光学传感器、光学传感器输出处理方法、显示装置及电子机器的制作方法

文档序号:6851849阅读:123来源:国知局
专利名称:光学传感器、光学传感器输出处理方法、显示装置及电子机器的制作方法
技术领域
本发明涉及一种读取光电二极管之类的受光元件的输出的技术。
背景技术
近年来,在移动电话或面向个人的移动终端(Personal DigitalAssistance)等电子机器中,将液晶元件或有机EL(Electronic Luminescence(电致发光))元件等排列为矩阵状的显示面板应用得越来越广泛。该显示面板,被用于从亮状态到暗状态的各种环境下。因此,若无论环境光如何,都令显示元件的亮度和画质固定,则虽然在某些条件下容易观看,但在另外的条件下就会变得难以观看。因此,考虑希望这种显示面板,可以对环境光量进行检测,并结合该检测结果来控制显示图像的亮度或画质等。
在这种控制中,虽然使用光电二极管之类的受光元件来检测光量,但问题是若在显示面板之外单独设置受光元件,就额外需要在电子机器中组装受光元件的空间,并且还必须在电子机器的外壳上设置用于检测环境光的开口部。
为了解决该问题,就希望有一种技术,能通过与切换显示面板的像素的薄膜晶体管(Thin Film Transistor,以下适当简称为“TFT”)通用的工艺,形成受光元件,用显示面板自身来检测环境光。
由于这种技术中,噪声混入输出线中使光量检测的精度下降,因此提出有检测出输出线所表现出的噪声,同时将检测出的噪声反转后供给输出线,从而抵消该输出线中出现的噪声(参照专利文献1)。
然而问题是,由于上述技术中输出都是模拟的,因此之后的处理比较困难。为了解决该问题,希望对受光元件的输出进行A/D转换,而用TFT难以构成A/D转换器。因此,必须在显示面板之外单独设置A/D转换器,其结果是,无法实现用显示面板自身检测环境光最初的这个目的。
另外,显示面板会在从日光下这种非常亮的状态(约10万勒克斯)、到只能辨认颜色的程度这种极暗的状态下(约10勒克斯)被使用。因此,形成于显示面板上的光学传感器,需要非常宽的受光光量检测范围。
专利文献1特开平9-82931号公报(参照图1)发明内容本发明正是鉴于上述背景提出的,其目的在于提供一种可在显示面板之类的基板上简单形成,可用2值化的值输出的光学传感器、光学传感器输出处理方法、显示装置及电子机器。
为了达成上述目的,有关本发明的光学传感器的特征是,具备受光元件,其一端和另一端之间流有与受光光量对应的电流;比较器,其比较所述受光元件的一端中的电压和规定的阈值电压,根据该比较结果输出逻辑信号;初始化电路,其在受光光量检测出前,将所述受光元件的一端初始化为阈值电压或其附近的电压;以及,电压变位电路,其在所述初始化结束后,将所述受光元件的一端只变位预先决定的规定电压,将由所述电压变位电路进行电压变位后、至由所述比较器进行的将逻辑信号逻辑反相为止的期间,作为与受光光量对应的值表示。通过该结构,受光元件的一端,在初始化期间中初始化为比较器的阈值电压或其附近电压后,变位规定电压。之后,由于受光元件的一端中的电压,根据对应受光光量的电流变化,因此再次达到比较器的阈值电压。由于此时的电压变化,与流过受光元件的电流对应,因此到受光元件的一端电压达到阈值电压为止的时间,与受光光量对应。
该光学传感器中,所述比较器也可具有对所述受光元件的一端中的电压、以所述阈值为界进行逻辑反相的反相电路的结构。再者,所述初始化电路也可具有通过使所述反相电路的输入端及输出端之间短路,来将所述受光元件的一端初始化为所述阈值或其附近电压的第1开关的结构。反相电路和开关可由TFT构成。
另外,当光学传感器中受光光量的检测范围较大时,第1优选所述电压变位电路为能从多个电压中选出一个作为所述规定电压的构成。
