使用基于飞秒的激光及等离子体蚀刻的晶圆切割方法及系统的制作方法

文档序号:7256532阅读:431来源:国知局
专利名称:使用基于飞秒的激光及等离子体蚀刻的晶圆切割方法及系统的制作方法
使用基于飞秒的激光及等离子体蚀刻的晶圆切割方法及系统相关申请案的交叉引用本申请案主张2010年6月22日提出申请的美国临时申请案第61/357,468号之权益,该案之全部内容以引用之方式并入本文中。背景 I)领域本发明之实施例系关于半导体处理领域,且特定言之系关于切割半导体晶圆之方法,其中每一晶圆在该晶圆上具有多个集成电路。2)相关技术的描述在半导体晶圆处理中,在由硅或其他半导体材料组成之晶圆(亦被称作基板)上形成集成电路。通常,利用半导体、导电或绝缘之不同材料层来形成集成电路。使用各种熟知制程掺杂、沈积及蚀刻此等材料,以形成集成电路。处理每一晶圆以形成大量含有集成电路之个别区域,该等个别区域称为晶粒。在集成电路形成制程之后,「切割」晶圆以将个别晶粒彼此分隔,以用于封装或在较大电路内以未封装形式使用。用于晶圆切割之两种主要技术为划线及锯切。藉由划线,沿预成形之划割线越过晶圆表面移动金刚石尖头划线器。此等划割线沿晶粒之间的间隔延伸。此等间隔通常被称作「切割道(street)」。金刚石划线器沿切割道在晶圆表面中形成浅划痕。在诸如以滚轴施加压力之后,晶圆沿该等划割线分开。晶圆断裂遵循晶圆基板之晶格结构。划线可用于厚度约10密耳(千分之一吋)或更小之晶圆。对于更厚之晶圆,目前锯切为用于切割之较佳方法。藉由锯切,以每分钟高转数旋转之金刚石尖头锯接触晶圆表面,且沿切割道锯切晶圆。晶圆安装在诸如在薄膜框架上伸展之粘合薄膜的支撑构件上,且锯反复施加于垂直切割道与水平切割道两者。划线或锯切的一个问题为切屑及挖伤可沿该等晶粒之切断边缘形成。此外,裂纹可形成且自该等晶粒之边缘扩散至基板中,且致使集成电路不工作。切削及裂化特别为划线的问题,因为正方形或矩形晶粒仅一侧可沿结晶结构之〈110〉方向被划线。因此,该晶粒另一侧之裂开产生一锯齿状分隔线。由于切削及裂化,故在晶圆上的晶粒之间需要额外间隔,以防止损坏集成电路,例如,将切屑及裂纹维持在与实际集成电路一定距离处。间隔要求导致在一标准尺寸晶圆上不能形成同样多之晶粒,且浪费了原本可用于电路之晶圆空间(real estate)。锯之使用加重半导体晶圆上空间之浪费。锯刃约15微米厚。因此,为保证由锯造成之切口周围之裂纹及其他损坏不损害集成电路,常须三百微米至五百微米来分隔该等晶粒中之每一者之电路。此外,在切割之后,每一晶粒需要实质性清洁,以移除由锯切制程产生之微粒及其他污染物。亦使用了等离子体切割,但等离子体切割同样可具有局限性。举例而言,成本可为阻碍实施等离子体切割的一个局限。用于布局图样抗蚀剂之标准微影操作可致使实施成本过高。可能阻碍实施等离子体切割之另一局限为,在沿切割道切割中之常见金属(例如铜)之等离子体处理可造成生产问题或产量限制。

发明内容
本发明之实施例包括切割半导体晶圆之方法,其中每一晶圆在该晶圆上具有多个集成电路。在一实施例中,一种切割具有多个集成电路之半导体晶圆的方法包括以下步骤在该半导体晶圆上方形成一遮罩,该遮罩由覆盖且保护该等集成电路之一层组成。然后用一基于飞秒之激光划线制程将该遮罩布局图样,以提供具有间隙之经布局图样之遮罩,从而曝露该等集成电路之间的该半导体晶圆之区域。然后将该半导体晶圆蚀刻穿过该经布局图样之遮罩中之该等间隙,以单分该等集成电路。在另一实施例中,一种用于切割半导体晶圆之系统包括一工厂介面。一激光划线设备与该工厂介面耦合,且包括一基于飞秒之激光。一等离子体蚀刻腔室亦与该工厂介面耦合。
在另一实施例中,一种切割具有多个集成电路之半导体晶圆的方法包括以下步骤在一硅基板上方形成一聚合物层。该聚合物层覆盖且保护安置于该硅基板上之集成电路。该等集成电路由安置于一低介电常数材料层及一铜层上方的二氧化硅层组成。用一基于飞秒之激光划线制程将该聚合物层、该二氧化硅层、该低介电常数材料层及该铜层布局图样,以曝露该等集成电路之间的该硅基板之区域。然后将该硅基板蚀刻穿过间隙,以单分该等集成电路。


图I图示根据本发明之一实施例,待切割之半导体晶圆的俯视图。图2图示根据本发明之一实施例的待切割之半导体晶圆的俯视图,该半导体晶圆具有切割遮罩形成在半导体晶圆上。图3为根据本发明之一实施例,表示切割半导体晶圆之方法之操作的流程图,该半导体晶圆包括多个集成电路。图4A图示根据本发明之一实施例,在执行切割该半导体晶圆之方法期间,包括多个集成电路之半导体晶圆的横截面图,该横截面图对应于图3之流程图之操作302。图4B图示根据本发明之一实施例,在执行切割该半导体晶圆之方法期间,包括多个集成电路之半导体晶圆的横截面图,该横截面图对应于图3之流程图之操作304。图4C图示根据本发明之一实施例,在执行切割该半导体晶圆之方法期间,包括多个集成电路之半导体晶圆的横截面图,该横截面图对应于图3之流程图之操作306。图5图示根据本发明之一实施例,使用飞秒范围内之激光脉冲与较长脉冲时间比较之效果。图6图示根据本发明之一实施例,材料之堆迭之横截面图,该等材料可用于半导体晶圆或基板之切割道区域。图7包括根据本发明之一实施例,结晶硅(C-Si)、铜(Cu)、结晶二氧化硅(C-SiO2)及非晶二氧化硅(a_Si02)之吸收系数随着光子能变化的曲线图。图8为方程式,该方程式展示给定激光之激光强度与激光脉冲能量、激光脉冲宽度及激光光束半径之函数关系。
