电化学边缘和斜面清洁工艺及系统的制作方法

文档序号:6992286阅读:314来源:国知局
专利名称:电化学边缘和斜面清洁工艺及系统的制作方法
技术领域
本发明一般性地涉及半导体处理技术,并且更具体地说涉及从工件边缘和/或斜面除去导电层并且使这些区域不含多余的杂质的系统及工艺。
背景技术
在半导体工业中,许多工艺可以被用来在晶片上沉积并除去导电层。沉积技术包括例如电化学沉积(ECD)和电化学机械沉积(ECMD)的工艺。在这两种工艺中,诸如铜的导体被从电解质中沉积到半导体晶片或工件上,电解质与晶片的表面和另一个电极接触。材料去除技术包括化学蚀刻(CE)、电化学蚀刻(ECE)、电化学机械蚀刻(ECME)和化学机械抛光(CMP),这些技术被用来从工件表面上除去多余的额外材料。
使用术语“电化学机械处理(ECMPR)”来包括电化学机械沉积(ECMD)工艺和电化学机械蚀刻(ECME),它也被称作电化学机械抛光(ECMP)。应当指出通常ECMD和ECME都被称作电化学机械处理(ECMPR),因为两者在工件的表面上都涉及电化学过程和机械行为。
在ECMPR方法的一个方面中,当工件表面和工件表面影响装置(WSID)之间存在物理接触或者紧密接近和相对运动时,在至少一部分电处理处理期间使用例如掩模、衬垫(pad)或清扫器(sweeper)的WSID。在标题为“Method and Apparatus For Electro ChemicalMechanical Deposition”的美国专利第6,176,952号和2001年12月18日提交的标题为“Plating Method and Apparatus that Creates aDifferential Between Additive Disposed on a Top Surface and a CavitySurface of a Workpiece Using an External Influence”的美国申请第09/740,701号中可以发现对许多沉积和蚀刻方法以及装置的描述,包括平面沉积和平面蚀刻方法,即ECMPR方法,这两篇专利均由本发明的受让人共同拥有。
不管所用的沉积或去除工艺如何,通常工件在处理后被转移至某种清洁和干燥台上。在清洁步骤中,从工件中清洗掉处理产生的许多残留物,随后通过旋转,并且如果需要的话通过在其表面上吹氮气来干燥工件。
在一种设计中,进行常规镀敷或去除处理或ECMPR的处理室,以及清洗室可以被垂直堆叠在垂直处理室布置中。在这种布置中,处理在下室中进行,并且清洁和干燥可以在上室中实施,隔开上室和下室,以至于在每个室中使用的化学试剂不会彼此混合。1999年12月17日提交的标题为“Vertically Configured Chamber Used for MultipleProcesses”的共同待审的美国申请第09/466,014号中公开了这种垂直室的一种类型,该专利由本发明的受让人共同拥有。
通常,典型地处理顺序是首先在工件上进行沉积或镀敷导电材料,然后从工件的前表面除去一些先前沉积的导电材料,例如不需要的过多导电材料。
铜是用于集成电路(IC)互连和封装应用的优选导电材料。ECD和ECMD工艺都可以沉积铜。因此,它可以用作一个实施例。
当在晶片的前表面上镀铜时,除了有ICs的区域,它还会沉积到没有ICs或电路的晶片边缘和侧面,即斜面上。在某些情况中,边缘和斜面被保护而不接触镀液,因此那里不会镀上铜。但是,在边缘区域和斜面上仍会存在铜的籽层。无论来源是什么,这种残留的铜,即边缘铜会从晶片的侧面和边缘处迁移到邻近的有源区域,尤其是在退火步骤期间。此外,源于晶片边缘的铜颗粒可能污染晶片传输系统,以及其它的处理设备,例如退火系统等,并且接下去会污染其它的晶片。与晶片边缘粘附不好的铜片在CMP期间也会因变松并且落入存在电路的表面上而引起问题。因此,在每次镀铜步骤后,从晶片的边缘和斜面上除去铜是重要的。
美国专利第6,309,981号描述了一种从半导体晶片边缘和斜面区除去金属的方法。指定给本发明受让人的美国临时申请第60/276,103号描述了在垂直室系统的上部清洗室中除去边缘铜的方法及装置,垂直室系统还包括下部处理室。
在上面两篇文献中,化学去除途径使用具有氧化剂的攻击性蚀刻溶液,例如硫酸和过氧化氢混合物,或者强氧化性酸,例如硝酸。设计这些攻击性蚀刻溶液,使氧化剂化学氧化铜,并且氧化的铜溶解在酸性溶液中。为了能够获得高的处理生产量,攻击性蚀刻溶液被配制成能实现高的蚀刻速率,例如对于铜来说大于300~400/sec,优选地大于1000/sec。这对应于高于20000/min的蚀刻速率。尽管攻击性蚀刻溶液及其使用系统目前仍在使用,但是出现了一些与其使用相关的问题。
过氧化氢之类的强氧化剂并不稳定,因此,混合、运输和储备这种攻击性边缘铜去除蚀刻剂存在挑战。举例来说,包含过氧化氢的溶液需要在可通气的容器中装运,在这些容器中由于过氧化氢的分解不允许增加压力。因为氧化剂的分解,这些蚀刻溶液还具有有限的使用寿命。试图从工件的前面边缘除去材料,并且维持攻击性蚀刻溶液与工件除边缘部分的前面部分分开也是一个挑战。如前面所述,设计攻击性蚀刻溶液以非常高的速率蚀刻铜。因此,任何无意中落到晶片表面其它部分上的液滴将会蚀刻这些区域并且引起氧化和IC’s的可能失效。甚至攻击性蚀刻溶液的蒸汽也会引起部分铜表面的氧化和变色,尤其是在与除去材料的边缘相邻的地方。在边缘铜去除工艺之后,这些氧化的区域典型地需要使用具有非常低化学蚀刻速率的不同酸溶液来清洗。这就需要储备并向晶片表面上输送另一种溶液化学,因此增加了成本。具体地说,对于如图5所示的垂直室结构,使用攻击性蚀刻溶液还有另一种考虑。在这些系统中,上室和下室通过档板或者其它的阻挡方式而良好隔离。但是,如果发生任何偶然的泄漏并且边缘铜去除溶液的液滴进入下室中,它会与电处理溶液混合并引起问题。
美国专利第6,056,869号描述了一种从半导体晶片的侧面边缘和背面中除去金属镀层的装置,它用于使用特定装置设计的特定电化学蚀刻方法的化学机械抛光。在该专利中,蚀刻溶液输送到晶片的整个背面,并且它被用来从边缘和背面中电化学除去金属镀层,而晶片的上面通过惰性的流体罩保护,不受蚀刻剂的腐蚀。
因此,半导体工业中需要一种允许更高效的处理,包括从晶片前面除去边缘铜,以及边缘铜去除作为其它清洁工艺一部分的系统和工艺。

发明内容
本发明的一个目的是提供一种除去工件中存在的边缘导体的方法及设备。
本发明的另一个目的是提供一种使用向工件边缘提供的温和蚀刻溶液定向流而除去边缘导体的方法及设备。
本发明的另一个目的是通过使电流流过该溶液并且对晶片边缘导体上选择性地输送该溶液而增加非常低蚀刻速率的溶液的蚀刻能力。
本发明的另一个目的是提供一种允许用同一种温和蚀刻溶液来除去边缘导体并且还清洁工件前表面的系统。
本发明的另一个目的是提供一种允许用同一种温和蚀刻溶液在工件前表面上沉积导体并且也能除去边缘导体的系统。
本发明的再另一个目的是提供一种允许在用于工件沉积或去除处理的同一处理室中实行边缘导体去除、工件前表面清洁,或者两者的系统。
通过提供一种边缘清洁系统和方法可以由本发明来实现本发明的上述目的以及其它目的,或者单独实现或者组合实现,其中,温和蚀刻溶液的定向流被提供到旋转工件的边缘区域,包括前表面边缘和斜面,同时维持工件与定向流之间的电势差。
一方面,本发明提供了一种边缘清洁系统,它被安置在用于工件沉积或去除处理的同一处理室中。
另一方面,用于边缘去除的温和蚀刻溶液还被用来清洁晶片的前表面,或者与边缘去除处理同时进行,或者顺序进行。


