含有由铁/铬合金制得的混合氧化物的燃料电池用多孔体的制作方法

文档序号:6886315阅读:364来源:国知局

专利名称::含有由铁/铬合金制得的混合氧化物的燃料电池用多孔体的制作方法含有由铁/铬合金制得的混合氧化物的燃料电池用多孔体本发明涉及一种密度为理论密度的40%至70%、且主要为开孔结构的多孔体,该多孔体包含铁基合金的烧结晶粒。这种多孔体被用作高温燃料电池(固体氧化物燃料电池;SOFC)中的支撑基材。这些电池在约65(TC至90(TC的温度下工作,原因在于仅在这样的温度下才会达到高效产生能量所需的热力学条件。在平板式SOFC系统的情况下,每个由阴极、固体电解质和阳极构成的电化学电池被堆叠以形成堆叠体,并且将这些电化学电池通过金属部件(即互连部件、双极板或集电体)连接在一起。这些金属部件必须具有特定的性能。从而,所述金属部件的热膨胀必须与电池材料的热膨胀非常良好地匹配。另外,所述金属部件必须对由阳极气体和阴极气体引起的腐蚀具有高度的耐受性。形成的腐蚀产物必须具有良好的导电性。由于互连部件与阳极和阴极接触,因此互连部件具有使两种气体空间分离的附带作用,因而必须是完全不透气的。在平板式SOFC系统的情况下,互连部件与阳极侧和阴极侧接触得越好,欧姆电阻就越低(在串联连接时尤为明显)。为了更好地处理与互连部件有关的接触问题,人们己经提出了新型的平板式SOFC的设计,除了应用陶瓷材料以外,人们通常应用转钛矿接触滑块;近年来,人们还研制出了MSC(金属支撑型电池)。本文中,例如,将多孔体作为支撑基材置于或焊接到常规的包含密实材料的互连部件中,通常通过涂敷法(例如高速火焰喷涂、等离子体喷涂和桨料喷涂),从阳极层开始将电池材料直接涂敷到这些多孔体上。按照这样的方式将电极和互连部件直接连接,能够达到微米级的非常均匀的接触,也能够实现非常均匀地为电极供应气体,其中后一种作用在常规的平板式SOFC中经常是利用肉眼可见的气体通道(其已通过复杂的方法轧制在致密的互连部件的表面中)来实现的。另外,由于电池材料不是自支撑性部件,因此在使用多孔支撑基材时,可以使电池材料显著变薄。这不仅使材料得到节省,而且基于热力学方面的原因也可以降低SOFC系统的工作温度。刚刚提到的气体供给状况和接触状况良好的优点是直接以同样可归因于支撑基材的高孔隙率的缺点为代价的。由于存在高的孔隙率,所以与SOFC特定的气体接触的支撑基材的表面积非常大。这可能导致腐蚀增加。另外,大的表面积也代表了烧结处理需要大的驱动力,其结果为在操作过程中多孔支撑板可能发生收縮。表面积随着孔径的减小(在密度恒定的条件下)或随着孔隙率的增加而增加。为了在MSC和ASC(阳极支撑型电池)SOFC系统中使用,有利的是,将多孔金属支撑材料和常规的互连部件一起使用,原因在于常规的互连部件比陶瓷支撑材料便宜且更易延展,并且也具有更高的导电性。与常规的互连部件相比,使用这种多孔体的优点如下可以通过多孔体来供给气体,并且与电池材料的接触可得到显著改善,使得接触更为均匀、并且在操作期间能保持在恒定的水平。用于SOFC应用的市售的多孔产品或我们所开发的那些多孔产品(例如如专利文献EP1455404、WO02/101859A2、DE10161538和EP1318560中所述的非织造织物和针织物)在SOFC系统的常规使用条件下(即在约65(TC至90(TC下在腐蚀性气氛中)具有良好的耐腐蚀性和与电池陶瓷材料的热膨胀系数相匹配的热膨胀系数。然而已经发现,由于由微细金属线/纤维构成的多孔支撑基材在使用条件下无法提供均匀的作用面,同时机械稳定性也不够高,因此通过上述涂敷方法将电池材料或其它陶瓷保护层施加到这些多孔支撑基材上不能获得足够高的性能。专利文献DE10325862公开了一种最高铬含量为13%的金属支撑基材。在文献(WernerSchatt,"PulvermetallurgieSinterundVerbundwerkstoffe",第三版,1988;第371页)中记录了制备多孔体的烧结温度为IIO(TC至1250°C。由于SOFC系统的使用温度升髙至Fe-Cr材料通常的烧结温度,因此由密实的、烧结的金属粉末制得的市售多孔支撑基材容易经历后烧结,从而不能获得在长的使用时间内密度小于理论密度的70%的多孔材料。这种不被期望的后烧结,尤其是由SOFC系统工作时的热循环模式所导致的后烧结,对沉积的电池材料会造成不可逆的损害。