图9A至图9D图示根据本发明之一实施例,切割半导体晶圆之方法之不同操作的横截面图。图10图示根据本发明之一实施例,藉由使用与习知切割相比较窄之切割道达成的半导体晶圆上之紧密作用,该习知切割可限于最小宽度。图11图示根据本发明之一实施例,允许较紧密堆积且因此与栅格对准方法相比允许每晶圆更多之晶粒的自由形式集成电路布置。图12图示根据本发明之一实施例,用于晶圆或基板之激光及等离子体切割之工具布局的方块图。图13图示根据本发明之一实施例,示例性电脑系统的方块图。
具体实施例方式已描述切割半导体晶圆之方法,其中每一晶圆在该晶圆上具有多个集成电路。在·以下描述中阐述众多特定细节,诸如基于飞秒之激光划线及等离子体蚀刻条件及材料状况,以提供对本发明之实施例之透彻理解。熟习此项技术者而言,本发明之实施例可在无此等特定细节之情况下实施将显而易见。在其他实例中,诸如集成电路制造之熟知态样不作详述,以免不必要地使本发明之实施例难以理解。此外,应理解,附图中所示之各种实施例为说明性表示,且未必按比例绘制。可实施涉及初始激光划线及后续等离子体蚀刻之混合晶圆或基板切割制程,以用于晶粒单分。激光划线制程可用于清除遮罩层、有机及无机介电层及元件层。然后可在曝露或部分蚀刻晶圆或基板之后终止该激光蚀刻制程。然后可使用切割制程之等离子体蚀刻部分来蚀刻穿过大部分的晶圆或基板(诸如穿过大块单结晶硅),以产生晶粒或晶片单分或切割。习知晶圆切割方法包括基于纯机械分离之金刚石锯切、初始激光划线及后续金刚石锯切割或奈秒或皮秒激光切割。对于诸如50微米厚之大块硅单分的薄晶圆或基板单分而言,该等习知方法仅产生不良制程品质。在自薄晶圆或基板单分晶粒时可能面临之一些挑战可包括在不同层之间形成微裂或分层、切削无机介电层、保持严格之锯口宽度控制或精确之切除深度控制。本发明之实施例包括混合激光划线及等离子体蚀刻晶粒单分方法,该方法可适用于克服上述挑战中之一或多者。根据本发明之一实施例,基于飞秒之激光划线与等离子体蚀刻之组合用于将半导体晶圆切割成个别化或单分化之集成电路。在一实施例中,基于飞秒之激光划线被用作基本(若非完全)非热制程。举例而言,该基于飞秒之激光划线可定位于无热损坏或可忽略热损坏之区域。在一实施例中,本文之方法用于单分具有超低介电常数薄膜之集成电路。藉由习知切割,可能需要锯减速以适应此类低介电常数薄膜。此外,现通常在切割之前使半导体晶圆变薄。因此,在一实施例中,将遮罩布局图样与使用基于飞秒之激光之部分晶圆划线组合,并继之以等离子体蚀刻制程系现今实用的。在一实施例中,藉由激光直接写入可排除对光阻层之微影布局图样操作之需要,且可以极低之成本实施。在一实施例中,通孔型硅蚀刻用于在等离子体蚀刻环境中完成该切割制程。因此,在本发明之一态样中,基于飞秒之激光划线与等离子体蚀刻之组合可用于将半导体晶圆切割成单分化之集成电路。图I图示根据本发明之一实施例,待切割之半导体晶圆的俯视图。图2图示根据本发明之一实施例的待切割之半导体晶圆的俯视图,该半导体晶圆具有切割遮罩形成在半导体晶圆上。参看图1,半导体晶圆100具有包括集成电路之多个区域102。区域102由垂直切割道104及水平切割道106分隔。切割道104及切割道106为不含集成电路之半导体晶圆之区域,且将切割道104及切割道106设计为切割晶圆所沿着的位置。本发明之一些实施例涉及利用基于飞秒之激光划线与等离子体蚀刻技术之组合,以沿该等切割道切割沟道穿过半导体晶圆,以使得该等晶粒被分成个别晶片或晶粒。由于激光划线与等离子体蚀刻 ·制程皆不依赖于结晶结构定向,故待切割之半导体晶圆之结晶结构对达成穿过该晶圆之垂直沟道并不重要。参看图2,半导体晶圆100具有沈积于半导体晶圆100上之遮罩200。在一实施例中,该遮罩以习知方式经沈积,以达成约4-10微米厚之层。用激光划线制程将遮罩200及半导体晶圆100之一部分布局图样,以沿切割道104及切割道106界定切割半导体晶圆100所在之位置(例如间隙202及204)。半导体晶圆100之集成电路区域由遮罩200覆盖及保护。遮罩200之区域206经定位以使得在后续刻蚀制程期间,集成电路不被该蚀刻制程降级。在区域206之间形成水平间隙204及垂直间隙202,以界定将在蚀刻制程期间被蚀刻以最终切割半导体晶圆100之区域。图3为根据本发明之一实施例,表示切割半导体晶圆之方法之操作的流程图300,该半导体晶圆包括多个集成电路。图4A至图4C图示根据本发明之一实施例,在执行切割该半导体晶圆之方法期间,包括多个集成电路之半导体晶圆的横截面图,该等横截面图对应于流程图300之操作。参看流程图300之操作302以及相应图4A,遮罩402形成于半导体晶圆或基板404上方。遮罩402由覆盖且保护集成电路406之层组成,集成电路406形成于半导体晶圆404之表面上。