半导体测试系统的制作方法

文档序号:6850548阅读:186来源:国知局
专利名称:半导体测试系统的制作方法
技术领域
本发明涉及半导体测试系统,更具体地说,涉及用于在对包括冗余电路的半导体器件进行测试中使用的半导体测试系统。
背景技术
在诸如DRAM等的半导体存储器中,通常形成有冗余电路,其补救存储器单元阵列中的缺陷。在这种包括这样的冗余电路的半导体器件中,在执行完工作测试后,通过使用激光修理设备或其他设备用冗余电路来代替有缺陷的部件,从而补救有缺陷的部件。
图5是在对半导体存储器等进行测试时所使用的传统半导体测试设备的简图,其图示了该测试设备的构造。
如图所示,传统半导体测试设备包括测试仪处理器100、测试模式发生单元102、模式比较器104、故障存储器、冗余补救判断单元108、驱动器110和比较器112。
测试仪处理器100控制整个半导体测试设备的顺序。
测试模式发生单元102生成要被输入到被测半导体器件的波形(测试模式),并且包括模式发生器114、定时发生器116和波形形成器118。模式发生器114基于编程数据生成模式。定时发生器116生成用于由模式发生器114生成的模式的定时信号。波形形成器118基于由定时发生器116生成的定时信号和由模式发生器114生成的模式,生成要被提供给被测半导体器件的波形(测试模式)。
驱动器110将由测试模式发生单元102的波形形成器118生成的测试模式输入到被测半导体器件。
比较器112接收已经输入了测试模式的被测半导体器件所输出的输出波形,并且将接收到的输出波形信号与参考电压比较,并基于比较结果选择H(高)电平或L(低)电平,并输出选择的电压信号。将比较器112输出的电压信号作为输出数据提供给模式比较器104,其中输出数据是以时间轴和被测半导体器件输出的输出波形的电平表示的。
模式比较器104将编程的期望值数据与来自比较器112的输出数据相比较,并对输出数据进行判断。将由模式比较器104给出的关于比较结果的信息提供给测试仪处理器100。测试仪处理器100基于模式比较器104给出的比较信息和判断结果,生成被测半导体器件的有缺陷部件的故障信息。
故障存储器106存储故障信息。
冗余补救判断单元108基于存储在故障存储器106中的故障信息判断是否可以做出用于代替半导体器件有缺陷部件的冗余补救。当冗余补救判断单元108判断可以做出冗余补救时,冗余补救判断单元108生成激光修理设备或其他设备在冗余补救时所使用的冗余补救数据。
当冗余补救判断单元108判断可以做出冗余补救时,基于由冗余补救判断单元108生成的冗余补救数据,通过使用激光修理设备或其他设备完成冗余补救,以使用冗余电路代替有缺陷部件。
例如在日本已公开未审查专利申请No.Hei 9-7388(1997)、日本已公开未审查专利申请No.Hei 9-153021(1997)和日本已公开未审查专利申请No.2000-285696(2000)中公开了本发明的背景技术。
但是,在使用上述传统半导体测试设备进行测试时,只是在做出冗余补救之前的测试步骤中使用设备的冗余补救判断单元。即,冗余补救判断单元在做出冗余补救之后的测试步骤中不是必需的。
如图6所示,在使用半导体测试设备进行测试的过程中,相继执行冗余补救之前的测试步骤S100、冗余补救步骤S102、冗余补救之后的高温测试步骤S104和冗余补救之后的低温测试步骤S106。如上所述,在这种对半导体器件进行测试的过程中,只是在冗余补救之前的测试步骤S100中使用冗余补救判断单元,而在冗余补救之后的高温测试步骤S104和冗余补救之后的低温测试步骤S106中并不使用。因此,冗余补救判断单元的工作只占这一串测试步骤的1/3至1/2。
如上所述,不能说传统的半导体测试设备在测试过程中有效地使用了该测试设备的冗余补救判断单元。
故障存储器对于要被存储于其中的故障信息的存储容量随着被测半导体存储器的容量等而改变。因此,必需在半导体测试设备上安装尽可能大容量的故障存储器,以便该半导体测试设备能广泛用在对各种具有不同容量的半导体存储器的半导体器件的测试中。这是使半导体测试设备价格上升的原因。
另外,当由于集成度的增加等原因,出现了这样的半导体器件其需要的存储器容量超过了所使用的故障存储器的最大容量时,到目前为止用于测试的半导体测试设备就不能再使用了。在这种情形中,必须购买可用于新的半导体器件的半导体测试设备,或者必须同时测试较少数目的半导体器件,而牺牲了测试效率。实际上,因为半导体器件在变化,所以无论新的半导体器件何时出现,总是会频繁负担高昂的费用。