下面将参照附图,并通过本发明非限制性的示例性实施方案来更详细地描述本发明的上述和其它目的、特征,以及优点,其中在多个图中,类似的参考数字表示本发明相似的部分图1表示根据本发明实施边缘去除的晶片。
图2表示根据本发明实施边缘去除的晶片的横截面。
图3表示根据本发明实施边缘去除的晶片表面部分更详细的横截面。
图4表示根据本发明实施边缘去除的晶片边缘部分更详细的横截面。
图5表示根据本发明实施边缘去除的垂直室。
图6和7更详细地表示本发明的边缘去除设备。
图8表示根据本发明已经从中除去了铜的晶片的边缘部分。
图9更详细地表示根据图6和7中所述本发明实施方案的边缘去除。
图10A和10B表示能用于ECMPR和根据本发明的边缘去除工艺的设备。
图11更详细地表示了根据本发明另一个实施方案的边缘去除。
图12表示能用于工件清洁和根据本发明的边缘去除工艺的装置。
图13A~13B表示包括本发明边缘斜面导体去除装置(EBCR装置)的ECMPR(电化学机械处理)系统。
图14表示在工件表面影响装置中放置的EBCR装置。
图15A表示在边缘斜面导体去除处理期间,位于EBCR装置开口处的晶片边缘区域。
图15B表示在边缘斜面导体去除处理期间,位于EBCR装置开口处上方的晶片边缘区域。
图16A~16C表示边缘斜面导体去除处理的各个阶段。
图17是表示EBCR处理电压随时间的变化图。
图18表示晶片边缘远离EBCR装置时实施的可选EBCR处理。
图19A~19B表示具有EBCR装置的电化学沉积系统。
图20表示包括蚀刻电极的EBCR系统。
图21A~21B表示EBCR装置的不同实施方案。
图22A~22B表示具有EBCR装置的EBCR系统。
图23A~23B表示具有电化学沉积和EBCR部分的系统。
图24表示可以在电镀或电蚀刻系统中用于EBCR处理的电源转换系统。
具体实施例方式
本发明提供了上述关心问题的解决方案。本发明的途径,如下文所述,有利地降低了边缘铜的除去时间,因此增加了产量,而不会有使用甚至更攻击性蚀刻溶液时的相关问题。该技术有能力使用不含氧化剂的温和蚀刻溶液,因此没有蚀刻剂稳定性的问题。可以除去工件前面边缘上的导体,而不会有工件其它前面部分被蚀刻或者受蚀刻剂液滴影响的问题,因为对于铜是实施例导体的情况,温和蚀刻溶液具有低于100/sec,优选地低于50/sec的非常低的化学蚀刻速率。与攻击性蚀刻溶液高于约20000/min的蚀刻速度相反,这些速率相应于低于约3000/min的蚀刻速率范围。这是因为本发明中使用的温和蚀刻溶液不是强氧化剂,或者不包含明显量的强氧化剂。示例性的温和蚀刻溶液是5~10%(重量比)硫酸水溶液。如下文中所述,甚至可以使用典型的镀铜溶液作为本发明的温和蚀刻溶液。本发明中还可以使用具有降低量氧化剂的攻击性蚀刻溶液配方。示例性温和蚀刻溶液的典型组成包含3~10%(重量比)的过氧化氢。通过使用低于约1%的过氧化氢浓度可以降低该溶液的化学蚀刻速率。在该溶液中优选的是使用化学蚀刻速率(未施加电压)低于50/sec的蚀刻溶液。
本发明温和蚀刻溶液的蚀刻速率仅在对铜施加电压使之氧化时才会增加。一旦铜表面通过电化学处理而被氧化时,它可以被温和蚀刻溶液除去。在施加电压的存在下,温和蚀刻溶液的蚀刻速率可以高于500/sec,优选地高于1000/sec。对于这种蚀刻速率,蚀刻电流密度高于100mA/cm2。与镀敷电解质相容的溶液可以被用作温和蚀刻溶液,以至于边缘铜去除溶液可能偶然地泄漏入镀敷电解质对于垂直室工艺模块并不是重要的问题。举例来说,使用5~15%重量的硫酸溶液是非常有吸引力的,因为该溶液与常用的包含硫酸和硫酸铜的镀铜电解质是化学相容的。
应当指出本发明可以在任何边缘铜去除系统或室中使用。此处,仅示例性地给出了垂直室结构和ECMD的使用。温和蚀刻溶液不会引起与实施边缘铜去除工艺的边缘区域相邻的铜表面的氧化。因此,可以完全消除酸洗步骤。即使使用该步骤时,该工艺步骤可以使用在边缘去除步骤中使用的相同温和蚀刻溶液,只是没有施加电压。这意味着进一步的节约,因为它消除了第二溶液的储备和对晶片表面的输送。在边缘铜去除步骤在结合镀铜工艺的系统中实施的情况中,可以使用镀敷电解质作为边缘铜去除溶液。这更进一步地降低了成本。
当在本发明工艺中使用温和蚀刻溶液时,蚀刻溶液液滴可能无意地落到晶片上打算除去铜的边缘区域以外的区域上。在这种情况中,这将不会带来问题,因为液滴不会物理接触向溶液施加阴极电压的电极。在没有蚀刻电流通过蚀刻溶液和铜时,液滴的蚀刻仅是化学蚀刻,如上所述,这种蚀刻是极微小的。
图1是电镀工件100,例如半导体晶片的顶平面视图。如图2中侧面视图所示,电镀晶片100包含具有顶面103的顶层102和具有上表面105a及下表面105b的底层104。顶层102在底层104的上表面105a上形成。底层104上表面105a的顶面边缘部分106、底层的侧表面108以及底层的下表面边缘部分107定义了围绕底层104周围的边缘区域101。在该实施方案中,镀敷晶片100的顶层102由例如铜的导电材料层组成,并且底层104包含半导体衬底,例如硅衬底,在衬底上可以具有已经制造好的器件、电路和互连结构。
图3是如图2所示晶片100接近顶面区域109的部分放大横截面图,它包含在绝缘区114中形成的通路(via)和沟槽特征110和112,绝缘区事先在晶片表面上形成。如图3所示,电镀晶片100的表面区109可以包含多个通路、沟槽和例如双镶嵌特征的其它特征。特征110、112和特征间绝缘体的表面典型地与扩散阻挡/胶粘层116和籽层118,即对于铜沉积的情况是铜籽层,排成一行。在大多数情况下,阻挡层116和/或籽层118延伸到顶面边缘部分106上,并且有时候延伸到晶片的侧面108上。实际上,这些层的一个或两个表面可以缠绕并且覆盖下表面边缘部分107,从而覆盖边缘区域101。因为在电镀期间,铜仅沉积在由阻挡层或铜籽层或者阻挡层/籽层复合层覆盖的导电区域上,所以反过来,如果边缘区域101被暴露于镀敷电解质,这会使铜沉积在边缘区域101上。电镀的铜层102填充通路110和沟槽112并且在衬底104上形成铜层102。
如上所述,铜层102还可以延伸到边缘区域101上,从而形成如图4所示的边缘铜120。应当指出阻挡/胶粘层没有表示在图4中,而且边缘铜120可能是在边缘区域101上具有铜籽层、并且当边缘区域101在电镀期间暴露于镀敷电解质时铜镀该区域的结果。如果在镀敷工艺期间,使用公知的密封方法保护边缘区域不与电镀电解质接触,那么可选地边缘铜120自身就是覆盖边缘区域101的籽层。边缘铜120可以围绕着晶片100的整个或部分外围来形成。如在图4中例示,边缘铜120可以具有在边缘区域101上形成的上面部分122、侧面部分124和下面部分126。通过在本发明工艺中施加铜蚀刻溶液,可以从边缘区域101上除去边缘铜部分122~126。尽管在该实施方案中使用上面、侧面和下面部分来举例说明边缘铜120,但是应当理解这是出于举例说明问题的目的,不需要的铜可以只具有上面部分或者只具有上面和侧面部分等。
应当指出在镀敷步骤期间甚至在铜没有沉积到图4的顶面边缘部分106、侧表面108和下表面边缘部分105上的情况中,那些区域中存在的铜籽层都可以存在并且典型地是不可取的。另外,镀敷步骤后实施的常规CMP步骤可以除去顶面边缘部分106上的任何铜,但是并不能有效地从侧表面108和下表面边缘部分107中除去铜。