即使由专利文献WO01/49440中得知可加入无机或有机物质以形成小孔,但由于后烧结可归属于表面烧结机理和整体烧结机理,因此不能在上述使用条件下完全抑制Fe-Cr合金的后烧结。本发明的目的是提供一种包含Fe-Cr合金并且在使用温度高达90(TC下不易经历后烧结的多孔体,在该多孔体上可以容易地沉积陶瓷层和金属陶瓷层,并且该多孔体也具有高的耐腐蚀性和良好的机械强度。通过独立权利要求实现了该目的。所述多孔体的密度为理论密度的40%至70%并且主要为开孔结构,所述多孔体是由彼此良好烧结在一起的粉末'晶粒构成的。基于本发明的目的,"良好烧结"是指在单个晶粒之间形成直径大于晶粒直径的1/5、优选大于晶粒直径的1/3的烧结颈。所述合金由下列成分构成15重量%至35重量%的Cr;0.01重量%至2重量%的、选自Ti、Zr、Hf、Mn、Y、Sc、稀土金属中的一种或多种元素;0重量%至10重量%的Mo和/或Al;0重量%至5重量%的、选自Ni、W、Nb、Ta中的一种或多种金属;0.1重量%至1重量%的0;其余为Fe、以及钢特有的杂质。合金元素的下限和上限的选择理由分别列于下表1中。表1<table>tableseeoriginaldocumentpage8</column></row><table>所述合金名义上不含任何碳,但其制备方法会导致获得约50吗/g至1000吗/g的碳含量。另外,Y、Sc和稀土金属中的至少一种金属与Cr、Ti、Al和Mn中的至少一种金属形成混合氧化物。混合氧化物的含量优选为0.01重量%至2重量%。所述多孔体可另外含有0.01重量%至1.5重量%的一种或多种选自Y、Sc、稀土金属、Ti和Al中的金属的氧化物。本发明必需的混合氧化物优选在使用机械合金化粉末以及1250。C至1470。C的烧结温度的条件下形成。目前发现在形成这种混合氧化物时,可烧结性大幅降低。因此,可以在同系温度高达0.98xTs(Ts=固相线温度)下使用典型平均粒径为5(imi至50fim(通过Fisher法测定)的相对精细的粉末来制备多孔结构体。烧结时体积收縮比小于5%。事实上,这种多孔结构体在基本低于烧结温度的使用温度下不收缩。在90CTC/10小时的条件下,可确保收缩率小于1%。另外,已发现当1%至95%的烧结晶粒的表面被混合氧化物覆盖时,混合氧化物的效果是特别显著的。混合氧化物可以作为覆盖晶粒表面的独立颗粒或层的形式存在。多孔体优选含有0.01重量%至2重量。/。的Y-Ti、Y-Al和/或Y-Al-Ti混合氧化物。另外已发现有利的是,合金含有0.01重量%至1.5重量%的Y203、0.5重量%至5重量%的Mo和0.1重量%至1重量%的Ti。在优选的实施方案中,孔径为10nm至30,。另外,本发明的合金的特征在于,其对于由阴极气体和阳极气体所引起的腐蚀具有特别高的耐受性。单质粉末或预合金化粉末的粉末混合物被用于制备多孔体。粉末混合物优选是机械合金化的。机械合金化在高能研磨机中、优选在磨碎机中进行。典型的研磨时间为10小时至30小时。随后将粉末混合物与有机粘结剂混合,粘结剂的体积含量大致对应于烧结体的孔体积。在1250"C至1470'C下在保护气体中进行烧结。多孑L体的厚度为200拜至20mm,优选500,至3000,。也可以使用几何形状复杂的结构体。与市售的由线制成的非织造织物和针织物相比,保护层和活性陶瓷层或类金属陶瓷层(cermet-likelayer)也可以非常良好地沉积在多孔体上。因此该多孔体特别适合用作SOFC系统中的支撑基材。下面通过实施例对本发明进行说明。实施例1图1示出了在多孔体的晶粒表面上的混合氧化物颗粒。图2示出了混合氧化物颗粒的典型的EDX谱图。图3示出了多孔体的金属表面的典型的EDX谱图。将一种粉末混合物在翻转式混合器中匀质化,随后在保护气体下在磨碎机中进行机械合金化达12小时,其中该粉末混合物的组成(基于多孔体而言)为26重量%的Cr、0.5重量%的Y203、2重量%的Mo、0.3重量%的Mn、0.3重量%的Ti禾B0.03重量%的Al。将按照这种方式获得的粉末过筛,得到小于36pm的颗粒级分。在加入有机粘结剂后,制得尺寸为500x300x0.65mm的生坯。粘结剂的体积含量大致对应于多孔体的所需的孔隙率。在氢气下于145(TC进行烧结,并且所测得的烧结时的横向收縮率小于1%。烧结体的密度为4.2g/cm3,平均孔径为10pm。在晶粒表面处检测到含有Al-Ti-Y的混合氧化物,这点可以从表面分析与本体分析的对比(图2和3)中看出来。