因此,需要形成这样一种半导体测试设备或半导体测试系统,其能灵活应用于被测半导体器件具有大容量等情况中,而不需要负担成本的增加。

发明内容
本发明的目的是提供一种半导体测试系统,其能灵活应用于具有大容量等的被测半导体器件,而不需要负担成本的增加。
根据本发明的一个方面,提供了一种半导体测试系统,包括测试设备,用于测试包括冗余电路的半导体器件,并获得半导体器件的有缺陷部件的故障信息;和独立于测试设备的冗余补救判断设备,其包括用于存储故障信息的故障存储器和冗余补救判断单元,该冗余补救判断单元基于存储在故障存储器中的故障信息,判断是否能做出用冗余电路来替代半导体器件有缺陷部件的冗余补救,测试设备和冗余补救判断设备经由网络彼此互联,从测试设备将故障信息发送到冗余补救判断设备。
根据本发明的另一方面,提供了一种经由网络连接到测试设备的冗余补救判断设备,其中测试设备测试包括冗余电路的半导体器件以获得半导体器件的有缺陷部件的故障信息,该冗余补救判断设备包括故障存储器,用于存储从测试设备发送来的故障信息;和冗余补救判断单元,用于基于存储在故障存储器中的故障信息,判断是否能做出用冗余电路来代替半导体器件有缺陷部件的冗余补救。
根据本发明的另一方面,提供了一种测试设备,用于测试包括冗余电路的半导体器件并且获得半导体器件的有缺陷部件的故障信息,该测试设备经由网络连接到冗余补救判断设备,冗余补救判断设备包括用于存储故障信息的故障存储器和冗余补救判断单元,冗余补救判断单元基于存储在故障存储器中的故障信息,判断是否能做出用冗余电路来代替半导体器件有缺陷部件的冗余补救,并将故障信息发送到冗余补救判断设备。
根据本发明的另一方面,提供了一种要被使用在半导体测试系统中的冗余补救设备,包括测试设备,用于测试包括冗余电路的半导体器件,并获得半导体器件的有缺陷部件的故障信息;和经由网络连接到测试设备的冗余补救判断设备,其包括用于存储由测试设备发送的故障信息的故障存储器和冗余补救判断单元,冗余补救判断单元基于存储在故障存储器中的故障信息,判断是否能做出用冗余电路来代替半导体器件有缺陷部件的冗余补救,并且所述冗余补救判断设备根据判断的结果,生成冗余补救数据,用于进行用冗余电路来代替半导体器件有缺陷部件的冗余补救,冗余补救设备经由网络连接到冗余补救判断设备,并且基于由冗余补救判断设备发送的冗余补救数据,进行冗余补救,以用冗余电路代替半导体器件的有缺陷部件。
根据本发明,在独立于测试设备的冗余补救判断设备中提供用于存储故障信息的故障存储器和用于基于故障信息判断是否能做出冗余补救的冗余补救判断单元,其中冗余补救判断设备经由网络获得故障信息并连接到测试设备,由此当故障存储器的容量不足以用于更大容量的被测半导体器件时,可以用安装有足够容量的故障存储器的冗余补救判断设备来代替该冗余补救判断设备,并且不必与冗余补救判断设备一起更换测试设备。这样,根据本发明的半导体测试系统可以灵活应用于具有更大容量等的被测半导体器件。
根据本发明,当更新半导体测试系统(其中测试设备和冗余补救判断设备彼此独立)时,可以按需单独更换测试设备或冗余补救判断设备,或者可以在不同时间更换这两者。这样,测试设备和冗余补救判断设备不必同时更新,这使得可以以低成本更新半导体测试系统。
多个测试设备经由网络共享冗余补救判断设备的故障存储器和冗余补救判断单元,这使得不必为每一个测试设备提供故障存储器和冗余补救判断单元。因此,可以降低测试设备的成本。
根据本发明,多个测试设备经由网络共享冗余补救判断设备的故障存储器和冗余补救判断单元,由此,在安装由测试设备的诸如工厂等的设施中,可以将某个设施处多余的冗余补救判断单元分配给另一个缺少冗余补救判断单元的设施。这样,可以减小诸如工厂等设施的总成本。


图1是根据本发明第一实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。
图2是根据本发明第一实施例的半导体测试系统的方框图,其图示了信息、数据等的流动。
图3是根据本发明第二实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。