铜层102可以使用电镀工艺和图5中所示的系统200沉积到衬底104上。系统200可以是包含下面部分202和上面部分204的垂直室系统。1999年12月17日提交的标题为“Vertically ConfiguredChamber Used for Multiple Processes”的共同待审的美国申请第09/466,014号中公开了这种垂直室系统的一种类型,该专利由本发明的受让人共同拥有。尽管本发明使用垂直室系统来描述,但是它是出于举例说明本发明的目的。可以使用其它的系统来使用本发明的实施方案,例如具有不相邻的清洁和工艺室,以及在室中实施本发明进一步描述的其它处理的系统。因此,根据该实施方案,边缘铜去除处理在上室中实施。因此,当下室包含某种处理部分,例如ECMPR、镀敷或材料去除系统时,上面部分将包含清洁和边缘铜去除以及干燥部分。如同本发明进一步所述,上面和下面部分具有在一个具体实施方案中作为保护挡板描述的可移动阻挡层,它阻止上室工艺中使用的各种材料和溶液到达下室中。
在本发明过程的一个实施方案中,工艺首先在下面部分202中的工件前表面上进行,并且在后面的阶段中,在上面部分204中实施清洗清洁。在清洁前或后,或者与清洁同时,在上面部分204中实施边缘铜去除过程,这将在下面更详细地描述。在可选的实施方案中,当下面部分如此装备时,边缘铜去除处理还可以在下面部分中实施,这也将在下面来描述。如果需要,边缘铜去除处理之后可以进行第二次清洁和干燥过程。可选地,跳过初始清洁步骤,从而增加产量。在此情况中,边缘铜去除处理一完成就进行清洁并干燥。
如图5所示,当在下面部分202中实施沉积过程时,晶片支架206支持着晶片100。晶片支架优选地可以包含圆形卡盘207,晶片100装在卡盘上面、第一下表面105(参见图2),以及固定部分。保护挡板208借助连接轴/辊210被垂直定位,使得使用轴211,晶片支架206可以降低进入下面部分202。轴212被进一步适当地左右移动并且绕着轴211的垂直轴旋转。在清洁、边缘铜去除和干燥期间,晶片支架206被垂直升入上面部分204中,并且通过沿箭头214的方向移动挡板而关闭挡板208。
在ECMPR期间,如上所述,晶片100受作用(也参见图3)。举例来说,可以使用ECMD工艺来在特征上面形成通常平坦的铜层。ECMPR设备215可以包含具有WSID217,例如带有粗糙面220的衬垫的晶片表面影响装置(WSID)组件216,以及浸在溶液中的电极218,如果使用ECMD或者ECME,溶液可以是电解质溶液,如果只实施ECME,溶液可以是蚀刻溶液,如果使用其它的沉积或去除方法,溶液可以是其它的溶液。
在ECMD工艺中使用的电解质溶液包含被沉积的金属,例如铜的离子,并且通过流过WSID217而接触镀敷电极(没有显示)和晶片100。示例性的铜镀液可以是工业常用的硫酸铜、硫酸溶液,并且它还可以包含诸如促进剂、抑制剂、氯化物的添加剂,以及在某些情况中可以包含均匀剂(leveler)。在电处理期间,晶片100的顶面103被紧密接近WSID217,它可以轻微地与WSID217分开,或者优选地与之接触,同时在镀敷电极和晶片表面之间施加电势差。
如图6和7所示,在系统200的下面部分202中完成处理之后,使用轴212升起晶片支架206。然后,挡板208被从它们的垂直位置移动到水平位置,从而将下面部分202与上面部分204分开。一旦挡板208处于关闭状态,实施清洁。在清洗清洁期间,支架206可以向挡板208降低。
在一个实施方案中,通过位于上面部分的侧壁226和/或挡板208上的喷嘴224,提供如箭头222表示的清洁溶液流。使用出口228,沿着侧壁226从204部分排出使用后的清洁溶液,如图6中示意所示。由于存在处理关闭位置的挡板,该溶液不会与下面部分202中的电解质混合。在清洁步骤期间,旋转晶片100并且向晶片100上施加清洁溶液。晶片100可以通过高速旋转晶片来旋转干燥。另外,清洁且干燥的空气,或者像氮气的惰性气体可以吹到晶片上,帮助它干燥。
在清洁并干燥过程之后,使用温和蚀刻剂流在同一个上室204中实施边缘铜去除处理,这将在下文中描述。可选地,在下室202中完成了工件处理之后,通过轴212上移晶片,使得晶片表面不接触下室中的溶液。但是,晶片仍保留在下室202中。晶片的高速旋转(典型地在200~1000rpm)从晶片的表面上除去过量的溶液,例如电解质,并且干燥表面。然后,晶片被上升到上室204中,用于边缘铜去除处理。在边缘铜去除之后,实施清洁及干燥步骤。
仍另一个可选的过程顺序涉及在镀敷步骤后在上室204中清洗晶片表面。然后,实施边缘铜去除过程而不进行旋转干燥步骤。边缘铜去除过程之后,进行清洗和干燥步骤。这些可选的工艺顺序目的是降低处理时间并且增加产量。
参照图6和7,在边缘铜去除期间,箭头230表示的温和蚀刻溶液流被应用到边缘铜120上,而晶片100在大约20至1000rpm,优选地在50至500rpm下旋转。此外,更详细地如图9所示,在溶液流和工件之间产生电势差,用(+)和(-)表示,这就允许温和蚀刻溶液在工件的边缘和斜面区域实施金属去除,所需时间远小于不提供电势差的情况。电势被施加在包含铜膜的晶片表面和与温和蚀刻溶液物理接触的蚀刻电极之间。通过许多方法,包括通过在晶片旋转时滑到晶片表面上的静态接触,可以对晶片表面进行电接触。蚀刻电极可以由任何在与之接触的温和蚀刻溶液中稳定的导电材料制成。铂涂敷的金属和钛都可以作为蚀刻电极材料。
如前面所指出,温和蚀刻溶液意指在不提供电势差时仅提供极微小蚀刻的溶液。这种温和蚀刻溶液的蚀刻速率可以低于100/sec,优选地低于50/sec。因此,这些溶液不能用于标准的边缘铜蚀刻应用。为了使用这种温和蚀刻溶液除去例如2000的边缘铜层,需要40秒以上的处理时间。为了除去例如1微米厚的厚层,处理时间将会更长。可选地,当在本发明中,在施加电压的存在下使用这种溶液时,因为蚀刻速率可以高达1000/sec,所以可以实现短得多的处理时间,蚀刻速率取决于施加的电压、溶液的温度和溶液精确的化学组成。如果在处理期间,一些温和蚀刻溶液滴落到远离边缘的晶片表面上,它仅在零电压(化学)蚀刻速度的基础上蚀刻少量的材料。参照图7,温和蚀刻溶液以通过至少一个喷嘴232来调节的液流形式使用,喷嘴优选地安装在挡板208上,或者位于晶片100的相对位置,使得喷嘴232以下面的方式引导温和蚀刻溶液流流向晶片100溶液流具有被导向远离晶片100中央的水平成分,因此帮助保持溶液远离晶片的中央部分,而只位于边缘铜120上。
通过与加料泵(未显示)相连的加料管234,将温和蚀刻溶液加到喷嘴232中。喷嘴232引导溶液作为严格控制的液流流向晶片的边缘或周围。对于不同的时间段,可以施加不同量的蚀刻溶液,对于大约5至10秒钟,优选地其量在每秒1至10毫升的范围内。由于旋转晶片产生的离心力和溶液的表面张力,溶液以某个角度到达晶片的边缘,并且被向外引导到边缘铜120上面部分122上的溶液流流过边缘铜120的124和126部分,并且覆盖了它们(参见图4)。温和蚀刻溶液侵袭边缘铜120的角度也可以变化,这就允许蚀刻区域,即边缘区域106变窄或变宽。边缘区106的宽度可以通过横向或垂直移动晶片和/或喷嘴来改变。如果喷嘴保持一定的角度,通过上下移动晶片,或者横向移动晶片可以使蚀刻区域变窄或变宽。相似地,如果晶片保持相同的侧面位置和相同的仰角(但是旋转),通过改变喷嘴相对于晶片的角度可以使蚀刻区域变窄或变宽。只要上面给定的过程以所述的方式进行,喷嘴可以位于壁上或者其它的地方,并且这都在本发明的范围内。在可选的实施方案中,如图5所示,当下室如此装备时,在下室202中可以实施相同的电化学去除过程,这将在下面举例说明。
因此,如图8所示,在施加电势差下,温和蚀刻溶液从顶面边缘部分106、侧面108和边缘部分107中蚀刻并除去边缘铜部分122~126,从而露出边缘区101。参照图8,本发明的去除过程在边缘区101附近留下了铜的端壁250。在蚀刻过程之后,晶片被清洁并干燥。