另一方面,上述光学传感器中,所述电压变位电路也可具有包含下述元件的构成包含电容元件,一端与所述受光元件的一端相连;以及,第2开关,在受光光量检测出前,给所述电容元件的另一端施加第1电压,在所述初始化结束后,给所述电容元件的另一端施加不同于所述第1电压的第2电压。电容元件,可采用TFT制造工艺来形成,另外,开关可由TFT自身构成。
这里,当受光光量的检测范围较大时,第2优选所述电压变位电路具有能从多个电容中选出任一个作为所述电容元件的构成。特别是,当所述受光元件的一端的电压,在由所述电压变位电路进行的电压变位后、预先决定的期间内没有达到所述阈值电压的情况下,优选所述电压变位电路具有切换选择电容容量更小的电容元件的结构。根据这种结构,可对应受光光量进行适当的灵敏度调整。
然后,作为显示装置,优选具有下述部分的结构上述任一个光学传感器;在所述受光元件的附近显示图像的显示面板;以及,根据表示所述电容元件的选择状态的数据(或由比较器输出的逻辑信号)控制显示图像的控制电路。此外,作为电子机器,优选具有这种显示装置的构成。
再者,本发明不限于光学传感器,还创建了光学传感器的输出处理方法的概念。


图1是表示应用有关本发明的第1实施方式的光学传感器的显示面板的整体结构的框图。
图2是表示该显示面板的整体结构的平面图。
图3是表示该光学传感器的结构的图。
图4是用于说明该光学传感器的动作的各个部分的电压波形图。
图5是表示该光学传感器的动作的图。
图6是表示该光学传感器的动作的图。
图7是表示该光学传感器的动作的图。
图8是表示该光学传感器的动作的图。
图9是表示该光学传感器的动作的图。
图10是用于说明该光学传感器的动作的各个部分的电压波形的图。
图11是表示有关本发明的第2实施方式的光学传感器的结构的图。
图12是表示该光学传感器中的控制信号S1、S2、S3的输出的图。
图13是表示具有适用了光学传感器的显示面板的移动电话的图。
图14是表示具有适用了光学传感器的显示面板的数字静像相机的图。
图中1-显示面板,10-光学传感器,40-控制电路,50-像素区域,52-像框,112-光电二极管,114、116-反相电路,118-基准电压源,120-开关(第1开关),126-开关(第2开关),130~133-电容元件,1100-移动电话,1200-数字静像相机。
具体实施例方式
下面,参照附图对本发明的各实施方式进行说明。
(第1实施方式)图1为,表示包含有关本发明的实施方式的光学传感器的显示面板的整体结构的框图。
该图中,光学传感器10是输出与受光光量相对应的信号Out的器件。细节在下文说明,在本实施方式中,按照受光光量越多、信号Out的脉宽越窄的方式构成。
如图2所示,该光学传感器10设于划分像素区域50的外侧边缘的像框(遮光层)52的正下方。然后,光学传感器10的受光面,设于像框52开口的部分。
再者,所谓像素区域50,是像素排列为矩阵状的区域。
这里,假定显示面板1为液晶面板,众所周知,像素由对应扫描线和数据线(都未图示)的交差而设置的、当选择扫描线时令数据线和像素电极之间导通的TFT;和,通过像素电极和相对电极(公共电极)夹着液晶的液晶层,构成。由于其细节与本发明没有太大关系,因此省略说明。
控制电路40,除了将表示像素区域50中的各像素的灰度的数据Data根据信号Out进行图像处理、提供给驱动电路60,或对图中未表示的背光等辅助光源的亮度进行调整之外,还向光学传感器10提供下述的控制信号Ini等。另外,控制电路40,除了能产生时钟脉冲,还如下文所述,兼具对该时钟脉冲数进行计数的功能。
驱动电路60,是驱动上述各个扫描线及数据线的电路的总称。详细来说,驱动电路60,由依次选择扫描线的扫描驱动电路、和通过数据线向位于已选择的扫描线的像素提供与灰度对应的电压的数据信号的数据线驱动电路构成。由于其细节与本发明没有太大关系,因此省略说明。
接下来,参照图3,对光学传感器10的详细结构进行说明。
