为器件制备时的牺牲层;掺硅浓度为1×1018cm-3的GaAs下电极层202;交替生长50个周期的Al0.14Ga0.86As势垒层203,其厚度为60纳米和掺硅浓度为1×1017cm-3GaAs势阱层204,其厚度为7纳米;Al0.14Ga0.86As势垒层203,其厚度为60纳米;掺硅浓度为1×1018cm-3的GaAs上电极层205。
3.将窄带滤光片1和GaAs/AlGaAs量子阱薄层2集成为一体将生长好的带GaAs衬底4的量子阱薄层2切割成尺寸在1mm2~100mm2的小片,然后应用传统的剥离方法,将其浸泡在腐蚀液中,腐蚀液通过选择性地腐蚀AlxGa1-xAs层201后便将所生长的量子阱薄层与GaAs衬底4相互分离开,得到了量子阱薄层2。然后将量子阱薄层2漂浮在去离子水的水面上,将窄带滤光片1浸入水中使量子阱薄层2附在窄带滤光片1表面上,并使下电极层202与窄带滤光片1表面相接触,而后自然凉干,这样窄带滤光片1和GaAs/AlGaAs量子阱薄层2集成为一体。
再将窄带滤光片1和GaAs/AlGaAs量子阱薄层2集成体进一步制备成量子阱纤外探测器,先在上电极层205上制备成如图1所示的无序型光栅3,随后腐蚀去部分势垒层203和势阱层204,使下电极层202裸露出来,在裸露的202层和剩余的205层上做欧姆接触型的电极,然后焊上引线,窄带光谱响应的GaAs/AlGaAs量子阱红外探测器制备完毕。
表1窄带滤光片的膜系结构


权利要求
1.一种窄带光谱响应的量子阱红外探测器,包括窄带滤光片(1)和量子阱薄层(2),窄带滤光片由衬底和在衬底二面交替蒸镀多层低折射率膜层和高折射率膜层组成,膜层厚度为随机涨落的层厚,由计算机产生,衬底材料为常规的红外窗口材料,如硅、锗、硫化锌、硒化锌等;其特征在于a.在窄带滤光片(1)的一表面贴附着量子阱薄层(2),在量子阱薄层(2)上面还制备有一无序型光栅(3);b.窄带滤光片的中心波长必需与量子阱红外探测器所要探测的波长一至。
2.根据权利要求1一种窄带光谱响应的量子阱红外探测器,其特征在于所说的量子阱薄层(2)的结构为任意一种利用子带间跃迁导致红外光探测响应的结构,如GaAs/AlGaAs量子阱结构或InGaAs/GaAs结构。
全文摘要
本发明提出了一种特别适合于长波与甚长波响应的高量子效率窄带光谱响应的量子阱红外探测器,包括窄带滤光片,在窄带滤光片的一表面附着厚度为几个微米的量子阱薄层,在量子阱薄层上面还制备有一无序型光栅。其中还公开了各部分的制备过程和相关的工作模式。这类器件结构的优点是将有效地提高器件的量子效率和工作温度,抑制器件的暗电流和背景光电流,进而大大提高器件的性能。
文档编号H01L31/00GK1399351SQ0213672
公开日2003年2月26日 申请日期2002年8月29日 优先权日2002年8月29日
发明者陆卫, 甄红楼, 李宁, 徐向晏, 李志锋, 陈效双 申请人:中国科学院上海技术物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1