具有硅纳米粒子的太阳能电池的制造技术

文档序号:7007192阅读:119来源:国知局
专利名称:具有硅纳米粒子的太阳能电池的制造技术
方法
技术领域
本发明体及阳能电池,更具体地讲但不排他地涉及太阳能电池制造工艺和结构。
背景技术
典型的太阳能电池括P型和N型扩散区。冲击在太阳能电池上的太阳辐射产生迁移至扩散区的电子和空穴,从而在扩散区之间形成电压差。扩散区可以在太阳能电池基板中,或在太阳能电池基板外部的层中形成。例如,扩散区可以通过使掺杂剂扩散到基板中而形成。在外部形成的扩散区中,在基板上形成材料层,例如多晶硅。之后,使掺杂剂扩散到多晶硅中,形成扩散区。本发明的实施例涉及降低与太阳能电池扩散区形成相关的制造成本的方法和结构。

发明内容
在一个实施例中,太阳能电池结构包括硅纳米粒子扩散区。扩散区可以通过将硅纳米粒子印刷在薄电介质例如二氧化硅上而形成。润湿剂可以在印刷纳米粒子之前在薄电介质上形成。纳米粒子可以通过喷墨印刷技术来印刷。纳米粒子可以在第一阶段和第二阶段中进行热加工,第一阶段中的热加工通过加热纳米粒子以将有机材料从纳米粒子中热驱出,第二阶段中的热加工通过加热纳米粒子以在薄电介质上形成连续纳米粒子膜。本领域的普通技术人员在阅读包括附图和权利要求书的本公开全文之后,本发明的这些和其他特征对于他们而言将是显而易见的。


当结合以下附图考虑时,通过参见具体实施方式
和权利要求书可以更完全地理解所述主题,其中在所有附图中,类似的附图标记是指类似的元件。附图不是按比例绘制的。图1显示了剖视图,其示意性地示出了根据本发明实施例的太阳能电池结构。图2显示了根据本发明实施例的制造太阳能电池结构的方法流程图。图3显示了纳米粒子半径与熔点的关系图。
具体实施例方式在本公开中,提供了许多具体的细节,例如设备、材料、工序步骤和结构的例子,以提供对本发明实施例的全面理解。然而,本领域的普通技术人员将会认识到,本发明可以在没有所述具体细节中的一者或多者的情况下实施。在其他情况下,未示出或描述熟知的细节,以避免使本发明的方面模糊不清。本发明涉及硅纳米粒子在太阳能电池中的用途。硅纳米粒子在太阳能电池中的用途还在共同拥有的美国专利No. 7,705,237中有所公开,该专利全文以引用的方式并入本文。图1显示了剖视图,其示意性地示出了根据本发明实施例的太阳能电池结构100。太阳能电池结构100包括背面102和正面103。正面103朝向太阳,在正常工作时收集太阳辐射。背面102与正面103相对。太阳能电池结构100为背接触太阳能电池,因为N型扩 散区104、P型扩散区105及其各自的金属触点108和109在背面102上。太阳能电池结构100包括硅基板101形式的太阳能电池基板,该基板在图1的例子中包括N型单晶硅晶片。硅基板101的正面表面是纹理化的,如具有无规锥体110,以改善太阳辐射收集效率。二氧化硅106形式的薄电介质位于硅基板101的背面表面上。在一个实施例中,二氧化硅106在硅基板101的背面表面上热生长。之后,非晶硅(未特别示出)可以在氧化物106的表面上形成。非晶硅作为润湿剂,用于促进N型扩散区104和P型扩散区105的形成。N型扩散区104和P型扩散区105在氧化物106上形成,该形成直接在氧化物106上进行或存在润湿剂时在润湿剂上进行。在一个实施例中,N型扩散区104和P型扩散区105包含硅纳米粒子。硅纳米粒子可以从材料供应商包括加利福尼亚州森尼韦尔的Innovalight公司(Innovalight, Inc. , Sunnyvale, California)商购获得。作为另外一种选择,N型扩散区104和P型扩散区105在氧化物106上形成。夹层电介质层107在N型扩散区104和P型扩散区105上提供电绝缘。金属触点108通过穿过电介质层107的接触孔与对应的N型扩散区104电耦合。相似地,金属触点109通过穿过电介质层107的接触孔与对应的P型扩散区105电耦合。可包含铝、铜或其他金属化材料的金属触点108和109可以相互交叉。金属触点108和109允许将外部电路连接到太阳能电池上并由太阳能电池提供电力。图2显示了根据本发明实施例的制造太阳能电池结构100的方法流程图。在图2的例子中,该方法可由在硅基板101的背面表面上形成二氧化硅106开始(步骤201)。氧化物106作为硅基板101与N型和P型扩散区之间的薄电介质层。氧化物106可以在硅基板101的背面表面上热生长,达到约7至20埃,例如约10埃的厚度。任选地,非晶硅层可以沉积在氧化物106上(步骤202)。非晶硅作为润湿剂,用于促进N型扩散区104和P型扩散区105的印刷。润湿剂可以是需要的或不需要的,具体取决于扩散区的组成及其形成方法。