烧结晶粒的表面区域中大约有5%被混合氧化物覆盖。实施例2将一种粉末混合物在翻转式混合器中匀质化,随后在保护气体下在磨碎机中进行机械合金化达15小时,其中该粉末混合物的组成(基于多孔体而言)为18重量。/。的Cr、0.5重量%的La203、3重量%的Nb、0.3重量%的Mn、0.3重量%的Zr和0.03重量%的Al。按照实施例1中所述的方式进行进一步处理,不同之处在于筛出小于100pm的颗粒级分。烧结体的密度为4.4g/cm3,平均孔径为30pm。在晶粒表面处检测到含有Al-Zr-La的混合氧化物。烧结晶粒的表面区域中大约有7。/。被混合氧化物覆盖。权利要求1.一种多孔体,其密度为理论密度的40%至70%、且主要为开孔结构,该多孔体包含Fe含量高于50重量%的铁基合金的烧结晶粒,所述多孔体的特征在于所述合金由下列成分构成15重量%至35重量%的Cr;0.01重量%至2重量%的选自Ti、Zr、Hf、Mn、Y、Sc和稀土金属中的至少一种元素;0重量%至10重量%的选自Mo和Al中的至少一种元素;0重量%至5重量%的选自Ni、W、Nb和Ta中的至少一种元素;0.1重量%至1重量%的O;余量的Fe和杂质;并且选自Y、Sc和稀土金属中的至少一种金属与选自Cr、Ti、Al和Mn中的至少一种金属形成混合氧化物。2.根据权利要求1所述的多孔体,其特征在于所述混合氧化物的含量为0.01重量%至2重量%。3.根据权利要求1或2所述的多孔体,其特征在于所述多孔体含有0.01重量%至1.5重量%的一种或多种选自Y、Sc、稀土金属、Ti和Al中的金属的氧化物。4.根据权利要求1至3中任意一项所述的多孔体,其特征在于所述烧结晶粒的表面中有1%至95%被所述混合氧化物覆盖。5.根据权利要求1至4中任意一项所述的多孔体,其特征在于所述多孔体在900°C/10小时的条件下的体积收縮率小于1%。6.根据权利要求1至5中任意一项所述的多孔体,其特征在于所述合金含有0.01重量%至2重量%的Y-Ti、Y-A1和/或Y-Al-Ti混合氧化物。7.根据权利要求1至6中任意一项所述的多孔体,其特征在于所述合金含有18重量%至28重量%的Cr。8.根据权利要求1至7中任意一项所述的多孔体,其特征在于所述合金含有0.5重量%至5重量%的Mo。9.根据权利要求1至8中任意一项所述的多孔体,其特征在于所述合金含有0.1重量%至1重量%的Ti。10.根据权利要求1至9中任意一项所述的多孔体,其特征在于所述合金含有0.01重量%至1.5重量%的Y203。11.根据权利要求1至10中任意一项所述的多孔体,其特征在于平均孔径为5pm至100pm,优选为10|im至30fim。12.根据权利要求1至11中任意一项所述的多孔体,其特征在于平均粒径为20(im至70nm。13.根据权利要求1至12中任意一项所述的多孔体.,其特征在于烧结颈的直径大于粒径的1/5,优选为大于粒径的1/3。14.根据权利要求1至13中任意一项所述的多孔体,其特征在于所述多孔体为支撑基材。15.—种制备根据权利要求1至14中任意一项所述的多孔体的方法,其特征在于该方法至少包括如下步骤使用单质粉末或预合金化粉末制备粉末混合物,将所述粉末混合物机械合金化,将所述粉末混合物与粘结剂一起混合,所述粘结剂的体积含量大致对应于所述烧结体的孔体积,在125(TC《T《147(TC的温度下在保护气体中进行烧结。16.根据权利要求1至14中任意一项所述的多孔体在SOFC系统中的应用。全文摘要本发明涉及一种多孔体,其密度为40%至70%、并包含铁基合金,该多孔体包含0.01重量%至2重量%的混合氧化物,其中该混合氧化物包含选自Y、Sc或稀土金属中的一种或多种金属的至少一种氧化物、以及选自Ti、Al或Cr中的一种或多种金属的至少一种氧化物。所述多孔体即使在900℃的应用温度下也不发生后收缩,并且其进一步的特征在于具有特别高的耐腐蚀性、并且特别适合用作高温燃料电池中所使用的支撑基材。文档编号H01M8/12GK101389777SQ200780006945公开日2009年3月18日申请日期2007年2月23日优先权日2006年2月27日发明者格奥尔格·孔施尔特,格布哈特·措伯尔,沃尔夫冈·格拉茨,赖因霍尔德·察赫申请人:普兰西欧洲股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1