因此,根据本发明的原理,使用温和蚀刻溶液电化学除去边缘铜。与化学去除或蚀刻过程相比,电化学除去边缘铜更快。电化学边缘铜去除的另一个优点是该过程使用温和蚀刻溶液、标准的边缘铜去除溶液,以及包含氧化剂的标准边缘铜去除溶液的稀释液。优选的方法是使用温和蚀刻溶液。
本发明的特有特征是它能够使用镀液作为边缘铜去除的温和蚀刻溶液。为此,可以使用任何种类的镀液。在该实施方案中,用于边缘铜去除的示例性温和蚀刻溶液可以是包含10~200gm/l硫酸和15~50gm/l Cu的铜镀液。该溶液还可以包含至少一种常用的镀敷添加剂,包括氯化物、促进剂、抑制剂和均匀剂。如果在图5系统的上室中实施边缘铜去除,该溶液偶然泄漏入下室使用的镀液中将不会影响镀液的质量,因为它们都是相同的溶液。
图9更详细地表示边缘去除系统和过程。不同组件的编号与图6和7中相同。温和蚀刻溶液230接触边缘铜120。至少一种接触元件286被连接到电源282的正极端,并且它可以接触铜层102上的任何部位。接触元件286可以由导电刷子或导线制成。电源282的负极端与蚀刻电极290连接,该电极与温和蚀刻溶液物理接触。处理期间,从电源282施加电压,电流通过黑箭头I指示的电路。应当指出温和蚀刻溶液284以如箭头所示的良好调节的液流形式流动,并且在蚀刻溶液流过的电路中用作导体。因此,液流的连续是非常重要的。否则蚀刻不会以增加的速率发生。喷嘴232可以是导电的喷嘴,通过溶液管道284接收溶液230。在此情况下,喷嘴可以是蚀刻电极并且电源282的负极端可以直接连接到喷嘴体上。可选地,如图9所示,喷嘴232可以由绝缘材料制成。在这种情况中,与溶液230接触的蚀刻电极290被连接到电源282的负极端上。在另一种方式中,由于蚀刻电极上的负电压,在多次边缘铜去除程序之后,在蚀刻电极的表面上可能发生铜的积聚。因此,它们不得不周期性地清洁,从而除去积聚在上面的铜沉积物。这种清洁本质上可以是化学或电化学清洁。举例来说,喷嘴232可以安置在挡板上或者室的侧壁上。电源可以是在垂直室系统中用来电沉积的电源,或者是仅用于边缘铜去除工艺的电源。但是,如果使用垂直室系统的电源,对于两个工艺,电源可以以共享的方式来得到,使得当电源不用于镀敷时,它可以被用于边缘铜去除过程。
在电化学边缘铜去除期间,图9中箭头表示的温和蚀刻溶液230被提供到晶片100的边缘铜上,同时晶片100在大约20至1000rpm,优选地在50至500rpm下旋转。温和蚀刻溶液通过喷嘴232以良好调节且连续的液流形式来提供。优选地,温和蚀刻溶液的液流具有0.5毫米至2毫米,优选地1毫米的直径。一旦电源施加到接触元件和蚀刻电极或喷嘴上,边缘铜120就被电化学除去。如前面所述,在去除期间,由于去除溶液的表面张力以及晶片的高速旋转,溶液缠绕着边缘铜并且均匀地蚀刻边缘铜,这就提供了图8中所示的晶片100的边缘区101。此时,应该最优化晶片的转速,从而提供图8中所示的边缘外形。如果晶片的转速太高,那么溶液将不会缠绕着边缘,结果边缘去除是不成功的。另一方面,如果转速太低,溶液将向晶片的中央伸展得太多,从而潜在地导致与边缘区101相邻的铜层变薄,这是不想要的情况。
如前面所示,温和蚀刻溶液的使用以及过程的电化学本质提供了几个优于先前边缘铜去除过程的优点。除了上述的利益外,与先有技术攻击性蚀刻溶液相反,在温和蚀刻溶液偶然溅落到铜层上期间,温和蚀刻溶液施加的伤害是非常不明显的。可以理解溅落期间,电化学过程电成分的不连续性简单地使溶液不具有增加的蚀刻能力。该过程的另一个优点是去除过程可以以电压控制的方式,或者电流控制方式来实施。这两种技术使操作者能够监控去除过程并且在检测到终点时,也就是说,当除去了边缘铜时,使之停止。举例来说,如果选择电压控制,去除过程使用的电流急剧下降可以揭示边缘铜去除的终点并且就此停止该过程。可选地,如果选择电流控制,该过程使用的电压急剧下降表明了边缘铜去除的终点。
在该实施方案中,为了提供更好的溶液缠绕,喷嘴可以安置在晶片100高度之上并且略微斜向边缘铜120。
因为边缘斜面去除使用的溶液是特定环境中的温和溶液,所以边缘斜面去除可以在进行沉积的同一处理室中进行,从而从工件的前表面上除去材料。图10A~10B表示在图5所示的系统200的下面部分202中实施电化学边缘铜去除的可选实施方案。如前面所述,ECMPR设备215包含具有粗糙面220的WSID、浸在处理溶液219中的电极218。处理溶液219被保留在放有WSID的空腔221中。如上面所述,在ECMPR期间,晶片表面被流过WSID217的处理溶液湿润,同时在待处理并且临近WSID217的晶片100的表面以及电极218之间建立电势。在该实施方案中,处理溶液219是举例来说可以用于镀敷过程和随后电化学边缘铜去除过程的处理溶液,但是应当理解也可以实施蚀刻过程来代替沉积过程。对于这两个过程,处理溶液219从处理溶液供应罐(未显示)中输送。在处理期间,通过与WSID217相邻放置的接触件223,可以建立与晶片表面的电接触。在晶片相对WSID移动时,接触件可移动地接触晶片的暴露表面。接触件223典型地是导电刷子,举例来说例如在2001年9月12日提交的标题为“Methodand System to Provide Electrical Contacts for ElectrotreatingProcesses”的美国专利临时申请中描述的导电刷子。
如图10A中所示,在该实施方案中,ECMPR设备配备有可以是喷嘴的电化学边缘铜去除装置290。喷嘴与上述同一个处理溶液供应罐相连,从而与电极218电接触。这种与系统200的电极218的电连接在实施电化学边缘去除过程时消除了对导电喷嘴,或者包含特定蚀刻电极的喷嘴的需要,它们都需要连接到系统200的电源292的负极端上。作为替代,用来镀敷(或去除)的电极218也可以被用作边缘铜去除过程的蚀刻电极。当然,使用这种导电喷嘴,或者包含特定蚀刻电极的喷嘴都在本发明的范围内。
在电化学边缘铜去除过程期间,使用已经电学连接到ECMPR设备215接触件223上的接触元件,可以建立与晶片表面的所需正电接触。在这种情况中,降低空腔221内处理溶液219的液位,以至于通过空腔内部的溶液219而从溶液219到晶片100前表面间电路径并不存在,因而确保了存在的从溶液219到晶片100的导电路径是唯一通过边缘铜去除装置290的路径。可选地,接触件293可以被隔开,并且通过开关(未显示)来实现它与电源292的电连接。在可选地配置下,参照图10A和10B,接触元件293可以是位于喷嘴290附近的导电刷子。刷子293和喷嘴290都可以放置在WSID周围的适当位置上,以至于在进行电镀(去除)期间,它们不会与晶片物理接触。刷子293具有比接触件更长的线。对于边缘铜去除过程,当晶片被升高到WSID上方并且在喷嘴和刷子293所在区域移动时,这种更长的线能够建立与晶片表面的接触。在这种边缘铜去除过程期间,只有存在的从溶液219到晶片100的路径通过边缘铜去除装置290。
如图10B所示,当在先前的ECMPR过程期间镀了铜的晶片移动到边缘铜去除装置290附近时,刷子293接触其表面。按照上面所述的方式,在边缘铜上施加温和蚀刻溶液219。在铜沉积(去除)过程之后,最好从WSID和镀液中移开晶片并且使之旋转,从而从其表面上除去过量的溶液。然后,晶片被移动到新的位置来实施边缘铜去除步骤。使用镀液作为边缘铜去除溶液是非常吸引人的,因为它不需要储备并输送用于多个目的(镀敷或边缘铜去除)的多种溶液。