遮罩402亦覆盖介入切割道407,介入切割道407形成于集成电路406中之每一者之间。根据本发明之一实施例,形成遮罩402包括形成诸如(但不限于)光阻层或自交系(I-Iine)布局图样层之层。举例而言,诸如光阻层之聚合物层可由另外适用于微影制程之材料组成。在一实施例中,该光阻层由正光阻材料组成,诸如(但不限于)248奈米(nm)抗蚀剂、193nm抗蚀剂、157nm抗蚀剂、极紫外线(extreme ultra-violet; EUV)抗蚀剂或含有重氮基萘醌敏化剂之酚树脂介质。在另一实施例中,该光阻层由负光阻材料组成,诸如(但不限于)聚顺异戊二烯及聚桂皮酸乙烯酯。在一实施例中,半导体晶圆或基板404由适合于经受制造程序之材料组成,且可将半导体处理层适当安置于该材料上。举例而言,在一实施例中,半导体晶圆或基板404由基于IV族之材料组成,诸如(但不限于)结晶硅、锗或硅/锗。在一特定实施例中,提供半导体晶圆404包括提供单晶娃基板。在一特定实施例中,该单晶娃基板惨杂有杂质原子。在另一实施例中,半导体晶圆或基板404由III-V族材料组成,诸如用于发光二极体(lightemitting diode; LED)之制造之III-V族材料基板。在一实施例中,半导体晶圆或基板404具有安置于半导体晶圆或基板404上或半导体晶圆或基板404中之一阵列之半导体元件,该等半导体元件作为集成电路406之一部分。此类半导体元件之实例包括(但不限于)在硅基板中制造且包装于介电层中之记忆体兀件或互补金氧半导体(complimentary metal-oxide-semiconductor;CMOS)电晶体。在该等元件或电晶体上方及周围介电层中可形成多个金属互连,且该等金属互连可用于电气耦合该等元件或电晶体,以形成集成电路406。组成切割道407之材料可与用于形成集成电路406之彼等材料相似或相同。举例而言,切割道407可由多层介电材料、半导体材料及金属化组成。在一实施例中,切割道407中之一或多者包括类似于集成电路406之实际元件的测试元件。参看流程图300之操作304以及相应图4B,用基于飞秒之激光划线制程将遮罩402布局图样,以提供具有间隙410之经布局图样之遮罩408,从而曝露集成电路406之间的半导体晶圆或基板404之区域。因此,基于飞秒之激光划线制程用于移除最初形成于集成电路406之间的切割道407之材料。根据本发明之一实施例,用基于飞秒之激光划线制程将遮罩402布局图样包括形成沟道412部分进入集成电路406之间的半导体晶圆404之区域,如图4B所示。在一实施例中,用激光划线制程将遮罩408布局图样包括使用具有飞秒范围内之脉冲宽度之激光。具体而言,具有在可见光谱加紫外线(ultra-violet;UV)及红外线 (infra-red; IR)范围(总计宽频光谱)内之波长的激光可用于提供基于飞秒之激光,亦即具有量级为飞秒(10_15秒)之脉冲宽度的激光。在一实施例中,切除不依赖于或基本不依赖于波长,且因此适合于复合薄膜,诸如遮罩402之薄膜、切割道407之薄膜及可能一部分半导体晶圆或基板404之薄膜。图5图示根据本发明之一实施例,使用飞秒范围内之激光脉冲与较长频率比较之效果。参看图5,与较长脉冲宽度比较(例如,藉由皮秒处理通孔500B产生损坏502B及藉由奈秒处理通孔500A产生显著损坏502A),使用具有飞秒范围内之脉冲宽度的激光缓解或消除了热损坏问题(例如,藉由飞秒处理通孔500C最小化至无损坏502C)。在形成通孔500C期间损坏的消除或缓解可归因于缺乏低能量再耦合(如见于基于皮秒之激光切除)或热平衡(如见于基于奈秒之激光切除),如图5所示。激光参数选择(诸如脉冲宽度)可为研发成功之激光划线及切割制程之关键,成功之激光划线及切割制程将切削、微裂及分层减至最少,以达成平整之激光划线切口。激光划线切口愈平整,则用于最终之晶粒单分而执行之蚀刻制程愈平稳。在半导体元件晶圆中,许多不同材料类型(例如导体、绝缘体、半导体)及厚度之功能层通常安置于半导体元件晶圆上。此类材料可包括(但不限于)诸如聚合物之有机材料、金属或诸如二氧化硅及氮化硅之无机介电质。安置于晶圆或基板上之个别集成电路之间的切割道可包括与该等集成电路本身相似或相同之层。举例而言,图6图示根据本发明之一实施例,材料之堆迭的横截面图,该等材料可用于半导体晶圆或基板之切割道区域中。参看图6,切割道区域600包括硅基板之顶部部分602、第一二氧化硅层604、第一蚀刻终止层606、第一低介电常数介电层608 (例如,具有小于二氧化硅之介电常数4. O之介电常数)、第二蚀刻终止层610、第二低介电常数介电层612、第三蚀刻终止层614、无掺杂娃玻璃(undoped silica glass;USG)层616、第二二氧化娃层618及光阻层620,其中图示相对厚度。铜金属622安置于第一蚀刻终止层606与第三蚀刻终止层614之间,且穿过第二蚀刻终止层610。在一特定实施例中,第一蚀刻终止层606、第二蚀刻终止层610及第三蚀刻终止层614由氮化娃组成,而低介电常数介电层608及612由掺碳氧化娃材料组成。