电子标签芯片的制作方法

文档序号:6868401阅读:146来源:国知局
专利名称:电子标签芯片的制作方法
技术领域
本发明涉及适用于以无线的方式进行识别的电子标签的IC芯片。
背景技术
作为利用微小的无线芯片进行人或物的识别、管理的构造,RFID(Radio Frequency Identification无线射频识别)较受注目。在RFID中,在微小的标签(RFID标签)中存储数据,通过利用电波或电磁波与读取器相互通信来进行识别。该RFID标签由记录有自身的识别码等信息的IC芯片构成,具有使用电波与管理系统之间接收发送信息的能力。近年来,还出现了利用来自天线侧的非接触电力传送技术而不具有电池的标签。
关于无线IC标签的电路及设备,在日本特开2000-299440号中记载有这样的电压发生电路,通过电阻对SOI(silicon-on-insulator硅绝缘体)构造的MOSFET供电,从而能够进行不受寄生接合二极管影响的高频动作。
在日本特开平8-335709号中记载有进行连接使得形成于SOI衬底上的MOS晶体管的栅极和经由n+扩散区域得到的衬底(substrate)的电位为等电位,并减小阈值电压。还记载有进行化学蚀刻,蚀刻到蚀刻终止层(etch stop)的SiO2膜,将该MOS晶体管在相同支承衬底上电分离,形成具有空气绝缘的MOS晶体管。还记载有制作连接成栅极·衬底的电位与漏极的电位为等电位、使之具有整流特性的二极管桥堆或混频器。
在此,本发明的目的在于扩大无线IC芯片的通信距离。尤其能够适用于内部不具有电源、利用从读写器接收到的电力进行动作的无线IC标签芯片来取得优良的效果。

发明内容
通常,电波的到达距离与发送功率成比例关系。因此,在内部不具有电源而利用从读写器接收到的电力进行动作的RFID标签中,在延长发送距离方面最好是高效地将从读写器接收到的电力用作发送功率。
在RFID中,存在用于将来自读写器的交流信号转换为串联电压的整流电路。对于发射电磁波,由于电磁波能量是以距离的二次方来进行衰减的,所以耗电增加到4倍时,通信距离为1/2。相反,为了延长2倍通信距离,必须使耗电为1/4。若构成该整流电路的电容或MOSFET存在与接地端的寄生电容,则向接地端发生漏电流,输出电压降低。在延长RFID的发送距离方面,减少该整流电路的寄生电容是有效的。
图2示出在SOI衬底上制作的MOSFET的构成。在SOI背面侧的硅衬底100上有氧化膜107,在氧化膜107之上,阳极101连接于多晶硅102和漏极扩散层106。110表示耗尽层。栅极氧化膜103对于确定二极管的正向电压起到重要作用。二极管电流通过源极扩散层108从阳极101流向阴极104。二极管由元件隔离膜105隔离。在该构造中,在源极扩散层108、芯体层(body layer)109、漏极扩散层106与硅衬底100之间发生寄生电容,通过硅衬底100与氧化膜107上的接地层耦合。由此,从阴极104向硅衬底产生漏电流,造成无端浪费的耗电。
通常,在使用硅衬底时该硅衬底成为接地层,但由于在SOI衬底上存在氧化膜107,所以不需要电固定硅衬底100的电位。在SI衬底上,为了在CMOS防止闩锁效应不能使用高电阻衬底,从而不得不采用低电阻衬底。由此,存在容易产生元件间的寄生电容的耦合这样的缺点。
在SOI衬底上,能够降低寄生电容和增大硅衬底100的电阻值,从而具有难以产生耦合的优点。仅从晶片的材料方面看,SI衬底具有比SOI衬底更经济这样的优点,但使用SOI衬底,具有即便使元件相接近配置也不会产生寄生效应这样的优点,因此,具有能够以小型尺寸形成芯片从而增大从晶片的取得数量这样的效果,在经济上也还是SOI衬底具有优点。