如图11所示,在另一个实施方案中,边缘铜去除设备300可以包含具有上臂部分302和下臂部分304的矩形“U”型体,它们由基底部分306彼此连接。溶液入口部分307与上和下臂连接,从而将温和蚀刻溶液输送到放在U型体中的溶液保持元件308中。装置300的基底部分306包含电极310,它与电源312的正端相连。保持元件308优选地是软海绵材料,它可以用通过端口输送的温和溶液来饱和。当保持元件对着边缘铜120挤压时,它缠绕着边缘铜并且将温和溶液传输给边缘铜120。至少一个与电源310正极端连接的接触元件314可以接触铜层102上的任何部位。当晶片100旋转时,温和蚀刻溶液被提供到边缘铜120上。结果,从晶片的边缘上蚀刻掉边缘铜。
图12说明另一个实施方案,其中对于边缘斜面去除和晶片前表面的清洁使用相同的溶液。图12作为前面描述的图6的修改方案来描述。但是,应当指出此处描述的系统不需要在垂直室处理系统的上室中使用,尽管在该位置使用是有利的,结果它被如此描述。因为相同的溶液适用于边缘斜面去除,使用该溶液加料到喷嘴232,以及来自单一供应源的喷嘴224中,如箭头236所示。当使用相同的供应源时,对于不向的喷嘴可以使用不同的泵,或者使一个泵和不同类型的喷嘴,例如提供连续流的喷嘴232和提供雾(mist)的喷嘴224。但是,如上所述,当为了实施如上所述的边缘斜面去除而使用从喷嘴232释放出溶液流时,从喷嘴224中释放的溶液被作为带液滴的喷射,但避免作为液流来释放。对于边缘斜面去除,通过使用溶液流,包括前面边缘,以及在工件剩余前面上的液滴,由于溶液流维持的电学路径,蚀刻在边缘斜面区进行得快得多,这种电路径并不能由液滴来维持。
图13A~13B说明包括边缘斜面导体去除装置1102(下文中称EBCR装置)的ECMPR(电化学机械处理)系统1100。本发明的ECMPR系统可以被用作电化学机械沉积(ECMD)系统、电化学机械蚀刻(ECME)系统,或者两者。如下面所述,使用EBCR装置1102以及用于在ECMPR系统1100中实施的沉积或蚀刻过程的相同电解质或处理溶液,ECMPR系统1100能够原位地实施边缘斜面导体去除过程。应当理解在其它更常规的导体沉积及去除系统中,例如在标准电镀系统和电抛光系统中可以使用本发明的EBCR来从晶片上除去边缘铜。
ECMPR系统1100还包含许多组件,例如承载头(carrierhead)1104、工件表面影响装置(WSID)1106,以及浸在处理溶液1110中的电极1108,处理溶液被包含在处理溶液容器1112中。ECMPR系统1100可以实施平面或非平面镀敷,以及平面或非平面电刻蚀。举例来说,如果选择非平面工艺途径,晶片的前表面接近WSID,但是在晶片表面和WSIF之间有缝隙,以至于可以实施非平面的金属沉积。此外,如果选择平面工艺途径,晶片的前表面或侧面接触WSID,同时在WSID和晶片表面之间建立相对运动。当电解质溶液通过WSID输送时,晶片移动,同时前表面接触WSID。在晶片和电极间施加电势并且处理溶液1110流过WSID的情况下,例如铜的导体被镀敷在晶片的前表面上,或者从前表面上蚀刻掉。
在第一个实施方案中的处理溶液1110可以是用于ECMD过程的镀液。WSID包括许多允许处理溶液1110流过WSID1106并且湿润晶片1118正面1116的路径,晶片由承载头1104固定。承载头能够旋转并且横向和垂直移动晶片,同时使晶片的正面1116,即整个正面暴露于镀液中,而没有任何边缘例外。在该实施方案中,使用系统1100中的电化学沉积(ECD)或ECMD工艺,使晶片1118的正面1116镀有导体层,优选地是铜层。在镀敷过程期间,电极1108用作阳极并且连接到电源1119的正极端上。晶片1118的正面1116通过接触件1120连接到电源的负极端上(图13B)。在镀敷过程期间,因为随着晶片的移动和旋转,整个晶片的前表面暴露于镀液中,所以晶片的边缘区1122可能镀有导体。边缘区由晶片的侧表面和与该侧表面相邻的正面狭窄边缘带组成。甚至有一些缠绕的导体在其边缘处向晶片的背面延伸。镀在所有这些区域上的导体应该使用EBCR工艺步骤来除去。下面将描述怎样使用本发明的EBCR装置1102来原位除去镀在晶片边缘区1122上的导体。在这种实施方案中,选择铜(Cu)作为示例性的导体。
如图13A~13B所示,系统的EBCR装置1102位于系统1100的WSID1106中。操作时,一旦在晶片上实施的工艺结束,晶片载体1104移动晶片1118到EBCR装置,并且使边缘区1122定位在EBCR装置1102的上部开孔1124的上方。EBCR的上部开孔1124在WSID1106的顶面1126中,因而允许通过路径1114流动的电解质1110连续在EBCR装置中流入并流出。可选地,电解质可以直接来自EBCR装置的底部。EBCR装置中的溶液是电解质1110的一部分,电解质1110在WSID和晶片1118正面的镀铜之间流动,因而与两者接触。在这一阶段,EBCR装置1102通过在EBCR装置和电源1119的负极端之间建立连接来开关(参见图13B)。晶片1118的正面1116通过接触件1120与电源的正极端相连。在这种方式下,边缘铜去除可以通过在晶片边缘处电蚀刻边缘斜面铜来实施。
如图14所示,EBCR装置包含固定EBCR电极1128的外壳1127。外壳1127可以是WSID中的一个开孔。填充EBCR装置的电解质1110湿润了电极1128和晶片1118正面1116及边缘区1122上的铜。因此,一旦在EBCR电极1128和铜层或晶片表面之间施加电压,使晶片电势更正,电蚀刻电流从晶片(阳极性)的边缘区1122流向EBCR电极1128(阴极)。电蚀刻电流基本上限制在外壳1127的体积中,因此电流是相当局部的。当电解质1110流过WSID时,通过旋转晶片1118,边缘区1122在开孔1124的上方移动,从而随着边缘区1122通过开孔1124,边缘区1122上的铜被除去。但是,一旦边缘区被带到EBCR装置1102的开孔1124上方,从边缘区除去铜的程度取决于某些变量,例如开孔和边缘区1122间的距离,以及处理溶液的电阻。
如图15A举例说明,如果晶片被带到接触WSID1106的EBCR装置1102的上方,晶片边缘区或正面1116与WSID1106表面之间的距离是最小的,或者为零。因此,边缘区1122上铜的电蚀刻沿着位于开孔1124上的边缘区部分进行。因为晶片正与WSID1106接触,所以蚀刻并不会明显地向内延伸到正面。距离dE1大约表示在晶片与WSID1106接触时通过EBCR装置除去铜的程度。
但是,如图15B所示,如果晶片处于非接触的位置,EBCR装置的作用会进一步向内延伸并且从边缘的除去程度变得更大。如果被蚀刻的距离用距离dE2(dE2>dE1)来表示,那么随着晶片和WSID之间的垂直距离增加,距离dE2增长。这是由于更大的晶片面积暴露于EBCR装置的电流下。但是,如果ECMPR系统中使用的处理溶液是高电阻率的溶液,例如具有低酸性但具有高铜浓度的溶液,蚀刻的范围可以基本上限制在穿过EBCR装置1102开孔1124的区域。
通常,通过监测电蚀刻电压和电流可以检测EBCR过程的完成。参照图15A和15B,当从晶片的边缘区1122中除去铜时,如果与铜层电接触(例如通过如图13B中所示的接触件1120),对于给定的电流,电压增加,并且对于给定的电压,电流增加,这表明铜从边缘除去。