如该图所示,光电二极管112的阴极,与提供电源的高电位一侧电压Vdd的给电线相连,另一方面,光电二极管112的阳极,分别与反相电路114的输入端、开关112的一端、电容元件130的一端以及开关128的一端相连接。这里,如上所述,光电二极管112的受光面,按照接收通过像框52的开口部分入射的光的方式设置。该光电二极管112,例如为PIN型,通过以与切换像素的TFT通用的工艺形成。
反相电路114,为以电压(Vdd-Gnd)为电源的p沟道型TFT和n沟道型TFT的互补型结构,公共栅极为输入端,公共漏极为输出端。反相电路114的输出端,连接在与该反相电路114结构相同的反相电路116的输入端上。然后,成为输出作为出现于反相电路116的输出端中的信号Out的构成。
反相电路116的输出端,还与开关124的一端相连。开关124的另一端,与作为电压基准的电位Gnd(电压零)相连。该开关124,是只当从控制电路40(参照图1)供给的控制信号Set为高电平时导通的开关。
通过该开关124,信号Out的电压电平,在控制信号Set为低电平时通过反相电路116的输入端(反相电路114的输入端)确定,当控制信号Set为高电平时无论反相电路116的输入端的电压如何都强制为低电平。
另一方面,反相电路114的输出端,除了与反相电路116的输入端相连,还与开关122的另一端相连。这里,开关122是若从控制电路40供给的控制信号Ini变为高电平则导通、若控制信号Ini变为低电平则断开的开关。
另外,电容元件130的另一端,与开关126的公共输出端相连。这里,开关126为双掷开关,当控制信号Set为低电平时,取图中实线所示的位置,选择电位Gnd,另一方面,当控制信号Set为高电平时,选择提供电压Vset的基准电压源118的正极端子。基准电压源118的负极端子与地电位Gnd相连。
再者,开关128的另一端与地电位Gnd相连。该开关128是只在从控制电路40供给的控制信号Wt为高电平时导通的开关。
为了便于说明,将光电二极管112的阳极(反相电路114的输入端、开关122、128及电容元件130的各一端)设为节点P。如上所述,由于光学传感器10形成在显示面板1上,因此在节点P中,寄生有不小的电容,特别是反相电路114的栅极电容。因此,图3中用符号136表示该寄生电容。
接下来,参照图4~图9对光学传感器10的动作进行说明。
首先,控制电路40,如图4所示,在时刻t1中令控制信号Ini、Set都为高电平作为初始化期间。由于通过控制信号Ini变为高电平开关122导通,因此如图5所示,反相电路114的输入端和输出端处于短路状态。因此,节点P变为将(Vdd-Gnd)分压大致一半后的电压,即为反相电路114的阈值电压Vth。这样,在初始化期间之前,由寄生电容136保持的电压,就被初始化为阈值电压Vth。
另外,虽然因开关122的导通,反相电路114的输出电压变为阈值电压Vth,但由于初始化期间中控制信号Set也为高电平,因此开关124导通的结果是,输出信号Out,确定为相当于低电平的电位Gnd。
而另一方面,由于通过控制信号Set变为高电平,开关126选择基准电压源1 18的正极端子,因此电容元件130的另一端上,被施加电压Vset。
再者,虽然图4中没有表示信号波形,但由于在光量检测时,控制电路40令控制信号Wt为低电平,因此开关128断开。
接下来,控制电路40如图4所示,在时刻t2中,令控制信号Ini变为低电平,同时将控制信号Set维持为高电平。因此,如图6所示,开关122断开。由于电容元件130的另一端维持为电压Vset,因此节点P通过该电容元件130及寄生电容136保持为初始化时的阈值Vth。
接下来,控制电路40如图4所示,在时刻t3中令控制信号Set也变为低电平。因此,由于如图7所示开关124断开,因此以下信号Out的逻辑电平,依赖于节点P的电压。
因此,研究节点P的电压。首先,如图7所示,由于通过控制信号Set变为低电平,开关126选择电位Gnd,因此电容元件130的另一端,由电压Vset下降为接地电位Gnd。