图4是根据本发明第三实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。
图5是传统半导体测试设备的方框图,其图示了该半导体测试设备的构成。
图6是半导体测试设备进行测试的流程图。
具体实施例方式
将参考图1和图2解释根据本发明第一实施例的半导体测试系统。图1是根据本实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。图2是根据本实施例的半导体测试系统的方框图,其图示了信息、数据等的流动。
首先,参考图1解释根据本实施例的半导体测试系统。
如图所示,根据本实施例的半导体测试系统包括用于对被测半导体器件进行测试的测试设备10、用于存储由测试设备10给出的测试结果并基于测试结果判断是否可以做出冗余补救的冗余补救判断设备14。被测半导体器件是半导体存储器,例如DERAM等。
(测试设备)测试设备10生成测试模式、将测试模式输入到被测半导体器件、将从半导体器件输出的输出数据与期望值数据相比较并做出判断,并且进行其他操作。具体地,测试设备10包括数据处理器16、测试模式发生单元18、驱动器20、比较器22、模式比较器24和控制器26,其中控制器26用于要求使用下面描述的冗余补救判断设备14。
测试仪处理器16控制整个测试设备10的顺序。
测试模式发生单元18生成要被输入到被测半导体器件的波形(测试模式),并且包括模式发生器28、定时发生器30和波形形成器32。模式发生器28基于编程数据生成模式。定时发生器30生成由模式发生器28生成的模式的定时信号。波形形成器32基于定时发生器30生成的定时信号和模式发生器28生成的模式,生成要被输入到被测半导体器件的波形(测试模式)。波形形成器32生成期望值数据作为用于缺陷判断的参考,将由已经输入了测试模式的被测半导体器件所输出的输出数据与该参考相比较。期望数据例如是在半导体器件正常工作时预期从该半导体器件输出的数据。
驱动器20将由测试模式发生单元18中的波形形成器32生成的测试模式输入到被测半导体器件。
比较器22获得由已经输入了测试模式的被测半导体器件输出的输出波形,将获得的输出波形的信号与参考电压相比较,并且基于比较结果,选择H电平电压信号或L电平电压信号来输出选定的电压信号。将比较器22输出的电压信号提供给模式比较器24作为从半导体器件输出的输出波形的输出数据,其是以时间轴和电平的形式表示的。
模式比较器24将波形形成器32生成的期望值数据与来自比较器22的输出数据相比较,并做出判断。将比较/判断的信息提供给测试仪处理器16。测试仪处理器16生成被测半导体器件的有缺陷部分的故障信息。
用于要求使用冗余补救判断设备14的控制器26向冗余补救判断设备14要求使用故障存储器36a-36d以及冗余补救判断设备14的冗余补救判断单元40。
(冗余补救判断设备)冗余补救判断设备14存储测试设备10给出的故障信息,基于故障信息判断是否可以做出冗余补救,并且按测试设备10的需求进行其他操作。冗余补救判断设备14独立于测试设备10。具体地,冗余补救判断设备14包括冗余处理器34、故障存储器36a-36d、故障存储器地址控制器38和冗余补救判断单元40。
冗余处理器34控制整个冗余补救判断设备14的顺序。
故障存储器36a-36d存储测试设备10给出的故障信息。冗余补救判断设备14包括多个故障存储器36a-36d。
故障存储器地址控制器38按照测试设备10的用于要求使用冗余补救判断设备14的控制器26的要求,控制将故障存储器36a-36d分配来存储故障信息。具体地,故障存储器地址控制器38控制将多个故障存储器36a-36d中的哪一个分配来存储故障信息,以及被分配的故障存储器中的多大容量用于存储故障存储器信息。
冗余补救判断单元40按照测试设备10的用于要求使用冗余补救判断设备14的控制器26的要求,基于故障信息判断是否能做出用于代替半导体器件有缺陷部件的冗余补救。冗余补救判断单元40连接到冗余电路数据存储器41a,冗余电路数据存储器41a存储在被测半导体器件中形成的冗余电路的冗余电路数据。当冗余补救判断单元40判断是否能做出冗余补救时,冗余补救判断单元40引用存储在冗余电路数据存储器41a中的冗余电路数据,来基于故障信息和冗余电路数据,判断是否能做出冗余补救。