图16A至16C结合图17举例说明了对晶片1118使用电接触,例如图13B中使用的电学接触的EBCR终点检测过程。图16A至16C中表示的阶段(I)、(II)和(III)说明使用结合图15A~15B描述的EBCR装置,随着EBCR过程的进行,在特定的示例性时间间隔下镀在晶片前表面1116的铜。图17表示EBCR过程中电压随时间的变化。图16A的阶段(I)表示在第一个时间段下铜除去的程度。在晶片1118旋转时,电接触的位置用边缘区1122上路径A来表示。在对于第一个示例性时间段t1(图17)应用电压的情况下,在非常周边的地方铜被除去有至第一个除去线1130,从而暴露出底部阻挡层。此外,在图16B的阶段(II)中,在第二个示例性时间段t2中,铜层被除去有至第二个除去线1132。参照图17,在t1和t2的示例性时间段中,电压保持相对不变,这表明仍然有铜从边缘区除去。参照图16C,在阶段(III)中,在第三个时间段中,铜被除去直至路径A或终点,完成EBCR过程。如图17所示,随着铜的除去更接近电接触的路径A,电压增加,这表明边缘铜沿着接触路径A除去。当铜沿着接触路径A除去时,电接触到达比铜更不导电的阻挡层。这就导致电压的增加。一旦检测到电压增加,就停止EBCR处理。
如图18所示,与上面的方法不同,在EBCR过程期间,当接触或者接近WSID1103的表面时,使晶片远离EBCR装置1102。在这种方法中,因为边缘区1122和EBCR电极1128之间的距离最短,所以当施加电源时,电蚀刻在边缘区开始,并且作为时间的函数,向内延伸到旋转晶片的中央。在EBCR处理期间,电流动基本上通过流过WSID的电解质1110来进行。电流的方向由箭头A表示。另外,如箭头B所示,漏电流通过WSID的孔洞1114流向另一个路线。这种漏电将会引起从晶片表面上边缘区1122以外的区域蚀刻铜。因此,这种漏电流需要通过降低电流通过路径A的电阻并且增加通过路径B的电阻来最小化。应当指出此处描述的EBCR方法从晶片的所有边缘区除去了所有不需要的Cu,包括正面边缘区、背面边缘区和斜面。原因是在EBCR期间,处理溶液与所有这些区域物理接触并且电蚀刻电流到达所有区域。
在多次重复EBCR处理后,或者在每次EBCR处理后,预期EBCR电极1128上具有会有一些积聚的铜。积聚在EBCR电极1128上的铜可以通过在EBCR电极1128和另一个接触溶液的电极,例如电极1108之间施加电势来清洁。参照图13A,在清洁期间,EBCR电极1128与电源1119’(以点线表示)的正极端相连,而电极1108与电源1119’的负极端相连,直至电极1128上积聚的铜被电蚀刻掉。应当理解尽管在本实施例中使用电源1119来实施EBCR处理,并且EBCR电极的清洁使用电源1119’来进行,但是使用后面所述的适当连接和开关,可以只使用电源1119来给ECMPR系统1100实施的所有处理供应电能。此外,EBCR电极清洁步骤可以在EBCR过程后晶片通过清洗处理清洁的时间期间来进行。在这种方式下,EBCR电极清洁时间不会影响ECMPR过程的总产量。
图19A~19B说明包括边缘斜面去除装置1202(下文中称EBCR装置)的ECD(电化学沉积)系统1200。使用EBCR装置,结合沉积系统中使用的相同电解质溶液,系统1200可以实施全面的电沉积和原位的边缘斜面去除处理。系统1200包含许多系统组件,例如承载头1204、浸在处理溶液1210中的电极1208,处理溶液被包含在处理溶液容器1212中。容器1212可以是带有上部开孔1213的矩形外壳。容器1212充满电解质,达到上部开孔的1213的水平,并且电解质被连续地从开孔1213中流出。如果晶片被带到上部开孔1213附近,流出的电解质湿润晶片1218的正面1216,晶片由承载头1204固定。承载头能够在开孔1213上方旋转并且横向和垂直移动晶片,同时使晶片的正面1216暴露于电解质中。在EBCR处理之前,在晶片和电极间施加电势的情况下,晶片1218的正面1216被镀上导体层,例如铜层。该过程期间,电极(阳极)与电源(未显示)的正极端连接。晶片的正面1216通过接触件与电源的负极端相连,接触件可以是如图19B所示的沿着容器1212延伸的接触件1220。应当指出接触件1220可以具有不同的形状和形式,包括弯曲的(沿着晶片的周边)。本实施例使用静态的线型接触件。
如同上面的情况,在镀敷期间,铜也镀在晶片的边缘区1222。这是不需要的情况,并且应该使用本发明的EBCR工艺步骤除去镀在晶片边缘区上的铜。参照图19A~19B,系统的EBCR装置1202被浸泡在处理溶液1210中。操作时,一旦ECD过程结束,晶片载体1204横向移动晶片1218到EBCR装置1202,并且使边缘区1222定位在EBCR装置1202的上方。可选地,EBCR装置可以移向边缘区。在铜沉积期间,EBCR装置可以保持在处理溶液之外。当实施EBCR时,将其浸入处理溶液中。
同样,使用适当的允许处理溶液湿润晶片后面的晶片载体设计,电极可以放置在晶片的背面,并且实施EBCR过程,除去边缘区上的铜。图20说明包含浸在处理溶液1604中的电极1602的EBCR系统,处理溶液包含在处理溶液容器1606中。正面1610镀有铜的工件1608,例如半导体晶片的背面1607被定位在穿过电极1602的位置。电极1602(假定它是圆的)的中央和晶片1608的中央优选地沿着z-轴近似对齐。
晶片载体(未显示)保持晶片更接近于处理溶液的表面1614。为了避免蚀刻晶片边缘区1616以外的地方,晶片的正面1610接近处理溶液表面1614,使得处理溶液的表面1614和晶片1608的正面1610之间的距离d优选地小于引起溶液电阻的量,该电阻远大于衬底上铜膜的电阻。距离d可以是几个毫米。在EBCR处理期间,晶片的正面1608与电源1618的正极端相连,而电极1602与电源1618的负极端相连。当施加电能时,电蚀刻在边缘区1616处开始,并且作为时间的函数,向内延伸至正面1610的中央。正面1610上狭窄溶液体的较高电阻限制了正面1608上电蚀刻的程度。正面上电蚀刻的程度可以通过增加距离d来增加。应当指出该方法中使用的溶液应该是不会明显化学蚀刻膜表面1608的溶液。但是,在施加电压时,它应该具有电化学蚀刻薄膜的能力。溶液的化学蚀刻速率低于1100/min。作为电蚀刻溶液,这种温和的化学溶液工作良好,而当实施EBCR过程时,它们温和地化学蚀刻并清洁表面。与晶片表面的电接触表示在图20中的晶片中间。优选地,这种接触可以在晶片附近或边缘的任何地方,使得当边缘被除去铜薄膜时,来自电蚀刻过程的电流和电压信号能表明过程的结束,如前面所述。在这方面,接触件可以放在晶片前面边缘等于或接近EBCR后晶片上所需边缘除去值的位置上。一旦Cu的去除开始,晶片背面的任何Cu被除去。然后,斜面上的Cu被去除。去除继续在上表面1608上向晶片的中央进行。当边缘去除到达电接触的地方时,电压上升,指示终点,此时通过终止电蚀刻来停止该过程。
图21A详细地描述了图15A和15B中表示EBCR装置1202,它包含固定EBCR电极1228的外壳1227。EBCR装置1202允许处理溶液1210通过装置上面的开孔1224以及可选地通过装置周围的许多开孔或孔洞1225而流入EBCR装置中。在这一阶段,EBCR装置1202通过在EBCR装置和电源的负极端之间建立连接来开关。晶片正面的铜连接到电源的正极端。填充EBCR装置的处理溶液1210使与电源负极端相连的EBCR装置的EBCR电极1228和晶片1218的正面1216及边缘区1222处的铜通过处理溶液而电接触。随着处理溶液1210的流动,通过旋转晶片1218,边缘区1222被移到开孔1224的上方,从而当边缘区通过开孔1224时边缘区1222上的铜被电化学除去。
如前面所述,从边缘区1122除去铜的程度取决于边缘区和EBCR装置1202开孔1224之间的距离。当边缘区和晶片的开孔1122之间的垂直距离增加时,铜除去的程度也增加。但是如前面所解释的一样,这也受到处理溶液电阻率的限制。