这里,由于开关122已经断开,因此节点P,降低的程度为将电容元件130的另一端中的电压下降量,根据电容元件130和寄生电容136的电容比分配后的量。具体来说,由于电容130的另一端中的电压下降量为(Vset-Gnd),因此节点P,从阈值电压Vth降低了(Vset-Gnd)·Ca/(Ca+Cb)。其中,Ca、Cb,分别为寄生电容136、电容元件130的各电容大小。
因此控制信号Set刚一变为低电平,节点P的电压,必定成为比阈值电压Vth低的状态。
初始化期间中,从控制信号Set变为高电平的时刻起输出信号Out变为低电平,控制信号Set刚一返回低电平,节点P的电压就比阈值电压Vth低,紧接在时刻t3之后输出信号Out维持为低电平。
另一方面,如图8所示,发光二极管12中,与受光光量对应的电流对电容元件130及寄生电容136进行充电同时流动的结果是,节点P从电压低的点向电压Vdd上升。
再者,严格来说,虽然从控制信号Ini变为低电平、开关122断开的时刻起,节点P中的电压上升开始,但由于仅控制信号Set变为高电平的期间设定为实际上可以忽略的较短的程度,因此在该期间中,如上所述那样,对节点P保持为阈值电压Vth不会产生妨碍。
节点P电压上升后,超过反相电路114的阈值电压Vth后,反相电路114的输出端变为低电平,这是由于通过反相电路11 6再次反相,信号Out变为高电平。
此时,由于光电二极管112中,受光光量越多,电流越大,因此节点P电压上升率变高,其结果是从时刻t3到信号Out变为高电平的时刻为止的期间缩短为只那么短。
由于时刻t3中的节点P的电压降,由电压Vset和上述电容比决定而不变,因此在从时刻t3到信号Out变为高电平为止的期间,与光电二极管112的受光光量对应。
然后,控制电路40,通过对例如从将控制信号Set变为低电平起、到信号Out变为高电平为止的期间内包含的时钟脉冲数进行计数并求取该计数结果的结构,能够获取与光电二极管122的受光光量对应的信息。
然后,控制电路40,根据与该受光光量对应的信息,实施对与显示面板1中的数据Data对应的图像处理、或对背光之类的辅助光源的亮度进行调整。
再者,由于在控制信号Set变为高电平的时刻t1中信号Out变为低电平,因此若将控制信号Set变为高电平的时刻t1起到t3为止的期间固定(或已知),则能将信号Out变为低电平的脉宽作为与光电二极管112的受光光量对应的值处理。
另外,在即使光学传感器10中没有检测出光量也可的情况下,例如,在待机模式之类的情况下,控制电路40,仅令控制信号Wt为高电平。如图9所示,控制信号Wt变为高电平后,由于开关128导通,因此节点P锁定为电位Gnd,其结果是,可以抑制由反相电路114、116的TFT所进行的切换而消耗的电能。
在这种光学传感器10之中,反相电路114、116、开关122、124、126、128,均可由TFT等构成。另外,电容元件130,可用TFT的制造工艺形成。例如,电容元件130,可通过低电阻化的半导体层、热氧化膜、和导电层的层叠结构来构成。再有,光电二极管112,如上所述采用TFT的工艺制造。
从而,在显示面板1中,在同一基板上用与像素区域50通用的工艺形成。
再有,本实施方式中,由于没有将与受光光量对应的电流(或电压)的模拟值转换为数字值表示,而是将受光光量置换为电压变化,再将该电压变化作为以从时刻t3到信号Out变为高电平为止的2值化的值所表示的期间来求取,因此无需A/D转换器,能够用简单的结构实现。
另外,由这种光学传感器10进行的光量检测,如图4所示通过一定的周期来进行,从而能将与环境变化对应的适当的控制反复。
再者,上述的实施方式中,虽然在初始化期间中将节点P初始化为阈值电压Vth,但也可为阈值电压附近的电压。重要的是,节点P在时刻t3之后再次超过阈值电压Vth即可。另外,也可按照节点P在时刻t3电压上升,之后,根据受光光量电压下降的方式构成。
然而,在上述的第1实施方式中,如图10(a)所示,节点P在时刻t3中下降电压ΔV后,随着光电二极管112的受光光量减少,如a→b→c→d→e那样变缓。