N型扩散区104和P型扩散区105可以通过将纳米粒子印刷在氧化物106上而形成(步骤203)。可以在印刷前预掺杂纳米粒子,以获得N型导电性或P型导电性。这有利地省去一个或多个工序步骤,因为在氧化物106上形成后不需要单独掺杂纳米粒子。更具体地讲,消除了如其他方法中的将掺杂剂源沉积在多晶硅层上的步骤,以及使掺杂剂从掺杂剂源扩散到多晶硅层中形成外部扩散区的热步骤。当不使用润湿剂时,N型扩散区104和P型扩散区105可以直接印刷在氧化物106的表面上。另外,N型扩散区104和P型扩散区可以印刷在润湿剂上或氧化物106上的另一层材料上。优选地,纳米粒子的以下热加工温度低于氧化物解离的阈值。合适的印刷工艺包括喷墨印刷和丝网印刷。喷墨印刷是优选的,因为其有利地允许N型扩散区104和P型扩散区105在喷墨印刷头的一次经过时即在同一个喷墨印刷步骤中进行印刷。包含N型导电掺杂剂(如磷)的纳米粒子膜可以印刷在氧化物106上,作为N型扩散区104。相似地,包含P型导电掺杂剂(如硼)的纳米粒子膜可以印刷在氧化物106上,作为P型扩散区105。纳米粒子也可以通过旋涂或其他合适的工艺形成。纳米粒子可以在形成于氧化物106上之前预掺杂上适当的导电型掺杂剂。可以针对特定的熔点选择纳米粒子的粒度。粒度越大,熔点越接近本体值(bulkvalue)。在一个实施例中,纳米粒子具有小于10纳米如7纳米的粒度。纳米粒子也可以具 有不同粒度的混合物,以促进连续纳米粒子膜的形成。图3显示了纳米粒子半径与熔点的关系图。图3示出了纳米粒子的熔融温度的降低,其中熔融温度的上限(图线301)和下限(图线304)通过Couchman和Jesser的方法(P. R. Couchman andff. A. Jesser, Nature269, 481(1977) (P. R. Couchman 和 I A. Jesser,《自然》,第269卷,第481页,1977年))估算,而中值通过Buffat的方法(图线302 ;Ph. Buffatand J. -P. Borel, Phys. Rev. A13, 2287 (1976) (Ph. Buffat 和 J. -P. Borel,《物理评论 A辑》,第 13 卷,第 2287 页,1976 年))和 Wautelet 的方法(图线 303 ;M. Wautelet, J. Phys.D24, 343 (1991) (M. Wautelet,《物理学杂志D辑》,第24卷,第343页,1991年))计算。从这些计算中,发明人预计对于小于IOnm (最佳情况)的纳米粒子粒度,熔融温度显著降低,甚至当纳米粒子粒度小于4nm时,已知在环境温度下由于反应性过大而不能用作稳定的印刷材料。应当注意,图3显示了根据多个小组的模型,硅纳米粒子的理论熔点随半径的变化而降低。然而,实验数据显示了甚至更低温度的熔点。继续图2,纳米粒子在印刷于氧化物106上之后进行热加工(步骤210)。在图2的例子中,热加工包括步骤204-207,并涉及将太阳能电池结构置于待加热的炉中(步骤204)。太阳能电池结构的热加工可以在两个阶段中进行。在第一热加工阶段中,可存在于纳米粒子膜中的有机材料(如异丙醇和涂覆在纳米粒子上的官能团)被从纳米粒子膜中热驱出(步骤205)。这可以通过在预定的移动速率下、预定中间温度低于300°C的炉中移动太阳能电池结构而进行。第一热加工阶段在炉温升至高于中间温度的烧结温度之前进行。在第二热加工阶段中,炉温升高至烧结温度,该烧结温度为恰好低于纳米粒子熔点的温度(步骤206)。例如,炉温可升高至纳米粒子熔点的约70%至90%。优选地,烧结温度低于氧化物解离的阈值。在其中纳米粒子的熔点为约1000°C的一个实施例中,炉温升高至约900°C的烧结温度。将太阳能电池结构在烧结温度下加热预定量的时间,以实现尤其在与氧化物106的界面上的连续纳米粒子膜。例如,太阳能电池结构可以加热至约900°C的温度约30分钟。所得的连续纳米粒子膜有利地允许纳米粒子膜的作用与多晶硅在其他外部扩散太阳能电池中相同,而无需与多晶硅相关的额外加工步骤。应当注意,润湿剂(参见步骤202)可为熔融纳米粒子提供更好的润湿性,从而导致掺杂到掺杂纳米粒子的润湿区,以在基板上产生连续扩散层。之后,进行额外的加工步骤以完成太阳能电池结构的制造。这些额外的加工步骤包括形成电介质层107、金属触点108和109以及太阳能电池其他特征。已公开了具有硅纳米粒子的太阳能电池的制造技术。虽然已提供了本发明的具体 实施例,但是应当理解,这些实施例是用于举例说明的目的,而不用于限制。通过阅读本公开,许多另外的实施例对于本领域的普通技术人员而言将是显而易见的。