在习知激光照射(诸如基于奈秒或基于皮秒之激光照射)下,切割道600之材料在光吸收及切除机制方面表现相当不同。举例而言,诸如二氧化硅之介电层在正常情况下对所有市售之激光波长均为基本透明。相反,金属、有机物(例如低介电常数材料)及硅能够非常容易地耦合光子,尤其回应于基于奈秒或基于皮秒之激光照射。举例而言,图7包括根据本发明之一实施例,结晶硅(c-Si,702)、铜(Cu,704)、结晶二氧化硅(C-SiO2, 706)及非晶二氧化硅(a-Si02,708)之吸收系数随着光子能变化的曲线图700。图8为方程式800,该方程式展示给定激光之激光强度与激光脉冲能量、激光脉冲宽度及激光光束半径之函数关系。在一实施例中,利用方程式800及吸收系数之曲线图700,可选择基于飞秒激光之制程之参数,以对无机及有机介电质、金属及半导体具有基本共同之 切除效应,尽管此类材料之一般能量吸收特征在某些条件下可大大不同。举例而言,二氧化硅之吸收率为非线性的,且在适当激光切除参数下二氧化硅之吸收率可与有机介电质、半导体及金属之吸收率更加一致。在一个此类实施例中,高强度及短脉冲宽度之基于飞秒之激光制程用于切除层之堆迭,该层之堆迭包括二氧化硅层,及有机介电质、半导体或金属中之一或多者。在一特定实施例中,约小于或等于400飞秒之脉冲用于基于飞秒之激光照射制程,以移除遮罩、切割道及一部分娃基板。相反,若选择非最佳激光参数,则在涉及无机介电质、有机介电质、半导体或金属中之两者或两者以上之堆迭结构中,激光切除制程可造成分层问题。举例而言,激光穿透高带隙能量介电质(诸如具有约9eV带隙之二氧化硅),而无可量测吸收。然而,该激光能可在下方的金属层或硅层中被吸收,从而引起该金属层或硅层之显著汽化。该汽化可产生高压,以升起上覆的二氧化硅介电层,且可能造成严重的层间分层及微裂化。在一实施例中,尽管基于皮秒之激光照射制程在复合堆迭中导致微裂化及分层,但已证明,基于飞秒之激光照射制程并不导致相同材料堆迭之微裂化或分层。为了能够直接切除介电层,介电材料可能需要发生离子化,以使得该等介电材料藉由强吸收光子而与导电材料表现相似。该吸收可在最终切除介电层之前阻碍大部分激光能穿透至下方的硅层或金属层。在一实施例中,当激光强度足够高以致在无机介电材料中弓I发光子离子化及撞击离子化时,该无机介电质之离子化系可行的。根据本发明之一实施例,合适的基于飞秒之激光制程之特征为高峰值强度(照射度),该高峰值强度通常在不同材料中导致非线性相互作用。在一个此类实施例中,尽管脉冲宽度较佳在100飞秒至400飞秒之范围内,但飞秒激光源具有近似在10飞秒至500飞秒之范围内的脉冲宽度。在一实施例中,尽管波长较佳在540奈米至250奈米之范围内,但飞秒激光源具有近似在1570奈米至200奈米之范围内的波长。在一实施例中,尽管焦点较佳近似在5微米至10微米之范围内,但激光及相应光学系统在工作表面处提供近似在3微米至15微米之范围内的焦点。在该工作表面处之空间光束剖面可为单模(高斯)或具有顶帽形状之剖面。在一实施例中,尽管脉冲重复率较佳近似在500kHz至5MHz之范围内,但激光源具有近似在200kHz至IOMHz范围内之脉冲重复率。在一实施例中,尽管脉冲能量较佳近似在IuJ至5uJ之范围内,但激光源在工作表面处传递近似在O. 5uJ至IOOuJ之范围内的脉冲能量。在一实施例中,尽管速度较佳近似在600mm/sec至2m/sec之范围内,但激光划线制程以近似在500mm/sec至5m/sec之范围内的速度沿工件表面执行 。划线制程可仅单程执行或多程执行,但在一实施例中,较佳I至2程。在一实施例中,工件之划线深度近似在5微米至50微米深之范围内,较佳近似在10微米至20微米深之范围内。激光可以给定之脉冲重复率施加于一系列单一脉冲中,或一系列脉冲猝发中。在一实施例中,尽管在硅晶圆划线/切割中在元件/硅介面处所量测之锯口宽度较佳近似在6微米至10微米之范围内,但所产生激光光束之锯口宽度近似在2微米至15微米之范围内。可选择具有以下益处及优点之激光参数诸如提供足够高之激光强度,以达成无机介电质(例如二氧化硅)之离子化,且在直接切除无机介电质之前将由底层损坏造成的分层及切削减至最少。又,可选择参数,以藉由精确控制之切除宽度(例如锯口宽度)及深度提供用于工业应用之有意义的制程产量。如上所述,与基于皮秒及基于奈秒之激光切除制程相比,基于飞秒之激光远远更适合于提供此类优点。然而,即使在基于飞秒之激光切除之光谱中,某些波长亦可提供较其他波长更佳之效能。举例而言,在一实施例中,与具有更接近红外线范围或在红外线范围内之波长的基于飞秒之激光制程相比,具有更接近紫外线范围或在紫外线范围内之波长的基于飞秒之激光制程提供更平整之切除制程。在一特定此类实施例中,适合于半导体晶圆或基板划线之基于飞秒之激光制程系基于具有约小于或等于540奈米之波长的激光。在一特定此类实施例中,使用约小于或等于400飞秒之脉冲之激光,该激光具有约小于或等于540奈米之波长。然而,在一替代实施例中,使用双激光波长(例如,红外线激光与紫外线激光之组合)。