因此,当例如受光光量极少时,例如该图中符号e所示的情况下,在检测期间内,会产生节点P没有超过阈值电压Vth的状态,无法获取对应受光光量的信息。
与此相反,在受光光量极多时,例如该图中符号a所示的情况下,节点P在时刻t3后,会立刻超过阈值电压Vth。这时,从时刻t3到节点P超过阈值电压Vth为止的期间比时钟脉冲的周期还短,同样无法获取对应受光光量的信息。
作为防止这种无法获取对应受光光量的信息的情况的对策,考虑基准电压源118,准备多个电压作为电压Vset,同时控制电路40根据信号Out的状态,选择多个电压的任一个。具体来说,考虑下述构成当因受光光量极少而导致检测期间结束时、信号Out依然为低电平的情况下,控制电路40选择低一级的电压作为电压Vset;而另一方面,当因受光光量极多,节点P的电压在时刻t3后立刻超过阈值电压Vth,而使时钟脉冲数的计数结果为0的情况下,选择高一级的电压作为电压Vset。
如上所述,时刻t3中的节点P的电压降低量,为将电容元件130的另一端中的电压降低量、根据电容元件130和寄生电容136的电容比分配后的量。因此,从多个电压中选择电压Vset来切换的结构,换言之是从多个电压降低量之中选择电容元件130的另一端中的电压降低量的结构。
若选择低一级的电压作为电压Vset,则如图10(b)所示,由于时刻t3中的节点P的电压下降量为ΔV1,比ΔV小,因此即使在因受光光量少而导致时刻t3后的节点P的电压上升平缓的情况下,在检测期间内,节点P也能超过阈值电压Vth。
另外,若选择高一级的电压作为电压Vset,则如图10(c)所示,由于时刻3中的节点P的电压下降量为ΔV2,比ΔV大,因此即使在因受光光量较多而导致时刻t3后的节点P的电压陡然上升的情况下,也能延迟节点P超过阈值电压Vth的时刻那么多。因此,能令从时刻t3到信号Out变为高电平为止的期间内所包含的时钟脉冲数的计数结果大于0,变得有意义。
在这种结构中,从时刻t3到信号Out变为高电平为止的期间、同表示选择任一个电压作为电压Vset的信息一起,成为对应受光光量的信息。
(第2实施方式)然而,如上所述,根据信号Out的状态选择多个电压之一作为电压Vset的结构中,必须预备多个不同的电压,因此可能会导致图中未示出的电源电路(电压生成电路)的结构复杂化。因此,将防止无法获得对应受光光量的信息、同时只用一种电压Vset的光学传感器,作为第2实施方式进行说明。
图11,为有关第2实施方式的光学传感器10的结构的图。
该图所示的光学传感器10,将图3中的电容元件130置换为用区域Q表示的部分,其他部分都相同。因此,只对不同的部分进行说明。
区域Q中,电容元件131、132、133的各一端,分别与节点P公共连接。将该电容元件131、132、133的电容大小分别设为C1、C2、C3,并令它们的电容比为1∶2∶4。
电容131、132、133各自的另一端,分别与各个开关141、142、143的一端相连,而开关141、142、143各自的另一端,公共连接到开关126的一端上。
这里,开关141、142、143,分别在从控制电路40供给的控制信号S1、S2、S3为高电平时导通,为低电平时断开。
第2实施方式中,控制电路40,参照图12所示的内容如下决定控制信号S1、S2、S3的输出状态。即,控制电路40,在检测期间结束时信号Out依然为低电平时,从当前时刻的输出状态变至低一级(图12中为向上方向)的状态,减少用作电容元件的电容大小,另一方面例如在时钟脉冲数的计数结果为零时(或另外设定的阈值以下时),从当前时刻的输出状态变至高一级(图12中为向下方向)的状态,增加用作电容元件的电容大小。