权利要求
1.一种制造太阳能电池结构的方法,所述方法包括 在太阳能电池基板上形成薄电介质层; 通过在所述薄电介质层上印刷P型掺杂硅纳米粒子来形成所述太阳能电池结构的第一扩散区; 通过在所述薄电介质层上印刷N型掺杂硅纳米粒子来形成所述太阳能电池结构的第二扩散区;以及 通过在低于所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子熔点的第一温度下加热所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子而在所述薄电介质层上形成连续纳米粒子膜。
2.根据权利要求1所述的方法,还包括 在所述第一温度下加热所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子之前,通过在低于所述第一温度的第二温度下加热所述N型和P型掺杂硅纳米粒子以从所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子中除去有机材料。
3.根据权利要求2所述的方法,其中所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子在炉中以预定的速率移动时在所述第二温度下加热。
4.根据权利要求1所述的方法,其中所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子通过喷墨印刷技术来印刷。
5.根据权利要求1所述的方法,其中所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子在喷墨印刷头的同一次经过时通过喷墨印刷技术来印刷。
6.根据权利要求1所述的方法,其中所述太阳能电池基板包括单晶硅基板。
7.根据权利要求6所述的方法,其中所述薄电介质层包含在所述硅基板的表面上热生长的二氧化硅。
8.根据权利要求1所述的方法,还包括 在印刷所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子之前在所述薄电介质上形成润湿剂。
9.根据权利要求8所述的方法,其中所述润湿剂包含非晶硅。
10.根据权利要求1所述的方法,其中所述N型掺杂硅纳米粒子和所述P型掺杂硅纳米粒子具有小于10纳米的粒度。
11.一种通过权利要求1所述的方法制造的太阳能电池结构。
12.—种制造太阳能电池结构的方法,所述方法包括 在硅基板的表面上生长二氧化硅; 通过在所述二氧化硅上印刷硅纳米粒子形成所述太阳能电池结构的扩散区; 通过在第一温度下加热所述纳米粒子而从所述纳米粒子中除去有机材料;以及 通过在高于所述第一温度的第二温度下加热所述纳米粒子而在所述二氧化硅上形成连续纳米粒子膜,所述第二温度低于所述纳米粒子的熔点。
13.根据权利要求12所述的方法,其中所述硅纳米粒子在喷墨印刷头的同一次经过时通过喷墨印刷技术来印刷。
14.根据权利要求12所述的方法,还包括 在印刷所述纳米粒子之前,在所述二氧化硅上形成润湿剂。
15.根据权利要求14所述的方法,其中所述润湿剂包含非晶硅。
16.根据权利要求12所述的方法,其中所述硅纳米粒子具有小于10纳米的粒度。
17.一种通过权利要求12所述的方法制造的太阳能电池结构。
18.—种制造太阳能电池结构的方法,所述方法包括在太阳能电池基板上形成薄电介质;通过在所述薄电介质上形成硅纳米粒子而形成所述太阳能电池结构的扩散区;以及在低于所述纳米粒子熔点的温度下加热所述硅纳米粒子。
19.根据权利要求18所述的方法,还包括在所述薄电介质和所述扩散区之间形成润湿剂。
20.一种通过权利要求18所述的方法制造的太阳能电池结构。
全文摘要
本发明公开了一种太阳能电池结构,包括硅纳米粒子扩散区。所述扩散区可以通过将硅纳米粒子印刷在薄电介质(203)例如二氧化硅上而形成。润湿剂可以在印刷纳米粒子之前在薄电介质上形成。纳米粒子可以通过喷墨印刷技术来印刷。所述纳米粒子可以在第一阶段和第二阶段中热加工,所述第一阶段中的热加工通过加热所述纳米粒子以将有机材料从所述纳米粒子(205)中热驱出,所述第二阶段中的热加工通过加热所述纳米粒子以在所述薄电介质(207)上形成连续纳米粒子膜。
文档编号H01L31/0352GK103026507SQ201180032561
公开日2013年4月3日 申请日期2011年6月8日 优先权日2010年9月13日
发明者戴维·D·史密斯, 金太锡 申请人:太阳能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1