图3示出在SI衬底上制作的MOS电容的例子。该电容例如是20~100pF左右的电容。第1MOS电容电极301连接于N型扩散层306,第2MOS电容电极304连接于多晶硅302,其下方有栅极氧化膜303。N型扩散层306被隔离氧化膜305隔离。由于是P型硅衬底300,所以在栅极氧化膜正下方存在N型沟道层309。作为该构造的技术问题是,当将第1MOS电容电极301作为整流电路的电容的输入端子时,由于被施加交流波形,所以有时在硅衬底接地时被施加负电位,P型硅衬底300和N型扩散层306成为正向,流过大量的电流,不能起到作为电容的作用。当将第2MOS电容电极304作为输入时,第2MOS电容电极304成为负电位而产生耗尽层,不会有效地发挥作为电容的作用。
当MOS电容电极304成为负电位时,耗尽沟道区域的载流子,成为电绝缘状态。由此,导致确定MOS电容值的介电常数、电极面积、电极间距离中的电极间距离的增大,减少了MOS电容值。当该MOS电容值较小时,导致为得到芯片内的动作电压所需要的输入电压、即从天线到芯片的输入电压的增大,只在来自近距离读出器的电磁波的能量较大的距离时电子标签才动作,引起电子标签的性能劣化。
图4示出在SOI衬底上制作的MOS电容的例子。第1MOS电容电极301连接于N型扩散层306,第2MOS电容电极304连接于多晶硅302,其下方有栅极氧化膜303。N型扩散层306被隔离氧化膜305隔离。在栅极氧化膜正下方存在N型沟道层309。在N型扩散层306和N型沟道层309的正下方存在氧化膜307。作为该构造的优点,当将第1MOS电容电极301作为整流电路的电容的输入端子时,由于被施加交流波形,所以在硅衬底接地时被施加负电位,在正向流过大量的电流,有时芯片瞬间即被破坏,但由于存在氧化膜307,所以不会在硅衬底300引起寄生效应。能够不将第2MOS电容电极304作为输入,而将MOS电容电极301作为输入,因此,第2MOS电容电极302成为正电位,在沟道层309中积蓄载流子,所以能够有效地发挥作为电容的作用。
因此,在本申请中,其技术问题在于提供一种适用于以无线的方式进行识别的电子标签的整流电路。更详细地说,其技术问题在于减少该整流电路中的MOSFET的寄生电容。
如下所示,简单地说明在本申请所公开的发明中有代表性的发明的概要。
本发明涉及采用SOI衬底构成MOS电容和二极管,并构成除去了硅衬底后的电子标签的高频用部件。为了在氧化膜上构成MOS电容和二极管,使之具有减少了寄生电容的高密度结构,实质上去掉了位于氧化膜下方的硅衬底,因此消除了与接地端的相互作用,具有低功耗的效果。
为了降低在微波频带进行无线识别的电子标签的IC芯片的MOS晶体管的源极、漏极扩散层与接地端之间的寄生电容,除去SOI晶片的硅衬底。
虽然SOI在降低寄生电容方面有效果,但若像电子标签的IC芯片那样的进一步要求低耗电,为了在高频进行动作,需要避免SOI晶片通过衬底与接地端耦合,为此,通过除去SOI晶片的硅衬底,能消除与接地端等的耦合,在电子标签的IC芯片的低功耗方面有效。
因此,本发明的代表构成是用SOI晶片形成构成电子标签芯片的整流电路的MOS二极管或MOS电容,并除去背面的硅而形成的半导体器件。
在一个例子中,MOS二极管的扩散层达到SOI晶片的嵌入氧化膜。
在另一个例子中,在布线的侧壁形成MOS电容。
在另一个例子中,在具有由半导体元件构成的整流电路、将整流电路的输出作为电源进行动作的半导体器件中,构成整流电路的半导体元件被配置在由绝缘物单层构成的支承衬底之上。在另一个例子中,在具有天线端子和连接于天线端子的整流电路,将整流电路的输出作为电源利用电波发射信号的RFID标签中,构成整流电路的半导体元件被配置在由绝缘物单层构成的支承衬底之上。


图1是说明本发明的原理的立体图。
图2是示出在SOI衬底上制作的二极管连接MOSFET的剖视图。