这种结构中,信号S1、S2、S3,使用作为表示受光光量处于什么样的范围中的信息;从时刻t3至信号Out变为高电平为止的期间,使用作为表示在该范围中何种程度的值的信息。换言之,可将信号S1、S2、S3作为高位、表示从时刻t3至信号Out变为高电平为止的期间的信息(例如上述计数结果)作为低位的数据整体,作为表示受光光量的信息使用。从而,若不要求精确的检测精度,则可只将信号S1、S2、S3作为表示受光光量的信息,用来控制显示面板1。
如上所述,时刻t3中的节点P的电压降低量,由(Vset-Gnd)·Ca/(Ca+Cb)表示,由于第2实施方式中,根据控制信号S1、S2、S3的状态增减作为电容元件使用的电容大小Ca,因此可在电压Vset为一定的状态下,对节点P的电压下降量进行控制。
再者,第2实施方式中,因电容大小Ca的增减时刻t3后的电压上升率也会发生变化。即,当光电二极管112中流有与受光光量对应的电流时,由于该电流,在电容元件131、132、133之中,对与控制信号S1、S2、S3为高电平相对应的合成电容和寄生电容136进行充电,因此随着该合成电容减少,节点P从阈值电压Vth上升的速率提高,相反,随着该合成电容量增加,节点P从阈值电压Vth上升的速率下降。
因此,第2实施方式中,在受光光量较少的情况下,减小时刻t3中的节点P的电压下降量的同时,实施动作以提高在时刻t3后的节点P的电压上升率。相反,在受光光量较多的情况下,增大时刻t3中的节点P的电压下降量的同时,实施动作以降低在时刻t3后的节点P的电压上升率。
因此,即使在受光光量的检测范围为指数对数这样大的情况下,第2实施方式中也能适当地检测出该受光光量。
再者,由于当信号S1、S2、S3全部为低电平后,电容大小为零,时刻t3中节点P不低于阈值电压Vth,因此图12中将信号S1、S2、S3全部为低电平的状态除外。
(电子机器)接下来,对将有关上述实施方式的电光学装置应用于电子机器中的示例进行说明。
图13表示将上述显示面板1应用于显示部的移动电话的结构的立体图。
在该图中,移动电话1100,除了具备多个操作键1102,还具备受话口1104、送话口1106,作为显示部,具备包含上述的光学传感器10的显示面板1。
根据该结构,由于将光学传感器10内置于显示面板1中,因此无需另外的开口部或用于设置受光元件的组装空间,能够更准确地检测出受光光量。然后,可根据检测出的受光光量,对显示图像进行更适当的控制。
接着,对将上述的显示面板1用于取景器(内置监视器)的数字静像相机进行说明。
图14,为表示该数字静像相机的背面的立体图。与银盐相机通过被照物的光像令胶片感光不同,数字静像相机1200,通过将被照物的光像由CCD(Charge Coupled Device(电荷耦合器件))等摄像元件进行光电转换来生成、存储摄像信号。这里,数字静像相机1200中的机身1202的背面上,设有上述的显示面板1。由于该显示面板1,根据摄像信号进行显示,因此具有显示被照物的取景器的功能。另外,机身1202的前面一侧(图14中为背面侧)上,设有包含光学透镜和CCD等的受光单元1204。
摄影者确认显示于显示面板1上的被照物像,按下快门键1206后,该时刻的CCD摄像信号,被转送、存储于电路基板1208的存储器中。另外,该数字静像相机1200中,在机身1202的侧面上,设有用于进行外部显示的视频信号输出端子1212、和数据通信用的输入输出端子1214。
再者,作为电子机器,除了图13的移动电话、图14的数字静像相机之外,还可举出电视、取景器型和监视器直视型的视频录像机、车载导航装置、寻呼机、电子记事本、计算器、文字处理机、工作站、电视电话、POS终端、具备触摸屏的机器等。而作为这些各种电子机器的显示部,当然都可应用上述显示面板1。
另外,上述的实施方式中,虽然以液晶面板为例对显示面板1进行了说明,但也可使用其他的面板,采用例如有机EL元件或无机EL元件、场发射(FE)元件、LED等其他发光元件等,还有电泳元件、电铬(electrochromic)元件等的显示面板。
再有,不限于直接显示图像或文字等的显示面板,也可应用于为了通过对被感光体照射光间接形成图像或文字而采用的印刷机器的光源、例如LED打印机的线头(line head)。