当冗余补救判断单元40判断是否能做出冗余补救并判断冗余补救可能时,冗余补救判断单元40生成冗余补救数据,这些数据要被用在由冗余补救设备42进行的冗余补救中。冗余补救判断单元40连接到冗余补救数据存储器41b,该存储器临时存储所生成的冗余补救数据。
上述测试设备10和冗余补救判断设备14通过网络12互联,网络12例如是LAN(局域网)、WAN(广域网)或其他网络。这样,可以在测试设备10和冗余补救判断设备14之间交换信息、数据等。
另外,做出用冗余电路来代替半导体器件有缺陷部件的冗余补救的冗余补救设备42连接到将测试设备10和冗余补救判断设备14互联的网络12。冗余补救设备42例如可以是激光修理设备。冗余补救设备42可以经由网络12与冗余补救判断设备14交换信息、数据等。冗余补救设备42基于冗余补救判断设备14经由网络12提供的冗余补救数据,对半导体器件做出冗余补救。
经由网络12彼此互联的测试设备10和冗余补救判断设备14可以安装在相同设施的相同位置或不同位置,或者可以安装在不同设施中。
这样,组成了根据本实施例的半导体测试系统。
根据本实施例的测试系统的特征主要在于故障存储器36a-36d和冗余补救判断单元40放置在独立于测试设备10放置的冗余补救判断设备14中,并且测试设备10和冗余补救判断设备14经由网络12彼此互联。
如图5所示,每个传统半导体测试设备包括一套故障存储器106和冗余补救判断单元108。
在根据本实施例的半导体测试系统中,故障存储器36a-36d和冗余补救判断单元40与测试设备10分离,并且故障存储器36a-36d和冗余补救判断单元40放置在连接到网络12的冗余补救判断设备14中。因此,当故障存储器36a-36d的容量不足以支持被测半导体器件的增大容量时,可以简单地用具有足够容量的故障存储器的冗余补救判断设备来代替冗余补救判断设备14。不必与冗余补救判断设备14一起替换测试设备10。这样,根据本发明的半导体测试系统可以灵活地应用于具有更大容量等的被测半导体器件,而不会导致成本增加。
在更新根据本发明的半导体测试系统(其中测试设备10和冗余补救判断设备14彼此独立)时,只更新测试设备10和冗余补救判断设备14之一,或者不同时更新两者。简而言之,不必一次同时更新测试设备10和冗余补救判断设备14,这使得可以以低成本更新半导体测试系统。
多个测试设备10经由网络12连接到冗余补救判断设备14,由此多个测试设备10可以共享故障存储器36a-36d和冗余补救判断单元40。这样,不必向每个测试设备10提供故障存储器和冗余补救判断单元,这可以减少测试设备10的成本。
另外,多个测试设备10经由网络12共享冗余补救判断设备14的故障存储器36a-36d和冗余补救判断单元40,由此在安装了测试设备10的诸如工厂等的设施中,可以将某个设施处多余的冗余补救判断单元40分配给另一个缺少冗余补救判断单元40的设施。这样,可以减小诸如工厂等设施的总成本。
(半导体测试系统的操作)接下来,将参考图2解释根据本实施例的半导体测试系统的操作。图2中,用由字母指示的箭头(箭头a-箭头s)图示了根据本实施例的半导体测试系统中的信息、数据等的流动。
首先,模式发生器32基于编程数据来生成模式,用于生成要被输入到被测半导体器件44的测试模式(箭头b)。定时发生器30基于编程数据生成定时信号,用于生成要被输入到半导体器件44的测试模式(箭头a)。
然后,基于由定时发生器30生成的定时信号和由模式发生器28生成的模式,波形形成器32生成要被输入到半导体器件44的测试模式(箭头c)。波形形成器32生成期望值数据,以在模式比较器24中将该期望值数据与半导体器件44输出的输出数据相比较,并作为缺陷判断的参考(箭头d)。
接着,驱动器20将波形形成器32生成的测试模式输入到半导体器件44(箭头e)。
已经输入了测试模式的半导体器件44所输出的波形由比较器22获得(箭头f)。已经获得了输出波形的比较器22将所获得的输出波形的信号与参考电压相比较,并且基于比较结果,选择H电平信号或L电平信号来将所选中的电压信号输出。将比较器22输出的电压信号提供给模式比较器24作为半导体器件44输出的输出波形的输出数据,其是以时间轴和电平的形式表示的(箭头g)。