图3是示出在SI衬底上制作的MOS电容的剖视图。
图4是示出在SOI衬底上制作的MOS电容的剖视图。
图5是示出本发明的效果的曲线图。
图6是电子标签的整体模块图和元件剖视图。
图7是示出倍压整流电路的电路图。
图8是示出2级倍压整流电路的电路图。
图9是示出二极管连接MOSFET的构成的剖视图。
图10是示出另一个二极管连接MOSFET的构成的剖视图。
图11是示出另一个二极管连接MOSFET的构成的剖视图。
图12是示出电子标签的制作工序的剖视图。
图13是双面电极型电子标签的双面图。
图14是示出取出了背面电极的二极管连接MOSFET的构成的剖视图。
图15是示出双面电极型电子标签的制作工序的剖视图。
图16是示出整流电路的MOS电容的剖视图。
图17是示出由布线形成的电容的构造的立体图。
具体实施例方式
图1是说明本发明的原理的图。
图1(a)示出以往的SOI晶片上的MOS晶体管构造。与图2的构成相同的部分用相同的符号表示,省略其说明。在氧化膜107的下方存在硅衬底100。图1(b)示出本发明的构造。在氧化膜107的下方不存在硅衬底。在此,将氧化膜107的厚度做成0.15~0.4微米,但能够在0.05~10微米的范围内进行选择。图1(b)中完全除去了硅衬底,但即使残留0.01~50微米的硅衬底,也能根据条件降低漏电流。但是,理想的还是没有硅衬底为好。减少二极管的正向电压可具有提高整流电路效率的效果。可根据栅极氧化膜的厚度、芯体层的浓度、源极扩散层和漏极扩散层相对的长度来降低二极管的正向电压。这些可采用与以往的二极管构造相同的手法,但增大源极扩散层和漏极扩散层时会增大耗尽层的面积,可靠地增大寄生电容。因此,具有氧化膜107虽然有效,但考虑到电子标签的IC芯片的整个电路,消除通过硅衬底100与接地端耦合的寄生电容,对于在高频、例如800MHz~2.45GHz进行动作的电子标签的IC芯片,是不能忽视的。
图5是示出本发明的效果的图。在图5中,相对示出了在使用了SOI的电子标签的IC芯片中,具有背面的硅衬底的情况和除去了背面的硅衬底的情况的电子标签的IC芯片的耗电。图5示出了芯片耗电的理论值。高频电子标签的耗电P与寄生电容C和频率w之积成正比。这是由于因寄生电容导致向接地端流出电流,由于该流出电流在衬底流过电流而消耗为热量。能够通过采用SOI衬底来降低该寄生电容,并能够通过除去硅衬底来阻止向衬底流出电流。由于芯片表面的导体(例如布线等),还存在极少的寄生电容,其量为2~3%左右。因此,耗电不是完全为零,但如图5所示能够大幅度地降低功耗。通过除去背面的硅衬底,可将与接地端的寄生电容降低到1/100左右,因此,耗电也可降低为1/100左右。当耗电为1/100时,通信距离能够延长10倍。这是由于来自电子标签的IC芯片读出器的功率与距离的二次方成反比地减少,因此,即使耗电为1/100,表现出的在距离方面的改善效果是该耗电的平方根。距离为10倍,即1m的通信距离成为10m,其效果显著。
图6是示出电子标签的整体构成的图。通常,能够将所示出的整个电路构成为1个IC芯片。能够将天线部分与芯片形成为一体,但也能够分别形成。
图6(a)示出电子标签的电路构成。从天线601输入的能量被转换为电压施加到电容器602。电容器602利用二极管608和二极管603积蓄电荷,将电荷传送到能量积蓄器604。另一方面,时钟电路605从来自天线的信号中抽取时钟信号。电源接通复位电路609具有使存储器电路606复位到初始值的作用。存储器电路606的输出,具有改变能量积蓄器604的状态,使天线601的输入阻抗变化,使读出器检测变化的作用。芯片内的接地端607作为天线端子的一部分而被连接。