参看流程图300之操作306及相应图4C,将半导体晶圆404蚀刻穿过经布局图样之遮罩408中的间隙410,以单分集成电路406。根据本发明之一实施例,蚀刻半导体晶圆404包括蚀刻用基于飞秒之激光划线制程形成之沟道412,以最终完全蚀刻穿过半导体晶圆404,如图4C所示。在一实施例中,蚀刻半导体晶圆404包括使用等离子体蚀刻制程。在一实施例中,使用娃通孔(through-silicon-via)型蚀刻制程。举例而言,在一特定实施例中,半导体晶圆404之材料之蚀刻速度大于25微米/分钟。超高密度等离子体源可用于晶粒单分制程之等离子体蚀刻部分。适于执行此类等离子体蚀刻制程之处理腔室之实例为可购自 Applied Materials (Sunnyvale, CA, USA)之 Applied Centura Silvia Etch 系统。AppIiedCentura Silvia Etch系统组合电容性与感应射频(radio frequency;RF) f禹合,较仅电容性耦合甚至磁性增强所提供改良之可能情况,电容性与感应射频耦合给予离子密度及离子能量更多独立控制。此组合使离子密度能够与离子能量有效地去耦,以便即使在极低压力下亦可达成不具有可能有害之高直流(direct current; DC)偏压位准之相对较高密度的等离子体。此举产生异常宽之制程视窗。然而,可使用能够蚀刻硅之任何等离子体蚀刻腔室。在一示例性实施例中,深硅蚀刻用于以大于约40%之习知硅蚀刻速度之蚀刻速度蚀刻单结晶硅基板或晶圆404,同时维持基本精确之剖面控制及实质上无扇形之侧壁。在一特定实施例中,使用硅通孔型蚀刻制程。该蚀刻制程系基于反应性气体所产生之等离子体,该反应性气体通常为氟基气体,诸如SF6、C4F8、CHF3、XeF2,或能够以相对较快蚀刻速度蚀刻硅之任何其他反应性气体。在一实施例中,在单分制程后移除遮罩层408,如图4C所示。因此,再次参看流程图300及图4A至图4C,可藉由初始激光切除穿过遮罩层、穿过晶圆切割道(包括金属化)且部分进入硅基板而执行晶圆切割。可在飞秒范围内选择该激光脉冲宽度。然后可藉由后续穿硅等离子体深蚀刻完成晶粒单分。根据本发明之一实施例,下文结合图9A至图9D描述用于切割之材料堆迭之特定实例。参看图9A,用于混合激光切除及等离子体蚀刻切割之材料堆迭包括遮罩层902、元件层904及基板906。遮罩层、元件层及基板安置于晶粒粘着薄膜908上方,晶粒粘着薄膜908附着至衬带910。在一实施例中,遮罩层902为光阻层,诸如上文结合遮罩402所述之光阻层。元件层904包括安置于一或多个金属层(诸如铜层)及一或多个低介电常数介电层(诸如掺碳氧化物层)上方的无机介电层(诸如二氧化硅)。元件层904亦包括布置于集成电路之间的切割道,该等切割道包括与集成电路相同或相似之层。基板906为大块单结晶娃基板。在一实施例中,在大块单结晶硅基板906附着至晶粒粘着薄膜908之前,自背侧使大块单结晶硅基板906变薄。可藉由背侧研磨制程执行该变薄步骤。在一实施例中,使大块单结晶硅基板906变薄至近似在50-100微米范围内之厚度。在一实施例中,重要的是应 注意,在激光切除及等离子体蚀刻切割制程之前执行该变薄。在一实施例中,光阻层902具有约5微米之厚度,而元件层904具有近似在2-3微米范围内之厚度。在一实施例中,晶粒粘着薄膜908 (或能够将变薄或薄的晶圆或基板接合至衬带910之任何合适之替代物)具有约20微米之厚度。参看图9B,用基于飞秒之激光划线制程912将遮罩902、元件层904及一部分基板906布局图样,以在基板906中形成沟道914。参看图9C,穿硅等离子体深蚀刻制程916用于将沟道914向下延伸至晶粒粘着薄膜908,从而曝露晶粒粘着薄膜908之顶部部分且单分硅基板906。在穿硅等离子体深蚀刻制程916期间,藉由光阻层902保护元件层904。参看图9D,单分制程可进一步包括将晶粒粘着薄膜908布局图样,从而曝露衬带910之顶部部分且单分晶粒粘着薄膜908。在一实施例中,藉由激光制程或藉由蚀刻制程单分晶粒粘着薄膜。其他实施例可包括随后自衬带910移除基板906之单分化之部分(例如,作为个别集成电路)。在一实施例中,单分化之晶粒粘着薄膜908保留在基板906之单分化之部分之背侧上。其他实施例可包括自元件层904移除遮罩光阻层902。在一替代实施例中,在基板906比约50微米薄之情况下,激光切除制程912用于彻底单分基板906,而无需使用额外等离子体制程。在一实施例中,在单分晶粒粘着薄膜908之后,自元件层904移除遮罩光阻层902。在一实施例中,自衬带910移除单分化之集成电路,以用于封装。在一个此类实施例中,经布局图样之晶粒粘着薄膜908保留在每一集成电路之背侧上且包括在最终之封装中。然而,在另一实施例中,在单分制程期间或在单分制程之后移除经布局图样之晶粒粘着薄膜908。再次参看图4A至图4C,可藉由具有约10微米或更小之宽度的切割道407分隔该多个集成电路406。利用基于飞秒之激光划线方法,可在集成电路之布局中使此紧密作用得以实现,此举至少部分归因于严密的激光剖面控制。