然后,模式比较器24将来自比较器22的输出数据与波形形成器32生成的期望值数据相比较,以做出判断。已经进行了比较并做出判断的模式比较器24向测试仪处理器16输出比较/判断结果的信息(箭头h)。
当测试仪处理器16从模式比较器24接收到比较/判断结果的信息时,测试仪处理器16基于输入的比较/判断结果,生成半导体器件44的有缺陷部件的故障信息。已经生成了故障信息的测试仪处理器16将故障信息输出到用于要求使用冗余补救判断设备14的控制器26(箭头i)。
当将故障信息输入到用于要求使用冗余补救判断设备14的控制器26时,用于要求使用冗余补救判断设备14的控制器26生成用于要求使用冗余补救判断设备14的信号和用于要求使用故障存储器的信号(箭头j)。
测试仪处理器16将用于要求使用冗余补救判断设备14的控制器26所生成的用于要求使用冗余补救判断设备14的信号和用于要求使用故障存储器的信号经由网络12发送到冗余补救判断设备14的冗余处理器34。测试仪处理器16还将故障信息经由网络12发送到冗余补救判断设备14的冗余处理器34(箭头k、箭头l)。
将用于要求使用冗余补救判断设备14的信号发送到冗余处理器34,由此使得可以使用冗余补救判断设备14,并且基于测试设备10给出的故障信息,以如下方式判断是否可以做出冗余补救。
冗余处理器34将其接收到的用于要求使用故障存储器的信号输出到故障存储器地址控制器38。冗余处理器34还将故障信息输出到故障存储器地址控制器38(箭头m)。
当将用于要求使用故障存储器的信号输入到故障存储器地址控制器38时,故障存储器地址控制器38分配故障存储器36a-36d用来存储将从测试设备10发送来的故障信息。具体地说,故障存储器地址控制器38从故障存储器36a-36d中选出存储故障信息的故障存储器,并且决定分配给选中故障存储器的存储器区域。然后,故障存储器地址控制器38将故障信息与故障存储器的分配信息一起输出,并且在选中的故障存储器中的指定存储器区域中存储故障信息(箭头n)。
冗余补救判断单元40基于如此存储在故障存储器中的故障信息以及存储在冗余电路数据存储器41a中的冗余电路数据,来判断是否能做出用冗余电路来代替半导体器件44有缺陷部件的冗余补救。冗余补救判断单元40将判断结果的信息输出到故障存储器地址控制器38(箭头o)。
当冗余补救判断单元40判断冗余补救是否可能并且判断冗余补救可能时,冗余补救判断单元40生成冗余补救数据,以在冗余补救设备42进行的冗余补救中使用。将生成的冗余补救数据临时存储在冗余补救数据存储器41b中,并且冗余补救判断单元40根据需要将其输出到故障存储器地址控制器38。
故障存储器地址控制器38将冗余补救判断单元40给出的判断结果的信息和冗余补救数据与故障存储器36a-36d的使用信息一起输出到冗余处理器34(箭头p)。
冗余处理器34将冗余补救数据经由网络12发送到冗余补救设备42(箭头q、箭头s)。冗余处理器34将冗余补救判断单元40给出的判断结果的信息、故障存储器36a-36d的使用信息反馈回测试设备10的测试仪处理器16(箭头q、箭头r)。
基于从冗余补救判断设备14发送来的冗余补救数据,冗余补救设备42进行冗余补救,以用冗余电路代替半导体器件44的有缺陷部件。
这样,测试设备10测试了半导体器件44,并且基于测试设备10的测试结果,冗余补救判断设备14判断是否可以做出冗余补救。当做出冗余补救可能的判断时,基于冗余补救判断设备14生成的冗余补救数据,冗余补救设备42进行冗余补救,以代替半导体器件44的有缺陷部件。
如上所述,根据本实施例,在与测试设备10独立提供的冗余补救判断设备14中提供了故障存储器36a-36d和冗余补救判断单元40,并且测试设备10与冗余补救判断设备14经由网络12彼此互联,由此当由于被测半导体器件的容量增加而使得故障存储器36a-36d的容量不够时,可以用能满足容量增加的安装有足够容量的故障存储器的冗余补救判断设备来代替冗余补救判断设备14,并且不必与冗余补救判断设备14一起替换测试设备10。这样,根据本实施例的半导体测试系统能灵活应用于具有更大容量等的被测半导体器件。
在更新根据本实施例的半导体测试系统(其中测试设备10和冗余补救判断设备14彼此独立)时,只更新测试设备10和冗余补救判断设备14之一,或者不同时更新两者。简而言之,不必一次同时更新测试设备10和冗余补救判断设备14,这使得可以以低成本更新半导体测试系统。