在与结合图19A~19B和图20描述的方法相似的方法中,可以开始EBCR过程,而最终不用移动晶片1218。但是,EBCR装置可以更加接近电解质1110的表面。在这种方法中,处理溶液1210被施加到晶片1218的表面1216和边缘区1222上。当施加电能时,电蚀刻在边缘区处开始,并且作为时间的函数,向内向旋转晶片的中央延伸。在这种特定的方法中,可以用相对小的电极来代替EBCR装置。
如前面实施方案中所述,积聚在EBCR电极1228上的铜可以通过在EBCR处理完成后在EBCR电极1228和电极1208之间施加适当的电势来清洁。可选地,可以使用另一个与溶液接触的电极(未显示)来转移积聚的铜。然后,通过间歇地取出电极并在蚀刻溶液中蚀刻电极的方法来清洁该电极。
图21B表示在另一个实施方案中本发明的EBCR装置1230。在该实施方案中,装置1230由具有内部导电芯1232和外部绝缘壳1234的固体实体组成。按照在前面实施方案中对装置1202描述来使用本实施方案的EBCR装置1230。
图22A~22B说明包括EBCR装置1302的EBCR系统1300。使用具有EBCR溶液1303的EBCR装置,系统1300能够实施边缘斜面去除处理。该系统中待处理的晶片可以是使用任何已知沉积方法,包括ECMD、ECD、CVD、MOCVD和PVD等镀铜的预处理晶片。
系统1300包含承载头1304、包含在容器1308中的EBCR溶液1306。容器1308可以是带有上部开孔1310的矩形外壳。图22A表示容器1308沿着较长方向的视图。容器1308充满电解质,达到上部开孔的1213的水平,并且溶液被连续地从开孔1310中流出。该工艺期间,承载头1304固定的晶片被带到上部开孔1310附近,并且边缘区1311被放置在浸于EBCR溶液1303中的EBCR装置1302的上方。EBCR装置1302包含固定电极1318的外壳1316。EBCR装置1302允许处理溶液1303通过装置上面的开孔1320以及可选地通过装置周围的许多孔洞1322而流入EBCR装置中。承载头能够在开孔1310的上方旋转,同时完全将晶片的正面1314暴露于弱溶液1303中。弱溶液不会蚀刻晶片正面1314上的铜。
图22B表示容器沿着较短方向的视图。如图22B所示,晶片的正面1314通过沿着容器1308延伸的接触件1317与电源的正极端相连。在该阶段,EBCR装置1302通过在EBCR装置和电源负极端之间建立连接来开关。填充EBCR装置的溶液1303使与电源负极端相连的EBCR装置的电极1318和晶片1312的正面1314及边缘区1311处的铜接触。随着溶液的流动,通过旋转晶片1312,边缘区1311被移到EBCR装置1302的开孔1320的上方,从而当边缘区通过开孔1320时边缘区1311上的铜被电化学除去。
如前面情况中一样,从边缘区1311除去铜的程度取决于边缘区和EBCR装置1302开孔1320之间的距离。当晶片的开孔和边缘区1311之间的垂直距离增加时,铜除去的程度也增加。但是如前面所解释的一样,这也受到处理溶液电阻率的限制。
图23A~24B阐述了包括具有电极1401的边缘斜面去除装置1402(下文中称EBCR装置)的ECD(电化学沉积)系统1400。使用EBCR装置,结合沉积系统中使用的相同电解质溶液,系统1400可以实施原位的边缘斜面去除处理。
系统1400包含许多系统组件,例如承载头1404、浸在处理溶液1410中的电极1408,处理溶液被包含在处理溶液容器1412中。容器1412可以是带有上部开孔1413的矩形外壳。壁1414将容器的第一部分1415a与第二部分1415b分开。在该实施方案中,第一部分1415a是保持EBCR装置1402并实施EBCR处理的EBCR部分。第二部分1415b是ECD部分。EBCR和ECD部分1415a、1415b通过壁1414上的开孔1416来连接。这就除了顶部的液体交换外,还在1415a和1415b部分之间添加了另一个液体交换的开孔。容器1412充满电解质,达到上部开孔的1413的水平,并且电解质被连续地从开孔1413中流出。当晶片1417被带到ECD部分1415b的上部开孔1413附近,流出的电解质湿润晶片1417的正面1418,晶片由承载头1404固定。承载头能够在开孔1413上旋转并且横向和垂直移动晶片,同时使晶片的正面1418完全暴露于电解质中。在ECD部分1415b中,在EBCR处理之前,在晶片和电极间施加电势的情况下,晶片1416的正面1418被镀上导体层,优选地是铜层。电极(阳极)与电源(未显示)的正极端连接。晶片的正面1418通过沿着容器1412延伸的接触件与电源1419的负极端相连。
如图23A~23B所示,镀在边缘区1422上的铜在系统1400的EBCR部分1415a中通过在EBCR部分1415a的上方移动晶片1416,并且将边缘区1422定位在EBCR装置1402的上方或者附近来除去。一旦电极1401与电源1419的负极端相连,电流优选地经由孔洞1416通过‘路径A’而不是‘路径B’,因为电流通过‘路径B’的电阻更高。在该实施方案中,EBCR处理如同在前面的实施方案中来实施。这种设计还可以在使用EBCR电解质的独立EBCR系统中使用。
图24举例说明了用于EBCR处理和任何镀敷或电蚀刻处理,例如ECMPR、ECD或ECMD的电源开关系统1500的可能示意图。电源开关系统1500包含电源1502。通过第一开关1504和第二开关1506,电源1502连接到可以是ECMPR或ECD系统的电处理系统1600上。为了简化,图24示意性地表示了系统1600的晶片11602、EBCR电极1604和电极1606。下表表示当系统1500中的节点A的极性以及开关1504及1506的位置改变时,可以在系统1600中实施的处理类型。

尽管上述某些实施例使用镀液作为处理溶液,从而表明本发明能够在导体沉积之后原位地实现边缘导体去除,但是应当理解所述系统可以是电蚀刻系统,并且处理溶液可以是电蚀刻溶液,例如对于铜去除过程是磷酸溶液。在这种情况下,实施电蚀刻处理,从工件的表面上除去铜,然后使用本发明的EBCR装置实施原位去除边缘铜。可选地,可以使用上述具有EBCR装置的系统来除去先前在其它模块中处理的工件的边缘铜膜。举例来说,可以使用这些系统从已经通过CMP、蚀刻或电蚀刻技术抛光的晶片上除去边缘铜,从而从它们除了边缘之外的整个表面上除去过量导体。
尽管许多优选的实施方案已经在上面详细地描述,但是本领域的技术人员将很容易理解示例性实施方案的许多修改是可能的,而没有背离本发明的新教授和优点。
权利要求
1.一种使用蚀刻溶液和与蚀刻溶液接触的蚀刻电极,从工件导电层的斜面边缘,包括导电层的前面边缘表面除去导电材料的方法,该方法包括下面步骤旋转工件;引导蚀刻溶液的连续流流向工件的斜面边缘,包括导电层的前面边缘表面,同时旋转工件;以及在引导步骤进行时,在电极和工件导电层之间施加电势差。
2.根据权利要求1的方法,其中引导步骤引导温和蚀刻溶液流向斜面边缘。
3.根据权利要求2的方法,其中与不施加电势差时相比,温和蚀刻溶液用于施加电势差而蚀刻斜面边缘更多。
4.根据权利要求2的方法,其中温和蚀刻溶液是镀液。
5.根据权利要求4的方法进一步包括在引导步骤之前,使用镀液在工件导电层的顶面上沉积导体。
6.根据权利要求5的方法,其中在工件位于垂直室组件的下室中时进行沉积步骤,并且在工件位于垂直室组件的上室中时进行引导和施加步骤,并且进一步包括在沉积步骤之后和引导步骤之前,将工件从下室移动到上室中的步骤。
7.根据权利要求6的方法,其中沉积步骤使用电化学机械沉积工艺。
8.根据权利要求5的方法,其中在工件位于单个室中时进行沉积和引导步骤。
9.根据权利要求5的方法,其中在工件位于各自不同的室中时进行沉积和引导步骤。
10.根据权利要求4的方法进一步包括在引导步骤之前使用镀液在工件导电层的顶面上沉积导体的步骤。