图6(b)是示出电子标签的输入部分的元件构造的剖视图。天线601的端子和接地端607的端子能够从芯片的表面及背面取出。电容器602和二极管608由布线611连接,二极管的MOS栅极和漏极由布线612连接。各元件的正下方有氧化膜107,二极管608的漏极有氧化膜的贯通孔610,可进行接地端607的取出。根据该元件构造,构成图6的二极管603、608以及电容602,从而能构成低耗电的电路。图6的其他电路604~606、609也能够采用同样的元件构造。作为能量积蓄器604可利用电容器。
图7示出作为图6所示的电路的一部分的倍压整流电路的构成。输入端子A连接于电容602,电容连接于MOSFET603和MOSFET608。MOSFET603、608是由二极管连接而成的。二极管603的阴极为输出端子B。施加到输入端子的高频电压利用电容和二极管而使电压加倍,在输出产生电压。
图8示出作为另一个整流电路例子的2级倍压整流电路的构成。能够用图8的构成置换图6中与图7对应的整流电路部分。输入端子A连接于电容802,电容连接于MOSFET803及MOSFET808。MOSFET803、808是由二极管连接而成的。另一方面,输入端子A连接有另一个电容810,其输出连接于MOSFET812和MOSFET813。MOSFET812和MOSFET813是由二极管连接而成的。MOSFET813的源极为本整流电路的输出端子B。在MOSFET803的输出连接有电容器811。该整流电路在电容器811维持第一级的倍压整流电路的输出电压,再通过第二级的倍压整流电路施加电压。
在本实施例中,可通过如下手段谋求扩大电子标签的通信距离。首先,为了扩大电子标签的通信距离,重要的是降低电子标签芯片的耗电。在高频进行动作的部分是整流电路和时钟电路,是在输送频率进行动作的电路。另一方面,内部的存储器电路是在输送波的万分之一左右的低频进行动作。由于电子标签芯片的耗电与动作频率和寄生电容之积成正比,所以为了降低耗电,降低在高频进行动作的整流电路和时钟电路的各元件与接地端的寄生电容是有效的。在半导体芯片中,绝大多数是衬底成为接地端的情况,因此不能无视与接地端的寄生效果。若元件面积相同,则寄生电容取决于介电常数和耗尽层的厚度。若硅与氧化膜的介电常数相差约3倍、耗尽层的厚度相差约20倍,则通常的硅衬底与SOI衬底上的寄生电容相差约60倍,SOI衬底在降低寄生电容方面具有压倒性的效果。寄生电容的降低即意味着电子标签芯片耗电的降低。耗电的降低意味着通信距离的扩大。
图9是示出本发明的实施例的图7、8的二极管连接MOSFET(例如MOSFET703、803)的构成例的图。阳极101连接于多晶硅102和漏极扩散层106。栅极氧化膜103对于确定二极管的正向电压具有重要作用。二极管电流通过源极扩散层108而从阳极101流向阴极104。二极管由元件隔离膜105隔离。氧化膜107表示SOI晶片的嵌入氧化膜。芯体层109对于确定二极管的正向电压具有重要作用。芯体层109与漏极扩散层106连接,从而能够起到降低二极管的正向电压的作用。在芯体层109和源极扩散层108之间,使阳极101为负电压、阴极104为正电压这样的对于二极管而言的反向电压时,产生耗尽层104。耗尽层起到寄生电容的作用,在高频下使用二极管时,成为产生漏电流的主要原因。以往在氧化膜107的下方存在硅层,但在本发明中,为了使漏极扩散层106、芯体层109、源极扩散层108不通过硅层与接地端发生寄生电容耦合,除去了硅层。
设于漏极扩散层106、源极扩散层108的n+层的深度可以在0.01~3微米的范围,n+层与氧化膜的距离可以在0.01~3微米的范围。这是由于为了能够利用氧化膜的厚度自由控制寄生电容的降低,从元件的耐压性等方面考虑,需要使n+层的深度、n+层与氧化膜的距离等条件保持可选择性。为了降低与接地端的寄生电容,增大氧化膜107的厚度是有效的。