另外,多个测试设备10经由网络12共享冗余补救判断设备14的故障存储器36a-36d和冗余补救判断单元40,由此在安装了测试设备10的诸如工厂等的设施中,可以将某个设施处多余的冗余补救判断单元40分配给另一个缺少冗余补救判断单元40的设施。这样,可以减小诸如工厂等设施的总成本。
第二实施例将参考图3解释根据本发明第二实施例的半导体测试系统。图3是根据本实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。为了不重复或简化描述,本实施例中与根据第一实施例的半导体测试设备相同的构件用相同的标号表示。
如图3所示,在根据本实施例的半导体测试系统中,多个测试设备10经由网络12连接到一个冗余补救判断设备14。在图3中,两个测试设备10经由网络12连接到一个冗余补救判断设备14。测试设备10和冗余补救判断设备14具有与根据第一实施例的半导体测试系统的相应部件相同的构成。
经由网络12连接的多个测试设备10可以安装在相同设施中的相同地方或不同地方,或者可以安装在彼此不同的设施中。
经由网络12互联的测试设备10和冗余补救判断设备14可以安装在相同设施中的相同地方或不同地方,或者可以安装在彼此不同的设施中。
在根据本实施例的半导体测试系统中,冗余补救判断设备14按照来自所述多个测试设备10中每一个的要求,以与根据第一实施例的半导体测试系统相同的方式,判断是否可以做出冗余补救,并生成冗余补救数据。
即,冗余补救判断设备14按照来自所述多个测试设备10中的一个测试设备10的要求,在故障存储器36a-36d的指定存储器区域中存储所述多个测试设备10中的所述一个测试设备10给出的故障信息。基于该故障信息,冗余补救判断设备14判断是否可以对由所述一个测试设备10测试的半导体器件做出冗余补救,并且生成冗余补救数据。
按照来自所述多个测试设备10中的其他测试设备10的要求,冗余补救判断设备14在故障存储器36a-36d的其他存储器区域中存储其他测试设备10给出的故障信息。基于这些故障信息,冗余补救判断设备14判断是否可以对由所述其他测试设备10测试的半导体器件做出冗余补救,并且生成用于所述半导体器件的冗余补救数据。
除了用于存储故障信息的故障存储器36a-36d外,冗余补救判断设备14还包括用于存储由各个测试设备10给出的除了故障信息之外的各种测试结果的存储器(未示出)。
如上所述,根据本实施例的半导体测试系统的特征主要在于多个测试设备10经由网络12连接到一个冗余补救判断设备14,并且所述多个测试设备10经由网络12共享冗余补救判断设备14的故障存储器36a-36d和冗余补救判断单元40。
多个测试设备10经由网络12共享冗余补救判断设备14的故障存储器36a-36d和冗余补救判断单元40,这使得不必为每一个测试设备10提供故障存储器和冗余补救判断单元。因此,这可以减少测试设备10的成本。
多个测试设备10经由网络12共享冗余补救判断设备14的故障存储器36a-36d和冗余补救判断单元40,由此在安装了测试设备10的诸如工厂等的设施中,可以将某个设施处多余的冗余补救判断单元40分配给另一个缺少冗余补救判断单元40的设施。这样,可以减小诸如工厂等设施的总成本。
另外,多个测试设备10连接到一个冗余补救判断设备14,由此冗余补救判断设备14可以存储各个测试设备10给出的包括故障信息在内的各种测试结果。这使得可以在一个地方共同管理由各个测试设备10给出的测试结果,这使得可以有效地对半导体器件进行缺陷分析。例如,可以容易地给出各个测试设备10所测试的半导体器件的缺陷趋势和缺陷部件的分布。
第三实施例将参考图4解释根据本发明第三实施例的半导体测试系统。图4是根据本实施例的半导体测试系统的方框图,其图示了该半导体测试系统的构成。为了不重复或简化描述,本实施例中与根据第一和第二实施例的半导体测试设备相同的构件用相同的标号表示。
根据本实施例的半导体测试系统的基本构成基本上与根据第二实施例的半导体测试系统的构成相同,其中多个测试设备10经由网络12连接到一个冗余补救判断设备14。在根据本实施例的半导体测试系统中,多个测试设备10中的每一个都包括故障存储器46和冗余补救判断单元48。