此外,也可作为下述的构成将像素区域50分割为多个,同时将光学传感器10对应各个分割区域进行分割设置,并根据各个检测结果,控制对应的分割区域的图像。
权利要求
1.一种光学传感器,其特征在于具备受光元件,其一端和另一端之间流有与受光光量对应的电流;比较器,其比较所述受光元件的一端中的电压和规定的阈值电压,根据该比较结果输出逻辑信号;初始化电路,其在检测受光光量前,将所述受光元件的一端初始化为所述阈值电压或其附近的电压;以及,电压变位电路,其在所述初始化结束后,将所述受光元件的一端,只变位为预先决定的规定电压,将由所述电压变位电路进行电压变位后、至由所述比较器进行的将逻辑信号逻辑反相为止的期间,作为与受光光量对应的值表示。
2.根据权利要求1所述的光学传感器,其特征在于所述比较器,是对所述受光元件的一端中的电压、以所述阈值为界进行逻辑反相的电路。
3.根据权利要求2所述的光学传感器,其特征在于所述初始化电路,是通过将所述反相电路的输入端及输出端之间短路,来将所述受光元件的一端初始化为所述阈值或其附近电压的第1开关。
4.根据权利要求1所述的光学传感器,其特征在于所述电压变位电路,能从多个电压中选出任一个作为所述规定电压。
5.根据权利要求1所述的光学传感器,其特征在于,所述电压变位电路,包括电容元件,其一端与所述受光元件的一端连接;以及,第2开关,其在检测受光光量前,给所述电容元件的另一端施加第1电压,在所述初始化结束后,给所述电容元件的另一端施加与所述第1电压不同的第2电压。
6.根据权利要求5所述的光学传感器,其特征在于所述电压变位电路,能从多个电容元件中选出任一个作为所述电容元件。
7.根据权利要求6所述的光学传感器,其特征在于所述受光元件的一端的电压,在由所述电压变位电路进行的电压变位后、预先决定的期间内没有达到所述阈值电压的情况下,所述电压变位电路切换选择电容容量更小的电容单元。
8.一种显示装置,其特征在于,具有权利要求7所述的光学传感器;显示面板,其在所述受光元件的附近显示图像;以及,控制电路,其输入表示所述电容元件的选择状态的数据,根据该数据控制显示图像。
9.一种显示装置,其特征在于,具有权利要求1至6中任一项所述的光学传感器;显示面板,其在所述受光元件的附近显示图像;以及,控制电路,其根据由所述比较器输出的逻辑信号控制显示图像。
10.一种电子机器,其特征在于,具有权利要求8或9所述的显示装置。
11.一种光学传感器输出处理方法,是具有一端和另一端之间流有与受光光量对应的电流的受光元件、和比较所述受光元件的一端中的电压和规定的阈值电压并根据该比较结果输出逻辑信号的比较器的光学传感器的输出处理方法,其特征在于在检测受光光量前,将所述受光元件的一端初始化为所述阈值或其附近的电压,在所述初始化结束后,将所述受光元件的一端只变位为预先决定的规定电压,将由所述电压变位电路进行电压变位后、至由所述比较器将逻辑信号逻辑反相为止的期间,作为与受光光量对应的值表示。
全文摘要
本发明具有反偏为流有与受光光量对应的电流的光电二极管(112),和将光电二极管(112)的阳极电压电平逻辑反相的反相电路(114),在检测出受光光量之前,将作为光电二极管(112)的阳极及反相电路(114)的输入端的节点(P)初始化为反相电路(114)的阈值电压(Vth),在该初始化结束后,将节点(P)只降低规定电压,将在该降低之后、至由反相电路(114(116))进行的逻辑信号逻辑反相为止的期间,作为与受光光量对应的值输出。因此在显示面板之类的基板上,形成可输出2值化的值的光学传感器。
文档编号H01L31/10GK1705135SQ20051007600
公开日2005年12月7日 申请日期2005年6月3日 优先权日2004年6月3日
发明者小泽德郎 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1