图10是示出本发明的另一个二极管构造的图。对于与图9相同的构成标注相同的附图标记,省略其说明。在SOI上的MOS晶体管的构造上,大致有完全耗尽型的晶体管和局部耗尽型的晶体管。本发明在任何情况下都有效,在完全耗尽型的晶体管中,在芯体层109不存在中性区域,可提高晶体管的阈特性。在局部耗尽型的晶体管中,也能控制芯体电压,这也能降低阈电压。如日本特开2000-299440号所示,在源极扩散层108、漏极扩散层106不与氧化膜107接触的情况下,本发明也有效。此时,如图10所示,耗尽层1402产生于源极扩散层108的底面。该耗尽层1402具有在到达氧化膜107时如同增大了氧化膜107那样的效果,可降低寄生电容,但如以往那样存在硅衬底时,通过硅衬底与接地端耦合,成为发生泄漏电流的主要原因。如本发明那样除去硅衬底地构成二极管,对于电子标签的IC芯片的低耗电是有效的。
图11是示出本发明的另一个二极管构造的图。对于与图9相同的构成标注相同的附图标记,省略其说明。如上所述,在电子标签的IC芯片中,重要的是降低二极管的寄生电容。作为降低寄生电容的其他手段,可通过减小形成电容的电极的相对面积来降低寄生电容。在图11的例子中,栅极氧化膜402对于确定二极管的正向电压起到重要作用。二极管电流通过源极扩散层108从阳极101流向阴极104。栅极氧化膜402的特征在于,形成于源极扩散层108、漏极扩散层106的壁面。因此,可减小耗尽层404的相对面积,从而可谋求降低由耗尽层引起的寄生电容。
图12示出本发明的制作工序。在此,以图6示出的设备的制作工序为例。同样的附图标记表示同样的构成。
在背面具有硅衬底301、夹着氧化膜107的晶片上形成天线601的端子,用布线611连接电容器602和二极管608,用布线612连接二极管的MOS栅极和漏极,图12(a)示出了刚刚完成上述构造之后的剖视图。
图12(b)示出了刚刚完成在图12(a)完成的晶片的主面侧通过粘接剂1200和加固衬底1201牢固地加固的构造之后的剖视图。
接着图12(b)之后,对背面用氢氧化钾、氨、柠嗪酸等溶解硅但不溶解氧化硅的蚀刻剂除去背面的硅衬底301,图12(c)示出刚刚完成上述工序之后的剖视图。晶片的主面侧由支承衬底1201和粘接剂1200来保护,所以可保护其免受这些蚀刻剂的损害。
图13是双面电极构造的电子标签的整体图。图13(a)示出其剖视图,图13(b)示出其俯视图。
上侧天线1301和下侧天线1302被连接成夹着具有上侧电极1302和下侧电极1304的双面电极芯片1305。
由于在做成双面电极构造的电子标签芯片的正面和背面可以各自仅具有1个电极,所以对于错位、旋转、芯片的上下颠倒具有容许度。因此,可以集中处理多个小型芯片,同时进行组装,能够较经济地制作电子标签。
图14是示出本发明的取出了背面电极的二极管连接MOSFET的图。示出除去了背面的硅衬底后的二极管构造的剖视图。对于与图9相同的构成标注相同的附图标记,省略其说明。背面引出线501是在氧化膜107形成贯通孔而连接到漏极扩散层106并在背面取出电极后而形成的。该背面电极用作天线的连接端子,可与正面的电极一起作为双面电极的电子标签的IC芯片发挥作用。
图15说明双面功率电极构造的制造工序。对于与图13相同的构成标注相同的附图标记,省略其说明。
在图15(a)中示出在具有真空吸附孔1602的对合夹具1601吸附着具有双面电极构造的电子标签芯片1305的状态的剖视图。图15(b)是定位于下侧天线1302地装载双面电极芯片的剖视图,图15(c)示出将上侧天线定位在双面电极之上的状态的剖视图。图15(d)示出刚刚完成将上侧天线连接到双面电极的上侧电极的工序之后的剖视图。这些图仅示出了一个双面电极的电子标签芯片的组装,同时组装2个至10,000个以上的多个电子标签芯片在进行经济组装方面是重要的,本发明对于形成这样的经济的电子标签是有效的。以上说明了本发明的电子标签的芯片构造是由硅-氧化膜-硅的构成的晶片做成的,但在有效地用绝缘物覆盖所完成的硅的背面的构造中也具有类似的效果,本发明不会妨碍实现这样的构造。