如图4所示,多个测试设备10经由网络12连接到一个冗余补救判断设备14。在图4中,两个测试设备10经由网络12连接到一个冗余补救判断设备14。
与第一和第二实施例的测试设备10一样,每个测试设备10包括测试仪处理器16、测试模式发生单元18、驱动器20、比较器22和模式比较器24。另外,每个测试设备10包括故障存储器46和冗余补救判断单元48。
每个测试设备10的故障存储器46与冗余补救判断设备14的故障存储器36a-36d一样,存储测试设备10给出的故障信息。
每个测试设备10的冗余补救判断单元48基于故障信息判断是否可以用冗余电路来代替半导体器件的缺陷部件,并且当冗余补救可能时生成冗余补救数据。
如上所述,根据本实施例的半导体测试系统的特征主要在于每个测试设备10包括故障存储器46和冗余补救判断单元48,并且冗余补救判断设备14与网络12互联。
在根据本实施例的半导体测试系统中,在包括故障存储器46和冗余补救判断单元48的各个测试设备10中,独立完成对半导体设备的测试以及基于测试结果判断是否能做出冗余补救。
即,在每个测试设备10中获得的故障信息存储在每个测试设备10的故障存储器46中。然后,每个测试设备10的冗余补救判断单元48基于存储在故障存储器46中的故障信息判断是否可以做出冗余补救,并生成冗余补救数据。
当每个测试设备10的故障存储器46的容量不足以存储故障信息时,可以使用冗余补救判断设备14的故障存储器36a-36d来存储故障信息,下面将对此进行描述。
即,按照来自其容量不足以存储故障信息的测试设备10的要求,分配冗余补救判断设备14的故障存储器36a-36d的指定存储器区域来经由网络12存储故障信息。
在每个测试设备10中获得的故障信息被如此分立存储在每个测试设备10的故障存储器46以及冗余补救判断设备14的故障存储器36a-36d中。
每个测试设备10的冗余补救判断单元48基于分立存储在故障存储器46以及故障存储器36a-36d中的故障信息,判断是否可以做出冗余补救,并生成冗余补救数据。
如上所述,在根据本实施例的半导体测试系统中,包括故障存储器36a-36d的冗余补救判断设备14经由网络12连接到测试设备10,由此当每个测试设备10的故障存储器46的容量不足以存储故障信息时,可以将故障信息分立存储在故障存储器46以及冗余补救判断设备14的故障存储器36a-36d中。
另外,与根据第二实施例的半导体测试系统一样,多个测试设备10连接到一个冗余补救判断设备14,由此冗余补救判断设备14可以存储各个测试设备10给出的包括故障信息在内的各种测试结果。这使得可以在一个地方共同管理由各个测试设备10给出的测试结果,这使得可以有效地对半导体器件进行缺陷分析。例如,可以容易地给出各个测试设备10所测试的半导体器件的缺陷趋势和缺陷部件的分布。
修改实施例

本发明并不限于上述实施例,而是可以包括其他各种修改。
例如,在上述实施例中,半导体测试系统被应用于作为测试对象的半导体存储器,诸如DRAM等。但是,根据本发明的半导体测试系统可以应用于包括冗余电路的所有半导体器件。
在第二和第三实施例中,一个测试设备10或多个测试设备10经由网络12连接到一个冗余补救判断设备14。经由网络12连接的测试设备10的数目可以根据安装在冗余补救判断设备14上的故障存储器的总容量等适当地改变。
在上述实施例中,一个或多个测试设备10经由网络12连接到一个冗余补救判断设备14。经由网络12连接的冗余补救判断设备14的数目不是必须为1,而是可以是多个。例如,多个测试设备10经由网络12连接到多个冗余补救判断设备14,并且所述多个测试设备10可以共享所述多个冗余补救判断设备14。
权利要求
1.一种半导体测试系统,包括测试设备,用于测试包括冗余电路的半导体器件,并获得所述半导体器件的有缺陷部件的故障信息;和独立于所述测试设备的冗余补救判断设备,其包括用于存储所述故障信息的故障存储器和冗余补救判断单元,所述冗余补救判断单元基于存储在所述故障存储器中的所述故障信息,判断是否能做出用所述冗余电路来替代所述半导体器件有缺陷部件的冗余补救,所述测试设备和所述冗余补救判断设备经由网络彼此互联,从所述测试设备将所述故障信息发送到所述冗余补救判断设备。