11.根据权利要求10的方法,其中沉积步骤使用电化学机械沉积工艺。
12.根据权利要求10的方法,其中在工件位于垂直室组件的下室中时进行沉积步骤,并且在工件位于垂直室组件的上室中时进行引导和施加步骤,并且进一步包括在沉积步骤之后和引导步骤之前,将工件从下室移动到上室中的步骤。
13.根据权利要求10的方法,其中沉积步骤使用电化学机械沉积工艺。
14.根据权利要求4的方法进一步包括在引导步骤之前在工件导电层的顶面上实施电化学机械处理的步骤。
15.根据权利要求14的方法,其中在工件位于垂直室组件的下室中时实施电化学机械处理步骤,并且在工件位于垂直室组件的上室中时进行引导和施加步骤,并且进一步包括在实施电化学机械处理步骤之后和引导步骤之前,将工件从下室移动到上室中的步骤。
16.根据权利要求14的方法,其中在工件位于单个室中时实施电化学机械处理和引导步骤。
17.根据权利要求14的方法,其中在工件位于各自不同的室中时实施电化学机械处理和引导步骤。
18.根据权利要求2的方法,进一步包括将温和蚀刻溶液喷射至导电层的顶面上。
19.根据权利要求18的方法,其中在工件位于单个室中时进行喷射和引导步骤。
20.根据权利要求19的方法,其中同时进行喷射和引导步骤。
21.根据权利要求19的方法,其中顺序进行喷射和引导步骤。
22.一种在工件前面导电表面边缘上实施边缘斜面去除工艺的设备,包含室;固定并旋转工件的可移动并可旋转的工件支架;以及边缘斜面去除系统,边缘斜面去除系统包括用于向至少工件的前面导电表面边缘供应蚀刻溶液连续流的至少一个边缘导体材料去除装置;适于与连续流物理接触并且用来在连续流和工件前面导电表面之间提供电势差的电极。
23.根据权利要求22的设备,其中边缘铜去除装置包含安装在工件相对位置内的至少一个喷嘴,以至于蚀刻溶液连续流被向外引导流向工件的前面导电表面边缘。
24.根据权利要求22的设备,进一步包括安装在室内用于引导温和蚀刻溶液流向工件前表面的至少一个清洁喷嘴。
25.根据权利要求24的设备,其中温和蚀刻溶液和蚀刻溶液是同一种溶液。
26.根据权利要求22的设备,进一步包括设置在室下面的另一个室;当工件位于室中并且使用至少一个边缘铜去除装置时,适于分隔该室与另一个室的可移动保护挡板;以及用于处理设置在另一个室中的工件前表面的系统。
27.根据权利要求26的设备,其中系统是电化学机械处理系统。
28.根据权利要求27的设备,其中电化学机械处理系统是电化学机械沉积系统。
29.根据权利要求22的设备,进一步包括设置在室内用于在工件前表面上提供机械处理的电化学机械处理系统。
30.根据权利要求22的设备,其中通过至少一个边缘导体材料去除装置使用的蚀刻溶液也通过电化学机械处理系统来使用,并且其中,电化学机械处理系统包括空腔、位于空腔内的电极、位于空腔内用来提供从电极到工件前表面的电学路径的蚀刻溶液、位于工件附近的工件表面影响装置,蚀刻溶液通过它流动,以及在电化学机械处理期间给工件提供电学接触的接线端,以至于可以维持在位于空腔内的蚀刻溶液和工件之间的电势差。
31.根据权利要求30的设备,进一步包括用于从空腔到至少一个边缘导体材料去除装置提供蚀刻溶液连续流的管道。
32.根据权利要求31的设备,进一步包括在边缘导体材料去除期间给工件提供电学接触的另一个接线端。
33.根据权利要求32的设备,其中另一个接线端与原接线端相同。
34.根据权利要求32的设备,其中另一个接线端与原接线端不同。
35.根据权利要求30的设备,其中边缘铜去除装置至少包含一个安装在工件相对位置内的喷嘴,以至于蚀刻溶液连续流被向外引导流向工件的前面导电表面边缘。
36.根据权利要求30的设备,其中电化学机械处理系统是电化学机械沉积系统。
37.根据权利要求30的设备,进一步包括用于控制空腔内蚀刻液位的液体控制器,以至于蚀刻溶液在电化学机械处理发生时具有第一液位并且当边缘斜面去除发生时在空腔内具有另一个较低的液位。
38.一种在工件上实施边缘斜面去除并且使用溶液清洁工件正面的方法,该方法包括下面步骤旋转工件;引导所得溶液连续流从来源流向工件导电层的斜面边缘,同时旋转工件,从而以第一速率从斜面边缘除去导电材料;引导所得溶液喷雾从来源流向工件导电层的正面,同时旋转工件,从而清洁工件的正面。
39.根据权利要求38的方法,其中引导溶液流和引导喷雾的步骤被顺序实施。
40.根据权利要求38的方法,其中引导溶液流和引导喷雾的步骤被同时实施。
41.根据权利要求38的方法,其中当引导连续流的步骤进行时,在溶液连续流和工件导电层之间施加电势差,并且其中喷雾不能够给导电层提供电学路径,从而确保以小于第一速率的第二速率从工件的正面除去任何导电材料。
42.根据权利要求41的方法,其中溶液是温和蚀刻溶液。
43.根据权利要求41的方法,其中引导溶液流和引导喷雾的步骤被顺序实施。
44.根据权利要求41的方法,其中引导溶液流和引导喷射的步骤被同时实施。
45.一种使用处理溶液和与处理溶液接触的电极,从工件导电表面的边缘区除去导电材料的方法,该方法包括下面步骤旋转工件;使工件的导电表面与处理溶液接触;定位与电极相邻的工件的边缘区;以及在旋转工件时,在电极和工件导电层之间施加电势差。
46.根据权利要求45的方法,其中处理溶液是镀液。
47.根据权利要求46的方法,其中作为施加电势差的结果,镀液蚀刻边缘区。
48.根据权利要求46的方法,进一步包括在定位步骤之前,使用镀液在工件导电表面上沉积导体的步骤。
49.根据权利要求48的方法,其中在工件位于单个室中时进行沉积、定位及施加步骤。
50.根据权利要求49的方法,其中沉积步骤使用电化学机械沉积工艺。
51.根据权利要求50的方法,其中在工件位于工件表面影响装置上时进行沉积步骤,并且在工件边缘位于工件表面影响装置中保持电极的开孔的上方时进行定位及施加步骤。
52.根据权利要求50的方法,其中在工件位于工件表面影响装置上时进行沉积步骤,并且在工件边缘与工件表面影响装置中保持电极的开孔相邻时进行定位及施加步骤。
53.根据权利要求49的方法,其中沉积步骤使用电化学机械沉积工艺。
54.根据权利要求53的方法,其中在工件导电表面浸在镀液中时进行沉积步骤,并且在工件边缘与电极相邻放置时进行定位及施加步骤。
55.根据权利要求45的方法,其中处理溶液是蚀刻溶液。
56.根据权利要求55的方法,进一步包括将导电表面浸入蚀刻溶液。
57.根据权利要求55的方法,其中在工件边缘与电极相邻放置时进行定位及施加步骤。
58.一种在工件前面导电表面边缘上实施边缘斜面去除处理的设备,包含包含处理溶液的室;在处理溶液中把持并旋转工件的可移动并可旋转的工件支架;边缘斜面去除结构,包括适于与处理溶液物理接触并且相对工件的前面导电表面提供电势差的电极。
59.根据权利要求58的设备,进一步包括在边缘导体材料去除期间给工件的导电表面提供电学接触的电学接触。
全文摘要
公开了一种边缘清洁系统和方法,其中,温和的蚀刻溶液(230)的定向流被提供到旋转工件(100)的边缘区域,包括前表面边缘和斜面,同时维持工件与定向流之间的电势差。一方面,本发明提供了一种边缘清洁系统,它被安置在用于工件沉积或去除处理的同一处理室中。另一方面,用于边缘去除的温和蚀刻溶液还被用来清洁晶片的前表面,或者与边缘去除工艺同时进行,或者顺序进行。
文档编号H01L21/3063GK1636267SQ02827672
公开日2005年7月6日 申请日期2002年12月23日 优先权日2001年12月21日
发明者布林特·M·巴索 申请人:纳托尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1