图16是示出本发明的MOS电容的图。第1MOS电容电极301连接于N型扩散层306,第2MOS电容电极304连接于多晶硅302,其下方有栅极氧化膜303。N型扩散层306由隔离氧化膜305隔离。N型沟道层309和N型扩散层306的下方存在氧化膜307。除去了以往的硅衬底。因此,在将第1MOS电容电极301用作图2所示的整流电流的电容的输入端子时,即使N型扩散层306成为负电位,也不会产生寄生效应。因此,第1MOS电容电极301为负电位、第2MOS电容电极304为正电位,成为作为MOS电容有效发挥作用的电位。由于除去了硅衬底,不会产生N型扩散层306或N型沟道层309与接地端的寄生电容,所以作为电子标签的IC芯片用时能够谋求低功耗。
图17是示出由布线形成的电容的构造。该电容是由半导体制造工序内的布线工序形成的。具有天线连接端子1701,其连接于第1布线电容侧壁1702。该侧壁形成为与第2布线电容侧壁1703相对。在布线的下方存在二极管,第2布线电容侧壁1703连接于公共电极1709。二极管由第1二极管电极1705、第1二极管、第2二极管1707、第2二极管电极构成。这些二极管的下方存在氧化膜1704。随着半导体布线工序的微细化的发展,能够小型化地形成有效利用了侧壁的布线电容。由该布线形成的电容没有极性的依赖性,能够得到优选为实现图6~图8的电子标签的IC芯片的整流电路的电容的特性。能够通过取得布线电容与二极管的距离做成与接地端的寄生电容较少的电容,从而能够实现电子标签的IC芯片的低功耗。
工业可利用性本发明可用于电子标签等所使用的IC芯片。
权利要求
1.一种半导体器件,是用SOI晶片形成构成电子标签芯片的整流电路的MOS二极管或MOS电容,并除去背面的硅后形成的。
2.根据权利要求1所述的半导体器件,其特征在于上述MOS二极管的扩散层到达SOI晶片的嵌入氧化膜。
3.根据权利要求1所述的半导体器件,其特征在于从上述SOI晶片的背面取出电极。
4.根据权利要求1所述的半导体器件,其特征在于在布线的侧壁形成上述MOS电容。
5.一种半导体器件,具有由半导体元件构成的整流电路,将该整流电路的输出作为电源进行动作,其中,构成上述整流电路的半导体元件被配置在由绝缘物单层构成的支承衬底之上。
6.根据权利要求5所述的半导体器件,其特征在于上述支承衬底是除去了与元件形成面相反一侧的面的硅部分后的SOI衬底。
7.根据权利要求5所述的半导体器件,其特征在于作为上述半导体元件,至少具有电容器元件和二极管元件。
8.一种RFID标签,具有天线端子和连接于该天线端子的整流电路,将该整流电路的输出作为电源并利用电波发射信号,其中,构成上述整流电路的半导体元件被配置在由绝缘物单层构成的支承衬底之上。
全文摘要
为了扩大电子标签芯片的通信距离,需要降低电子标签芯片的耗电。在SOI(Silicon on Insulator硅绝缘体)上形成电容和二极管,除去SOI的硅衬底。可降低电子标签芯片的电容和二极管与接地端的寄生电容,从而可降低电子标签芯片的耗电,扩大电子标签芯片的通信距离。
文档编号H01L29/786GK101076887SQ20058003985
公开日2007年11月21日 申请日期2005年2月16日 优先权日2005年2月16日
发明者宇佐美光雄 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1