举例而言,图10图示根据本发明之一实施例,藉由使用与习知切割相比较窄之切割道达成的半导体晶圆或基板上之紧密作用,该习知切割可限于最小宽度。参看图10,藉由使用与习知切割相比较窄之切割道(例如,在布局1002中约10微米或更小之宽度)达成半导体晶圆上之紧密作用,该习知切割可限于最小宽度(例如,在布局1000中约70微米或更大之宽度)。然而,应理解,即使在其他方面可藉由基于飞秒之激光划线制程来实现,并非总是期望将切割道宽度减少至小于10微米。举例而言,一些应用可能需要至少40微米之切割道宽度,以在分隔集成电路之切割道中制造虚拟元件或测试元件。再次参看图4A至图4C,该多个集成电路406可以非限制性布局布置在半导体晶圆或基板404上。举例而言,图11图示允许较紧密堆积之自由形式集成电路布置。根据本发明之一实施例,与栅格对准方法相比,该较紧密堆积可提供每晶圆更多之晶粒。参看图11,自由形式布局(例如半导体晶圆或基板1102上之非限制性布局)允许较紧密堆积,且因此与栅格对准方法(例如,半导体晶圆或基板1100上之限制性布局)相比允许每晶圆更多之晶粒。在一实施例中,激光切除及等离子体蚀刻单分制程之速度与晶粒大小、布局或切割道数目无关。单一制程工具可经设置以执行混合基于飞秒之激光切除及等离子体蚀刻单分制程中之许多或全部操作。举例而言,图12图示根据本发明之一实施例,用于晶圆或基板之激光及等离子体切割之工具布局的方块图。·参看图12,制程工具1200包括工厂介面(factory interface; FI) 1202,工厂介面1202具有与工厂介面1202耦合之多个负载锁室1204。群集工具1206与工厂介面1202耦合。群集工具1206包括一或多个等离子体蚀刻腔室,诸如等离子体蚀刻腔室1208。激光划线设备1210亦耦合至工厂介面1202。在一实施例中,制程工具1200之整体占地面积可为约3500毫米(3. 5公尺)X约3800毫米(3.8公尺),如图12所示。在一实施例中,激光划线设备1210安放基于飞秒之激光。基于飞秒之激光适合于执行混合激光及蚀刻单分制程之激光切除部分,诸如上述之激光切除制程。在一实施例中,激光划线设备1200中亦包括活动平台,该活动平台经设置以用于使晶圆或基板(或晶圆或基板之载体)相对于基于飞秒之激光移动。在一特定实施例中,基于飞秒之激光亦可活动。在一实施例中,激光划线设备1210之整体占地面积可为约2240毫米X约1270毫米,如图12所示。在一实施例中,一或多个等离子体蚀刻腔室1208经设置以用于蚀刻晶圆或基板穿过经布局图样之遮罩中的间隙,以单分多个集成电路。在一个此类实施例中,一或多个等离子体蚀刻腔室1208经设置以执行深硅蚀刻制程。在一特定实施例中,一或多个等离子体蚀刻腔室 1208 为 AppliedCentui'a Silvia Etch系统,该系统可购自 Applied Materials(Sunnyvale, CA, USA)。可将该蚀刻腔室特定设计用于深娃蚀刻,该深娃蚀刻用于产生安放于单结晶硅基板或晶圆上或单结晶硅基板或晶圆中之单分化之集成电路。在一实施例中,等离子体蚀刻腔室1208中包括高密度等离子体源,以促进高的硅蚀刻速度。在一实施例中,制程工具1200之群集工具1206部分中包括超过一个的蚀刻腔室,以使单分或切割制程之高制造产量得以实现。工厂介面1202可为合适大气埠,该大气埠通向带有激光划线设备1210之外部制造设施与群集工具1206之间的介面。工厂介面1202可包括具有臂或叶片之机器人,该等机器人用于将晶圆(或晶圆之载体)自储存单元(诸如前开口式晶圆盒)传送至群集工具1206或激光划线设备1210或该两者中。群集工具1206可包括适合于执行单分方法中之功能的其他腔室。举例而言,在一实施例中,群集工具1206包括沈积腔室1212,以代替额外之蚀刻腔室。沈积腔室1212可经设置以用于在晶圆或基板之激光划线之前在晶圆或基板之元件层上或上方沈积遮罩。在一个此类实施例中,沈积腔室1212适合于沈积光阻层。在另一实施例中,群集工具1206包括湿润/干燥站1214,以代替额外之蚀刻腔室。该湿润/干燥站可适合于清洁残渣及碎片,或用于在基板或晶圆之激光划线及等离子体蚀刻单分制程之后移除遮罩。在一实施例中,群集工具1206亦包括作为制程工具1200之部件的测量站。本发明之实施例可提供为电脑程式产品或软体,该电脑程式产品或软体可包括机器可读取媒体,该机器可读取媒体上储存有指令,该等指令可用于程式化电脑系统(或其他电子元件)以执行根据本发明之实施例之制程。在一实施例中,该电脑系统与结合图12描述之制程工具1200耦合。机器可读取媒体包括用于储存或传送由机器(例如电脑)读取之形式之资讯的任何机构。举例而言,机器可读取(例如电脑可读取)媒体包括机器(例如电脑)可读取储存媒体(例如唯读记忆体(read only memory; ROM)、随机存取记忆体(randomaccess memory; RAM)、磁碟储存媒体、光学储存媒体、快闪记忆体元件等等)、机器(例如电脑)可读取传输媒体(电气、光学、声学或其他传播信号形式(例如红外信号、数字信号等