2.根据权利要求1所述的半导体测试系统,其中所述测试设备包括用于生成要被输入到所述半导体器件的测试模式的测试模式发生器;和比较器,所述比较器将从已经输入了所述测试模式的所述半导体器件输出的输出数据与期望值数据相比较,并生成所述半导体器件的有缺陷部件的故障信息,其中期望值数据是在所述半导体器件正常的情况下预期从所述半导体器件输出的数据。
3.根据权利要求1所述的半导体测试系统,还包括经由所述网络连接到所述冗余补救判断设备的冗余补救设备,用于基于由所述冗余补救判断单元生成的冗余补救数据,进行所述冗余补救,以用所述冗余电路代替所述半导体器件的所述有缺陷部件。
4.根据权利要求2所述的半导体测试系统,还包括经由所述网络连接到所述冗余补救判断设备的冗余补救设备,用于基于由所述冗余补救判断单元生成的冗余补救数据,进行所述冗余补救,以用所述冗余电路代替所述半导体器件的所述有缺陷部件。
5.根据权利要求1所述的半导体测试系统,其中所述冗余补救判断设备还包括存储单元,用于存储所述测试设备测试所述半导体器件的结果。
6.根据权利要求2所述的半导体测试系统,其中所述冗余补救判断设备还包括存储单元,用于存储所述测试设备测试所述半导体器件的结果。
7.根据权利要求3所述的半导体测试系统,其中所述冗余补救判断设备还包括存储单元,用于存储所述测试设备测试所述半导体器件的结果。
8.一种经由网络连接到测试设备的冗余补救判断设备,其中所述测试设备测试包括冗余电路的半导体器件以获得所述半导体器件的有缺陷部件的故障信息,所述冗余补救判断设备包括故障存储器,用于存储从所述测试设备发送来的所述故障信息;和冗余补救判断单元,用于基于存储在所述故障存储器中的所述故障信息,判断是否能做出用所述冗余电路来代替所述半导体器件有缺陷部件的冗余补救。
9.根据权利要求8所述的冗余补救判断设备,其中所述冗余补救判断单元生成冗余补救数据,用于进行用所述冗余电路来代替所述半导体器件有缺陷部件的冗余补救,并且向冗余补救设备输出所述冗余补救数据,用于基于所述冗余补救数据进行冗余补救,以用所述冗余电路代替所述半导体器件的所述有缺陷部件。
10.一种测试设备,用于测试包括冗余电路的半导体器件并且获得所述半导体器件的有缺陷部件的故障信息,所述测试设备经由网络连接到冗余补救判断设备,所述冗余补救判断设备包括用于存储所述故障信息的故障存储器和冗余补救判断单元,所述冗余补救判断单元基于存储在所述故障存储器中的所述故障信息,判断是否能做出用所述冗余电路来代替所述半导体器件有缺陷部件的冗余补救,并将所述故障信息发送到所述冗余补救判断设备。
11.一种要被使用在半导体测试系统中的冗余补救设备,包括测试设备,用于测试包括冗余电路的半导体器件,并获得所述半导体器件的有缺陷部件的故障信息;和经由网络连接到所述测试设备的冗余补救判断设备,其包括用于存储由所述测试设备发送的所述故障信息的故障存储器和冗余补救判断单元,所述冗余补救判断单元基于存储在所述故障存储器中的所述故障信息,判断是否能做出用所述冗余电路来代替所述半导体器件有缺陷部件的冗余补救,并且所述冗余补救判断设备根据所述判断的结果,生成冗余补救数据,用于进行冗余补救,以用所述冗余电路代替所述半导体器件的所述有缺陷部件,所述冗余补救设备经由所述网络连接到所述冗余补救判断设备,并且基于由所述冗余补救判断设备发送的所述冗余补救数据,进行所述冗余补救,以用所述冗余电路代替所述半导体器件的所述有缺陷部件。
全文摘要
本发明的半导体测试系统包括测试设备(10),用于测试包括冗余电路的半导体器件以获得半导体器件的有缺陷部件的故障信息;冗余补救判断设备(14),其包括用于存储故障信息的故障存储器(36a-36d),和冗余补救判断单元(40),用于基于存储在故障存储器(36a-36d)中的故障信息判断是否能做出用冗余电路来代替半导体器件有缺陷部件的冗余补救,并且所述冗余补救判断设备(14)独立于测试设备(10),其中测试设备(10)和冗余补救判断设备(14)经由网络(12)彼此互联,并且从测试设备(10)将故障信息发送到冗余补救判断设备(14)。
文档编号H01L21/66GK1761044SQ20051006451
公开日2006年4月19日 申请日期2005年4月11日 优先权日2004年10月15日
发明者矢野智巳, 冈本幸造, 森本琢巳 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1