fiS-ΛΛ坐坐图13图示以电脑系统1300为示例性形式之机器的图形表示,在电脑系统1300内可执行一组指令,该等指令用于使机器执行本文所述方法中之任何一或多者。在替代实施例中,该机器可在区域网路(LocalAreaNetwork; LAN)、企业内部网路、企业外部网路或网际网路中连接(例如网路连接)至其他机器。该机器在客户端-服务器网路环境中可作为服务器或客户端机器工作,或在同级间(或分散式)网路环境中作为同级机器工作。该机器可为个人电脑(personal computer; PC)、平板PC、机上盒(set-top box; STB)、个人数字助理(Personal Digital Assistant;PDA)、蜂巢式电话、网路设备、服务器、网路路由器、切换器或桥接器,或能够执行指定该机器将要采取之动作之一组指令(顺序或其他方式)的任何机器。此外,尽管仅图示单个机器,但术语「机器」亦应被视为包括个别或共同执行一组(或多组)指令以执行本文所述方法中之任何一或多者的机器(例如电脑)之任何集合。示例性电脑系统1300包括处理器1302、主记忆体1304(例如唯读记忆体(ROM)、快闪记忆体、诸如同步DRAM (SDRAM)或Rambus DRAM (RDRAM)之动态随机存取记忆体(dynamicrandom access memory;DRAM)等等)、静态记忆体1306 (例如快闪记忆体、静态随机存取记忆体(static random access memory; SRAM)等等)及辅助记忆体1318 (例如资料储存兀件),该等设备经由汇流排1330彼此通讯。处理器1302表示一或多个通用处理元件,诸如微处理器、中央处理单元等等。更特定言之,处理器1302可为复杂指令集计算(complex instruction set computing; CISC)微处理器、精简指令集计算(reduced instruction set computing;RISC)微处理器、超长指令字集(very long instruction word;VLIff)微处理器、实施其他指令集之处理器或实施指令集组合之处理器。处理器1302亦可为一或多个专用处理元件,诸如特殊应用集成电路(application specific integrated circuit;ASIC)、现场可程式化闸阵列(fieldprogrammable gate array; FPGA)、数字信号处理器(digital signal processor; DSP)、网路处理器等等。处理器1302经设置以执行用于执行本文所述操作之处理逻辑1326。电脑系统1300可进一步包括网路介面元件1308。电脑系统1300亦可包括视讯显示单元1310 (例如液晶显示器(liquid crystal display;LCD)、发光二极体(LED)显示器或阴极射线管(cathode ray tube; CRT))、文数输入元件1312 (例如键盘)、游标控制元件1314 (例如滑鼠)及信号产生元件1316 (例如扬声器)。辅助记忆体1318可包括机器可存取储存媒体(或更具体而言,电脑可读取储存媒体)1331,实施本文所述方法或功能中之任何一或多者的一或多组指令(例如软体1322)储存在机器可存取储存媒体1331上。在电脑系统1300、主记忆体1304及亦构成机器可读取储存媒体之处理器1302执行软体1322期间,软体1322亦可完全或至少部分地常驻于主记忆体1304内部及/或处理器1302内部。可进一步经由网路介面元件1308在网路1320上发送或接收软体1322。尽管在示例性实施例中将机器可存取储存媒体1331图示为单个媒体,但术语「机器可读取储存媒体」应被视为包括储存一或多组指令之单个媒体或多个媒体(例如集中式或分散式资料库,及/或相关联之快取记忆体及服务器)。术语「机器可读取储存媒体」亦 应被视为包括能够储存或编码由机器执行且使机器执行本发明之方法中任何一或多者之一组指令的任何媒体。因此,术语「机器可读取储存媒体」应被视为包括(但不限于)固态记忆体,以及光学及磁性媒体。根据本发明之一实施例,机器可存取储存媒体具有储存在机器可存取储存媒体上之指令,该等指令使资料处理系统执行切割具有多个集成电路之半导体晶圆的方法。该方法包括在半导体晶圆上方形成遮罩,该遮罩由覆盖且保护集成电路之一层组成。然后用基于飞秒之激光划线制程将该遮罩布局图样,以提供具有间隙之经布局图样之遮罩。在集成电路之间曝露该半导体晶圆之区域。然后将半导体晶圆蚀刻穿过经布局图样之遮罩中的间隙,以单分集成电路。因此,本文揭示了切割半导体晶圆之方法,其中每一晶圆具有多个集成电路。根据本发明之一实施例,切割具有多个集成电路之半导体晶圆的方法包括以下步骤在该半导体晶圆上方形成遮罩,该遮罩由覆盖且保护该等集成电路之一层组成。该方法亦包括以下步骤用基于飞秒之激光划线制程将该遮罩布局图样,以提供具有间隙之经布局图样之遮罩,从而曝露该等集成电路之间的半导体晶圆之区域。该方法亦包括以下步骤将该半导体晶圆蚀刻穿过经布局图样之遮罩中的间隙,以单分集成电路。在一实施例中,用基于飞秒之激光划线制程将该遮罩布局图样包括在该等集成电路之间的半导体晶圆之区域中形成沟道。在该实施例中,蚀刻半导体晶圆包括蚀刻由激光划线制程形成之沟道。
权利要求
1.一种切割包含多个集成电路的一半导体晶圆的方法,所述方法包含以下步骤 在所述半导体晶圆上方形成一遮罩,所述遮罩包含覆盖且保护所述等集成电路之一层; 用一基于飞秒之激光划线制程将所述遮罩布局图样,以提供具有多间隙之一经布局图样之遮罩,从而曝露所述等集成电路之间的所述半导体晶圆之多区域;以及 将所述半导体晶圆蚀刻穿过所述经布局图样之遮罩中的所述等间隙,以单分所述等集成电路。
2.如权利要求I所述的方法,其特征在于,用所述基于飞秒之激光划线制程将所述遮罩布局图样之步骤包含以下步骤在所述等集成电路之间的所述半导体晶圆之所述等区域中形成多沟道,且蚀刻所述半导体晶圆之步骤包含以下步骤蚀刻由所述基于飞秒之激光划线制程形成之所述等沟道。
3.如权利要求I所述的方法,其特征在于,用所述基于飞秒之激光划线制程将所述遮罩布局图样之步骤包含以下步骤使用一激光,所述激光具有约小于或等于540奈米之一波长,且所述激光具有约小于或等于400飞秒之一激光脉冲宽度。
4.如权利要求I所述的方法,其特征在于,蚀刻所述半导体晶圆之步骤包含以下步骤使用一高密度等离子体蚀刻制程。
5.如权利要求I所述的方法,其特征在于,所述多个集成电路由多切割道分隔,所述等切割道具有约10微米或更小之一宽度,所述宽度系在一元件层/基板介面处量测。
6.如权利要求I所述的方法,其特征在于,所述多个集成电路具有一非限制性布局。
7.一种用于切割包含多个集成电路之一半导体晶圆的系统,所述系统包含 一工厂介面; 一激光划线设备,所述激光划线设备与所述工厂介面耦合,且所述激光划线设备包含一基于飞秒之激光;以及 一等离子体蚀刻腔室,所述等离子体蚀刻腔室与所述工厂介面耦合。
8.如权利要求7所述的系统,其特征在于,所述激光划线设备经设置以执行在一半导体晶圆之多集成电路之间的多切割道之激光切除,且其中所述等离子体蚀刻腔室经设置以在所述激光切除之后蚀刻所述半导体晶圆,以单分所述等集成电路。
9.如权利要求8所述的系统,其特征在于,所述等离子体蚀刻腔室安放在与所述工厂介面耦合之一群集工具上,所述群集工具进一步包含 一沈积腔室,所述沈积腔室经设置以在所述半导体晶圆之所述等集成电路上方形成一遮罩层。
10.如权利要求8所述的系统,其特征在于,所述等离子体蚀刻腔室安放在与所述工厂介面耦合之一群集工具上,所述群集工具进一步包含 一湿润/干燥站,所述湿润/干燥站经设置以在所述激光切除或所述蚀刻之后清洁所述半导体晶圆。
11.如权利要求7所述的系统,其特征在于,所述基于飞秒之激光具有约小于或等于530奈米之一波长,且所述基于飞秒之激光具有约小于或等于400飞秒之一激光脉冲宽度。
12.—种切割包含多个集成电路之一半导体晶圆的方法,所述方法包含以下步骤 在一硅基板上方形成一聚合物层,所述聚合物层覆盖且保护安置于所述硅基板上之多集成电路,所述等集成电路包含一个二氧化硅层,所述二氧化硅层安置于一低介电常数材料层及一铜层上方; 用一基于飞秒之激光划线制程将所述聚合物层、所述二氧化硅层、所述低介电常数材料层及所述铜层布局图样,以曝露所述等集成电路之间的所述硅基板之多区域;以及 将所述硅基板蚀刻穿过多间隙,以单分所述等集成电路。
13.如权利要求12所述的方法,其特征在于,用所述基于飞秒之激光划线制程将所述二氧化硅层、所述低介电常数材料层及所述铜层布局图样之步骤包含以下步骤在切除所述低介电常数材料层及所述铜层之前切除所述二氧化硅层。
14.如权利要求12所述的方法,其特征在于,用所述基于飞秒之激光划线制程布局图样之步骤进一步包含以下步骤在所述等集成电路之间的所述硅基板之所述等区域中形成多沟道,且蚀刻所述硅基板之步骤包含以下步骤蚀刻由所述基于飞秒之激光划线制程形成之所述等沟道。
15.如权利要求12所述的方法,其特征在于,用所述基于飞秒之激光划线制程布局图样之步骤包含以下步骤使用一激光,所述激光具有约小于或等于530奈米之一波长,且所述激光具有约小于或等于400飞秒之一激光脉冲宽度。
全文摘要
本发明描述切割半导体晶圆之方法,其中每一晶圆具有多个集成电路。一种方法包括以下步骤在该半导体晶圆上方形成一遮罩。该遮罩由覆盖且保护该等集成电路之一层组成。用一基于飞秒之激光划线制程将该遮罩布局图样,以提供具有间隙之一经布局图样之遮罩。该布局图样曝露该等集成电路之间的该半导体晶圆之区域。然后将该半导体晶圆蚀刻穿过该经布局图样之遮罩中的该等间隙,以单分该等集成电路。
文档编号H01L21/301GK102986006SQ201180021218
公开日2013年3月20日 申请日期2011年6月20日 优先权日2010年6月22日
发明者类维生, B·伊顿, M·R·亚拉曼希里, S·辛格, A·库玛, J·M·霍尔登 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1